ABSTRACT

The Influence of MgCl₂ in the temperature 145°C to stress corrosion crack the steel AISI 1045

By

Asep Ruloh Hendra Prasetyo

Stress corrosion cracking of AISI 1045 was examined in the chloride environment at 145 °C for a period of 10 days. A specimen before bending was carried out by both tension and micro-Vickers hardness tests. In addition, microstructure, fractograph and chemical composition of a specimen after corrosion tests was characterized by Optical microscope (OM), SEM and EDS, respectively.

The tensile strength of the steel is about $\sigma_u = 461.5 \pm 10.03$ MPa, $\sigma_y = 320.00 \pm 5.99$ MPa and the elongation is about $\epsilon = 33.95 \pm 2.31 \%$. The hardness of the steel before U-bend is about 165.34 ± 2.73 HVN and after U-bend process is about 175.92 ± 1,67 VHN (tension region) and 176.35 ± 1.83 VHN (compression region). The propagation of crack (0.0173 mm/h) in the longitudinal direction was faster than the propagation of crack in the transversal direction (0.00917 mm/h). The branched trangranular crack is most dominantly found in the region of tension residual stress, whereas the intergranular crack is found through of a specimen thickness region with dimple morphology. EDS results show that both oxygen and chloride were detected on the surface fracture as a corrosion product. However, stress corrosion cracking was dominantly formed by diffusion towards of chloride ions into of grain structure of the steel and caused Fe-atoms segregation.

Key words: AISI 1045, stress corossion cracking, chloride ions, trans/intergran