III.METODOLOGI PENELITIAN

A. Waktu dan Tempat Penelitian

Penelitian ini dilakukan mulai 26 Januari sampai 14 mei 2012 di Laboraorium Mekanika Fluida Teknik Mesin Universitas Lampung.

B. Penyiapan Bahan

Bahan yang digunakan dalam penelitian ini adalah sebagai berikut:

1. Turbin cross - flow

Turbin *cross-flow* yang akan diuji pada penelitian ini dibuat dengan jumlah sudu 17, 18 dan 19 buah dan diameter dalam 80 mm, diameter luar 120 mm, ketebalan sudu 1 mm dan panjang turbin 250 mm.

Gambar 14. Runner turbin cross-flow yang diuji

2. Roda gila (fly wheel)

Roda gila yang digunakan dalam pengujian yang akan dilakukan dibuat dengan berat masing-masing 1 kg, 1,2 kg dan 1,4 kg dan memiliki diameter luar 120 mm.

Gambar 15. Roda gila (fly wheel)

C. Peralatan yang digunakan

Alat – alat ukur digunakan dalam penelitian ini adalah :

a. Tachometer

Alat ukur ini digunakan untuk menunjukan jumlah putaran yang dihasilkan poros turbin saat pengujian.

Gambar 16. Tachometer

b. Torsiometer

Alat ini digunakan untuk mengukur jumlah torsi yang dihasilkan oleh poros turbin saat pengujian.

Gambar 17. Torsiometer

Spesifikasi torsimeter

- High resolution torque meter with 15kg-cm torque sensor
- Triple Range: 15 kg-cm; 13 in-lb; 147.1 N-cm
- Peak, Data hold, Zero, Min/Max & Fast/ Slow functions
- RS232 serial interface
- Microcomputer circuitry for high performance

D. Cara Penelitian

Pada penilitian ini dibagi menjadi beberapa tahapan yaitu:

a. Studi literatur

Pada penelitian ini dilakukan studi literatur mengenai turbin *cross-flow* untuk menunjang teori dalam penelitian.

b. Pembuatan turbin cross-flow

Membuat turbin *cross-flow* yang akan diuji dengan jumlah sudu 17, 18 dan 19 buah, untuk *fly wheel* dibuat dengan berat masing-masing 1 kg, 1,2 kg dan 1,4 kg.

c. Perakitan model turbin cross-flow

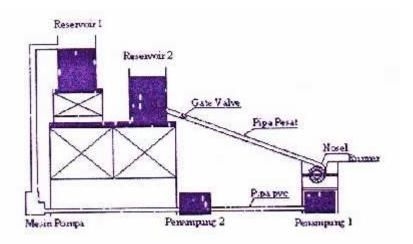
Merakit dan menyiapkan bentuk model PLTMH secara lengkap seperti terlihat pada Gambar 18.

d. Pengujian model turbin cross-flow

Pengujian untuk masing-masing turbin *cross-flow* dilakukan dengan memvariasikan jumlah sudu dan berat roda gila.

e. Analisa data

Data – data dari hasil pengujian kemudian dianalisa untuk memperoleh unjuk kerja turbin.


f. Penulisan laporan.

Penulisan laporan adalah akhir dari penelitian ini.

E. Prosedur Pengambilan Data

Hal-hal yang perlu dilakukan sebelum pengujian adalah:

 Merakit dan menyiapkan bentuk model PLTMH secara lengkap seperti pada Gambar 18.

Gambar 18. Model pengujian turbin cross-flow

- Mengisi drum air 1 dan drum air 2 dengan air secukupnya sampai dengan tinggi yang diinginkan.
- 3. Memasang dan menghidupkan pompa air.
- 4. Membuka katup sehingga air dapat bersirkulasi dengan penuh.
- Setelah air terisi kesemua drum dan air dapat bersirkulasi dengan baik, maka dimulai proses pengujian dan pengambilan data.
- 6. Proses pengambilan data dilakukan dalam 3 bukaan katup, yaitu bukaan katup 45° , 60° dan 90° dengan tinggi *head* 1,75 m.
- 7. Pengujian dilakukan dengan memvariasikan jumlah sudu sudu 17, 18, dan 19 buah dan berat *fly wheel* 1 kg, 1,2 kg dan 1,4 kg.

- 8. Mengambil data dengan menggunakan torsimeter dan diambil berdasarkan torsi terbesar dan dibagi sebanyak 6 kali pengambilan data, dan putaran poros turbin dengan Tachometer.
- 9. Mengulangi langkah tersebut untuk bukaan katup selanjutnya.
- 10. Data yang diperoleh dicatat dalam tabel berikut ini

Tabel 5. Contoh tabel pengambilan data pengujian turbin *cross-flow*.

No. Berat flywheel (kg) Debit (m³/s) rpm T	

F. Pengolahan Data

Setelah pengujian dilakukan, data yang diperoleh digunakan untuk mengetahui unjuk kerja turbin. Adapun besaran-besaran unjuk kerja turbin yang dihitung adalah:

1. Daya Poros (Pb)

Daya poros yang dihasilkan oleh turbin dihitung dengan menggunakan persamaan:

$$P_{b} = 2\pi \left(\frac{nT}{60}\right) \tag{34}$$

Dimana: n = PutaranPoros (rpm)

T = Torsi(Nm)

2. Daya Hidraulis (Ph)

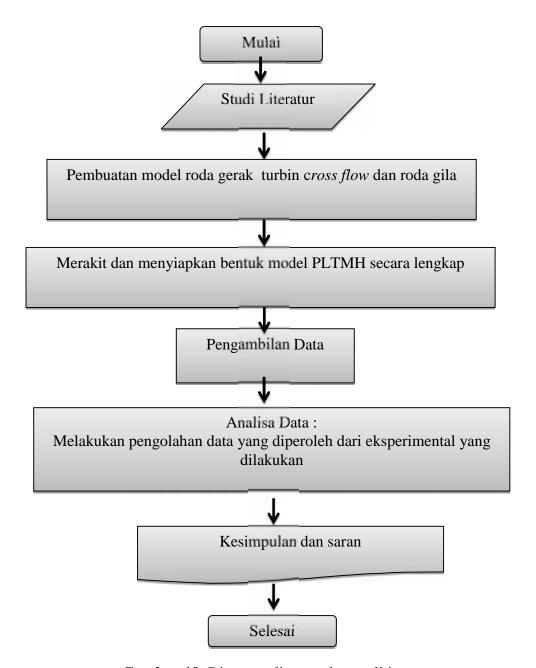
Daya hidraulis yang diberikan oleh fluida terhadap turbin, dapat dihitung dengan persamaan :

$$P_{h} = \rho g H Q \tag{35}$$

Dimana: $\rho = \text{kerapatan air (kg/m}^3)$

 $g = kecepatan gravitasi (m/s^2)$

H = Tinggi air jatuh (m)


 $Q = Debit air (m^3/s)$

3. Efisiensi Turbin ()

Efisiensi dari turbin cross-flow dapat dihitung dengan menggunakan persamaan

$$\eta = \frac{paya \, Poros}{paya \, Hidro} \, X \, 100\% = \frac{2\pi \left(\frac{nT}{60}\right)}{p \, g \, M \, Q} \, X \, 100\% \tag{27}$$

G. Diagram Alir Metode Penelitian

Gambar 19. Diagram alir metode penelitian