DAFTAR GAMBAR

Gambar 2.1 Peta Blok South West Bukit Barisan	4
Gambar 2.2 Elemen Struktur Paleogen dan Neogen Cekungan	
Sumatera Tengah	5
Gambar 2.3 Lokasi Blok South West Bukit Barisan pada Patahan Sumatera.	6
Gambar 2.4 Peta Geologi Cekungan Ombilin	7
Gambar 2.5 Kolom Stratigrafi dan Petroleum Sistem South West	
Bukit Barisan	9
Gambar 3.1 Spektrum vertikal dari gelombang seismik pasif dengan range	
frekuensi antara 1sampai 7 Hz. Gambar A diukur di atas reservoa	r
gas dan Gambar B di luar reservoar hidrokarbon. Kedua titik ini	
berada di area Burgos Basin, barat laut meksiko	18
Gambar 3.2 Merupakan rasio V/H dengan range frekuensi 1 sampai 7 Hz	
dengan titik dan lokasi yang sama dengan gambar III.5. Garis mer	ah
menandakan nilai V/H = 1	18
Gambar 3.3 Seismic background noise spectrum	19
Gambar 3.4 Spektrum amplitude untuk model pori-pori berupa bola. Warna	
menunjukkan ketinggian fluida di dalam pori-pori dan	
dinyatakan dalam %	21
Gambar 3.5 Tiga mekanisme dari karakteristik spectrum	22
Gambar 3.6 Prinsip Transformasi Fourier	24
Gambar 3.7 Untuk mendefinisikan s(t) di domain frekuensi diperlukan	
$A(f) \operatorname{dan} \Phi(f)$	25
Gambar 3.8 Komponen Sistem Petroleum	26
Gambar 3.9 Perangkap Struktural	28
Gambar 3.10 Perangkap Stratigrafi	28
Gambar 3.11 Klasifikasi trap (perangkap)	29
Gambar 4.5 Diagram Alir Penelitian	33
Gambar 5.1 Raw Data pengukuran pada stasiun RCW1_1 Jam 00:00 -05:00	
dan spektrum anomali stasiun rcw1_1, diproses menggunakan	
Software MATLAB2010	34
Gambar 5.2 Raw data pengukuran pada stasiun RCW1_2 Jam 05:00 – 10:00	
dan spektrum anomali stasiun RCW1_2, diproses menggunakan	
Software MATLAB2010	35
Gambar 5.3 Raw Data pengukuran pada stasiun RCW1_3 Jam 10:00 – 15:00	
dan diproses menggunakan Software MATLAB2010	37
Gambar 5.4 Raw Data pengukuran pada stasiun RCW1_4 Jam 15:00 – 19:00	
dan diproses menggunakan Software MATLAB2010	38
Gambar 5.5 Raw Data pengukuran pada stasiun RCW1_5 Jam 19:00 – 00:00	

dan diproses menggunakan Software MATLAB2010	39
Gambar 5.6 Raw Data pengukuran pada stasiun RCW2 dengan sampling rate	
50Hz dan diproses menggunakan Software MATLAB2010	41
Gambar 5.7 Raw Data pengukuran pada stasiun RCW2_1 dengan sampling rat	te
100Hz dan diproses menggunakan Software MATLAB2010	42
Gambar 5.8 Raw Data pengukuran pada stasiun RCW2_2 dengan sampling rat	te
100Hz dan diproses menggunakan Software MATLAB2010	44
Gambar 5.9 Raw Data pengukuran pada stasiun RCW2_3 dengan sampling rat	te
100Hz dan diproses menggunakan Software MATLAB2010	45
Gambar 5.10 Raw Data pengukuran pada stasiun RCW3 dengan sampling rate	e
100 Hz dan Spektrum Anomali stasiun RCW3, diproses	
menggunakan Software MATLAB2010	46
Gambar 5.11 Raw Data pengukuran pada stasiun rcw4 dengan sampling rate	
100 Hz dan Spektrum Anomali stasiun rcw4, diproses	
menggunakan Software MATLAB201	48
Gambar 5.12 Raw Data pengukuran pada stasiun RCW5 dengan sampling rate	e
100Hz dan Spektrum Anomali stasiun RCW5, diproses	
menggunakan Software MATLAB2010	49
Gambar 5.13 Raw Data pengukuran pada stasiun RCW6 dengan sampling rate	e
100 Hz dan Spektrum Anomali stasiun RCW6, diproses	
menggunakan Software MATLAB2010	51
Gambar 5.14 Raw Data pengukuran pada stasiun RCW7 dengan sampling rate	e
100 Hz dan Spektrum Anomali stasiun RCW7, diproses	
menggunakan Software MATLAB2010	52
Gambar 5.15 Raw Data pengukuran pada stasiun RCW8 dengan sampling rate	e
100 Hz dan Spektrum Anomali stasiun RCW8, diproses	
menggunakan Software MATLAB2010	53
Gambar 5.16 Raw Data pengukuran pada stasiun RCW9 dengan sampling rate	e
100 Hz dan Spektrum Anomali stasiun RCW9, diproses	
menggunakan Software MATLAB2010	55
Gambar 5.17 Raw Data pengukuran pada stasiun RCW10 dengan sampling ra	te
100 Hz dan Spektrum Anomali stasiun RCW10, diproses	
menggunakan Software MATLAB2010	56
Gambar 5.18 Raw Data pengukuran pada stasiun RCW11 dengan sampling ra	te
100 Hz dan Spektrum Anomali stasiun RCW11, diproses	
menggunakan Software MATLAB2010	57
Gambar 5.19 Raw Data pengukuran pada Sumur LCY I dengan sampling rate	
100 Hz dan Spektrum Anomali Sumur LCY I, diproses	50
menggunakan Software MATLAB2010	39
Gambar 5.20 Raw Data pengukuran pada Sumur LCY_2 dengan sampling rate	e
100 Hz dan Spektrum Anomali Sumur LCY_2, diproses	<u> </u>
Camban 5 21 Dalaman Dania China in January 2010	60
Gambar 5.21 Rekaman <i>Passive Seismic</i> dengan sampling rate	\sim
Combor 5 22 Days Data Dakaman Dagaing Saigning dan ang saganling	02
vanioai 5.22 Kaw Data Kekalilah <i>Passive Seismic</i> dengan sampling	67
Cambar 5 23 Pay Data Pakaman <i>Dassiya Saismia</i> dangan samaling	02
rate 100 Hz dan Kandungan Erakuanginya	62
Tate 100 fiz dan Kandungan Flekuensinya	03

64
65
66
67
68
. 69
70