III. METODOLOGI PENELITIAN

A. Populasi dan Sampel Penelitian

Populasi dalam penelitian ini adalah siswa kelas XI IPA semester genap SMA Negeri 14 Bandar Lampung tahun pelajaran 2014/2015 yang berjumlah 150 siswa. Kemampuan akademik siswa pada tiap kelas adalah heterogen, sehingga proporsi jumlah siswa yang memiliki kemampuan akademik tinggi, sedang maupun rendah yang hampir sama pada tiap kelas. Sampel dalam penelitian ini adalah siswa kelas XI IPA 3 dan XI IPA 4. Pengambilan sampel dilakukan dengan teknik *purposive sampling*, yaitu teknik pengambilan sampel yang didasarkan pada suatu pertimbangan tertentu yaitu berdasarkan ciri atau sifat-sifat populasi yang sudah diketahui sebelumnya. Berdasarkan teknik ini maka peneliti menetapkan kelas XI IPA 4 sebagai kelas eksperimen dengan menggunakan model pembelajaran *problem solving* dan XI IPA 3 sebagai kelas kontrol dengan pembelajaran yang biasa digunakan guru bidang studi kimia di SMA Negeri 14 Bandar Lampung yaitu dengan metode ceramah, diskusi dan tanya jawab atau tanpa menggunakan model pembelajaran *Problem Solving*.

B. Variabel Penelitian

Variabel dalam penelitian ini adalah:

- a. Variabel bebas dalam penelitian ini adalah penggunaan model pembelajaran *problem solving* dan tanpa penggunaan model *Problem solving*.
- b. Variabel kontrol dalam penelitian ini adalah materi Garam Hidrolisis
- variabel terikat dalam penelitian ini adalah kemampuan menginduksi dan mempertimbangkan hasil induksi.

C. Data Penelitian

Jenis data yang digunakan dalam penelitian ini adalah data yang bersifat kuantitatif yaitu data hasil tes sebelum pembelajaran diterapkan (pretes) dan hasil tes setelah pembelajaran diterapkan (postes), serta data yang bersifat kualitatif yaitu data kinerja guru dan aktivitas belajar siswa.

D. Rancangan Penelitian

Penelitian ini menggunakam metode quasi eksperimen dengan desain *Non- Equivalent Control Group Design*. Desain tersebut menggunakan desain menurut

Cresswell (1997) sebagaimana tertera pada Tabel 4 berikut ini:

Tabel 4. Rancangan Penelitian

Kelas	Pretest	Perlakuan	Posttest
Kelas eksperimen	O_1	X	O_2
Kelas kontrol	O_1	_	O_2

Keterangan:

X : Pembelajaran kimia menggunaan model pembelajaran problem solving

- : Pembelajaran kimia seperti biasanya (tanpa model *problem solving*)

O₁: Kelas eksperimen dan kelas kontrol diberi pretes

O₂: Kelas ekserimen dan kelas kontrol diberi postes

E. Instrumen Penelitian

Instrumen yang digunakan pada penelitian ini antara lain silabus, rencana pelaksanaan pembelajaran (RPP), kisi-kisi soal, instrumen tes, rubrik penilaian instrumen tes, lembar kerja siswa (LKS), lembar penilaian beserta rubrik afektif. Adapun instrumen tes yang digunakan berupa soal pretes dan postes. Soal pretes yang digunakan adalah soal uraian yang mengukur kemampuan menginduksi dan mempertimbangkan hasil induksi pada materi garam hidrolisis dan soal postes yang digunakan adalah soal uraian yang mengukur kemampuan menginduksi dan mempertimbangkan hasil induksi pada materi garam hidrolisis. Dalam pelaksanaannya, kelas eksperimen dan kelas kontrol diberikan soal pretes dan postes yang sama.

Agar data yang diperoleh dapat dipercaya, maka instrumen yang digunakan harus valid. Instrumen dikatakan valid apabila mampu mengukur apa yang diinginkan dan dapat digunakan serta dapat mengungkap data dari variabel yang diteliti secara tepat. Pada penelitian ini menggunakan validitas isi yang dilakukan dengan *judgment*. Validitas isi dengan cara *judgment* memerlukan ketelitian dan keahlian penilai, maka dalam hal ini validitas isi dilakukan oleh ahli. Dalam hal ini dilakukan oleh dosen pembimbing untuk memvalidasinya. Dalam hal ini pengujian dilakukan dengan menelaah kisi-kisi, terutama kesesuaian antara tujuan penelitian,

tujuan pengukuran, indikator dan butir-butir pertanyaannya. Bila ternyata unsurunsur itu terdapat kesesuaian, maka dapat dinilai bahwa instrumen dianggap valid untuk digunakan dalam mengumpulkan data sesuai kepentingan yang bersangkutan.

F. Prosedur Pelaksanaan Penelitian

Langkah-langkah yang digunakan penelitian ini adalah

1. Persiapan Penelitian

Tujuan persiapan penelitian:

- a. Meminta izin kepada Kepala SMA Negeri 14 Bandar Lampung untuk melaksanakan penelitian.
- Menentukan populasi dan sampel penelitian berdasarkan wawancara dengan guru bidang studi kimia di SMA Negeri 14 Bandar Lampung.

2. Pelaksanaan Penelitian

Prosedur pelaksanaan Penelitian terdiri dari beberapa tahap, yaitu:

a. Tahap Persiapan

Yaitu membuatsilabus, rencana pelaksanaan pembelajaran (RPP), kisi-kisi soal tes, instrumen tes berupa soal pretes dan postes, rubrik penilaian instrumen tes, lembar kerja siswa (LKS), lembar penilaian beserta rubrik afektif dan psikomotor.

b. Tahap Penelitian

Pada tahap pelaksanaannya, penelitian dilakukan dalam dua kelas, yaitu kelas eksperimen yang diterapkan model pembelajaran *problem solving* dan kelas kontrol tanpa menggunakan model *problem solving*.

Urutan tahap penelitian sebagai berikut:

- Melakukan pretes dengan soal-soal yang sama pada kelas eksperimen dan kelas kontrol.
- Melaksanakan kegiatan belajar mengajar pada materi hidrolisis sesuai dengan model pembelajaran yang telah ditetapkan dimasing-masing kelas.

(1) Kelas eksperimen

Sebelum dilakukan kegiatan pembelajaran, guru mengelompokkan siswa dalam 5 kelompok secara heterogen.

a. Kegiatan Pendahuluan

- Guru membuka pelajaran dan menyampaikan tujuan pembelajaran.
- Guru memberikan motivasi dan apersepsi terkait materi yang akan dipelajari.

b. Kegiatan Inti

Tahap 1: Merumuskan masalah

- Guru menggali pengetahuan awal siswa dengan pertanyaan sebagai langkah permasalahan bagi siswa.
- Siswa merumuskan masalah.

Tahap 2 : Mencari data atau keterangan yang dapat digunakan untuk memecahkan masalah

- Guru membimbing siswa untuk mencari referensi yang relevan untuk memecahkan masalah.
- Siswa mencari referensi yang relevan untuk memecahkan masalah.

Tahap 3 : Merumuskan hipotesis

- Guru membimbing siswa untuk mengembangkan pendapatnya dalam bentuk hipotesis untuk menjawab yang diajukan pada tahap sebelumnya.
- Siswa merumuskan hipotesis.

Tahap 4: Menguji kebenaran jawaban sementara

- Guru membimbing siswa dalam proses eksperimen, tugas dan diskusi membuktikan jawaban sementara bersama dengan teman sekelompoknya.
- Siswa melakukan eksperimen, tugas dan diskusi untuk membuktikan jawaban sementara bersama dengan teman sekelompoknya.

Tahap 5 : Membuat kesimpulan

- Guru membimbing siswa mempresentasikan
 hasileksperimen dan diskusi serta melakukan tanya jawab
- Siswa mempresentasikan hasileksperimen dan diskusi.
- Guru membimbing siswa dalam menarik kesimpulan berdasarkan hasileksperimen dan diskusi.
- Siswa menarik kesimpulan berdasarkan hasileksperimen dan diskusi.
- Guru memberikan penguatan dari kesimpulan siswa tentang materi yang telah dipelajari.

c. Kegiatan Penutup

- Guru memberikan evaluasi berupa pertanyaan-pertanyaan yang berkaitan dengan materi yang telah dipelajari.

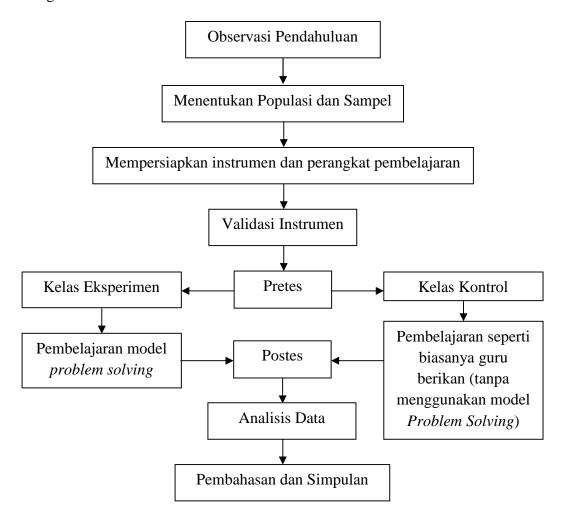
(2) Kelas Kontrol

Sebelum dilakukan kegiatan pembelajaran, guru mengelompokkan siswa dalam 5 kelompok secara heterogen.

a. Kegiatan Pendahuluan

- Guru membuka pelajaran dan menyampaikan tujuan pembelajaran.
- Guru memberikan motivasi dan apersepsi terkait materi yang akan dipelajari.

b. Kegiatan Inti


- Guru memberikan pertanyaan untuk didiskusikan siswa mengenai materi garam hidrolisis.
- Siswa berdiskusi untuk mencari jawaban tersebut.
- Siswa mempresentasikan hasil diskusi nya.
- Guru memberikan penjelasan lebih lanjut mengenai hasil diskusi siswa
- Guru meminta siswa untuk menyimpulkan materi yang baru saja mereka dapatkan.

c. Kegiatan Penutup

- Guru meminta siswa untuk menyimpulkan materi yang baru saja mereka dapatkan.
- Melakukan postesdengan soal-soal yang sama pada kelas eksperimen dan kelas kontrol.

- d. Analisis data
- c. Penulisan pembahasan dan simpulan

Prosedur pelaksanaan penelitian tersebutdapat digambarkan dalam bentuk bagan sebagai berikut :

Gambar 1. Prosedur Pelaksanaan Penelitian

G. Hipotesis Kerja

Rata-rata *n-Gain* keterampilan siswa dalam bertanya dan menjawab pertanyaan pada materi garam hidrolisis yang diterapkan model pembelajaran *Problem*

solving lebih tinggi dari pada rata-rata n-Gain dengan tanpa menggunakan model Problem solving.

H. Teknik Analisis Data dan Pengujian Hipotesis

1. Teknik analisis data

Data yang diolah dalam penelitian ini adalah data yang diperoleh dari hasil pretes dan postes untuk mengukur kemampuan siswa dalam menginduksi dan mempertimbangkan hasil induksi yang diberikan kepada kelas eksperimen dan kelas kontrol.

a. Perhitungan nilai pretes dan postes

Nilai pretes atau postes dirumuskan sebagai berikut:

Nilai =
$$\frac{\text{Jumlah skor yang diperoleh siswa}}{\text{Jumlah skor maksimal}} \times 100$$

b. Perhitungan *n-Gain*

- 1. Menurut Mergendoller (2006) suatu pembelajaran dikatakan efektif apabila adanya perbedaan yang signifikan secara statistik terhadap hasil belajar siswa di kelas eksperimen dan kelas kontrol yang ditunjukkan dengan peningkatan nilai pretes-postes siswa kelas eksperimen lebih tinggi dibandingkan peningkatan nilai pretes-postes siswa di kelas kontrol.
- 2. Untuk mengetahui efektivitas kemampuan menginduks dan mempertimbangkan hasil induksi pada materi garam hidrolisis antara model pembelajaran *problem solving* dengan tanpa menggunakan model pembelajaran *problem solving*, maka dilakukan analisis nilai gain ternormalisasi (*n-Gain*). Perhi-

39

tungan *n-Gain* bertujuan untuk mengetahui peningkatan nilai pretes dan postes kedua kelas. Menurut Meltzer (Rismalinda, 2014) besarnya peningkatan dihitung dengan rumus *n-Gain*, yaitu:

$$n\text{-}Gain = \frac{\text{(Nilai postes - Nilai Pretes)}}{\text{(Nilai Maksimum - Nilai Pretes)}}$$

2. Pengujian hipotesis

a. Uji normalitas

Uji normalitas data dilakukan untuk mengetahui apakah kedua kelompok sampel berasal dari populasi yang berdistribusi normal atau tidak. Rumusan hipotesis untuk uji normalitas adalah:

H₀ : sampel berasal dari populasi berdistribusi normal

H₁ : sampel berasal dari populasi berdistribusi tidak normal

Uji ini biasanya menggunakan uji Chi-Kuadrat:

$$_{\text{hitung}}^{2} = \sum_{i=1}^{n} \frac{(0i - Ei)^{2}}{Ei}$$

Sudjana (2005: 293)

dengan krieria uji : terima H_0 jika $^2_{hitung} < ^2_{tabel}$ dengan taraf signifikan 5%.

Keterangan:

²: nilai *Chi-Kuadrat*

Oi : frekuensi pengamatan

Ei : frekuensi yang diharapkan

n : banyaknya kelas interval

b. Uji homogenitas dua varians

Uji homogenitas dua varians digunakan untuk mengetahui apakah dua kelompok sampel mempuyai varians yang homogen atau tidak.

H₀: kedua kelas penelitian mempunyai varians yang homogen

H₁: kedua kelas penelitian mempunyai varians yang tidak homogen

Rumus statistik untuk uji homogenitas (F):

$$F_{hitumg = \frac{S_1^2}{S_2^2}}$$

$$S^{2} = \frac{n\sum fix_{i}^{2} - \left(\sum fix_{i}\right)^{2}}{n(n-1)}$$

Keterangan:

 S_1^2 = varians terbesar

 S_2^2 = varians terkecil

Kriteria uji : terima H_0 jika $F_{hitung} < F_{tabel}$, dengan taraf nyata 5%

c. Uji Persamaan dua rata-rata

Uji kesamaan dua rata-rata digunakan untuk menentukan apakah pada awalnya kedua kelas penelitian memiliki kemampuan menginduksi dan mempertimbangkan hasil induksi yang berbeda secara signifikan atau tidak. Hipotesis dirumuskan dalam bentuk pasangan hipotesis nol (H_0) dan hipotesis alternatif (H_1) .

Rumusan hipotesis:

 H_0 : $\mu_{1x} = \mu_{2x}$: rata-rata nilai pretes kemampuan awal siswa dalam menginduksi dan mempertimbangkan hasil induksi pada kelas eksperimen sama dengan rata-rata nilai pretes kemampuan awal siswa dalam

menginduksi dan mempertimbangkan hasil induksi pada kelas kontrol.

 $H_1: \mu_{1x} \neq \mu_{2x}:$ rata-rata nilai pretes kemampuan awal siswa dalam menginduksi dan mempertimbangkan hasil induksi pada kelas eksperimen tidak sama dengan rata-rata nilai pretes kemampuan awal siswa dalam menginduksi dan mempertimbangkan hasil induksi pada kelas kontrol.

Keterangan:

 μ_1 : rata-rata nilai pretes (x) pada kelas eksperimen pada materi garam hidrolisis

 μ_2 : rata-rata nilai pretes (x) pada kelas kontrol pada materi garam hidrolisis

x : kemampuan siswa dalam menginduksi dan mempertimbangkan hasil induksi

Jika data yang diperoleh terdistribusi normal dan homogen, maka pengujian menggunakan uji statistik parametrik, yaitu menggunakan uji-t (Sudjana, 2002):

$$t_{hitung} = \frac{\overline{X}_1 - \overline{X}_2}{s\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$
 (4)

dan

$$s^{2} = \frac{(n_{1} - 1)s_{1}^{2} + (n_{2} - 1)s_{2}^{2}}{n_{1} + n_{2} - 2}$$
(5)

Keterangan:

 \overline{X}_1 = rata-rata nilai pretes kemampuan siswa dalam menginduksi dan mempertimbangkan hasil induksi pada kelas ekeriperimen

 \overline{X}_2 = rata-rata nilai pretes kemampuan siswa dalam menginduksi dan mempertimbangkan hasil induksi pada kelas kontrol

s² = varians gabungan

 n_1 = jumlah siswa pada kelas eksperimen

 n_2 = jumlah siswa pada kelas kontrol

 s_1^2 = varians kelas eksperimen

 S_2^2 = varians kelas kontrol

Dengan kriteria pengujian: terima H_0 jika $-t_{1-1/2}$ $< t_{hitung} < t_{1-1/2}$ dengan derajat kebebasan $d(k) = n_1 + n_2 - 2$ dan tolak H_0 untuk harga t lainnya. Dengan menentukan taraf signifikan = 5%.

d. Uji Perbedaan Dua Rata-Rata

Uji perbedaan dua rata-rata digunakan untuk menentukan seberapa efektif perlakuan terhadap sampel dengan melihat n-Gain antara pembelajaran pada kelas kontrol dan eksperimen. Hipotesis dirumuskan dalam bentuk pasangan hipotesis nol (H_0) dan hipotesis alternatif (H_1).

Rumusan hipotesis yang digunakan adalah sebagai berikut:

 H_0 : $\mu_1 > \mu_2$: Rata-rata *n-Gain* kemampuan siswa dalam menginduksi dan mempertimbangkan hasil induksi pada kelas eksperimen (yang diterapkan model *problem solving*) lebih tinggi rata-rata *n-Gain* kemampuan siswa dalam menginduksi dan mempertimbangkan hasil induksi dari pada kelas kontrol (yang tidak diterapkan model *problem solving*).

 H_1 : $\mu_1 < \mu_2$: Rata-rata n-Gain kemampuan siswa dalam menginduksi dan mempertimbangkan hasil induksi pada kelas eksperimen (yang diterapkan model $problem\ solving$) lebih rendah dari rata-rata n-Gain kemampuan siswa dalam menginduksi dan mempertimbangkan hasil

induksi pada kelas kontrol (yang tidak diterapkan model *problem* solving)

Keterangan:

 μ_1 : rata-rata *n-Gain* (x) pada kelas eksperimen

 μ_2 : rata-rata *n-Gain* (x) pada kelas kontrol

x : kemampuan siswa dalam menginduksi dan mempertimbangkan hasil induksi

Jika data yang diperoleh terdistribusi normal dan homogen, maka pengujian menggunakan uji statistik parametrik, yaitu menggunakan uji-t (Sudjana, 2002):

$$t_{hittung} = \frac{\overline{X}_1 - \overline{X}_2}{s\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$
(4)

$$s^{2} = \frac{(n_{1} - 1)s_{1}^{2} + (n_{2} - 1)s_{2}^{2}}{n_{1} + n_{2} - 2}$$
 (5)

Keterangan:

 \overline{X}_1 = rata-rata *n-Gain* kemampuan siswa dalam menginduksi dan mempertimbangkan hasil induksi pada kelas eksperimen

 \overline{X}_2 = rata-rata *n-Gain* kemampuan siswa dalam menginduksi dan mempertimbangkan hasil induksi pada kelas kontrol

s² = varians gabungan

 n_1 = jumlah siswa pada kelas eksperimen

 $n_2 = \text{jumlah siswa pada kelas kontrol}$

 s_1^2 = varians kelas eksperimen

 s_2^2 = varians kelas kontrol

Dengan kriteria pengujian: terima H_0 jika $t_{1\text{-}1/2} < t_{hitung}$ dengan derajat kebebasan $d(k) = n_1 + n_2 - 2$ dan tolak H_0 untuk harga t lainnya. Dengan menentukan taraf signifikan = 5%.