V. KESIMPULAN DAN SARAN

4.1 Kesimpulan

Pada penentuan bilangan kromatik lokasi graf kembang api $F_{n,k}$, Asmiati.dkk (2012), memperoleh $\chi_L(F_{n,4})=4$, untuk $n\geq 2$; sedangkan untuk k=5, $\chi_L(F_{n,k})=k-1$, untuk $2\leq n\leq k-1$ dan k untuk n yang lainnya. Pada penelitian tesis ini, peneliti melanjutkan penelitian Asmiati.dkk(2012) dengan mensubdivisi graf kembang api $F_{n,k}$. Apabila salah satu sisi yang bukan sisi daun pada graf kembang api $F_{n,k}$ disubdivisi satu titik pada $\chi_i m_i$ untuk setiap $i\in [1,n]$, dinotasikan dengan $F_{n,k}^*$, diperoleh:

i.
$$_{I}(F_{n,4}^{*}) = 4$$
; $n \ge 2$

ii. Untuk $k \ge 5$

$$_{\mathbf{L}}(F_{n,k}^{*}) = \begin{cases} \mathbf{k} - 1 \ ; 1 \leq \mathbf{n} \leq \mathbf{k} - 1 \\ \mathbf{k} \end{cases} ; \text{lainnya}$$

Selanjutnya graf kembang apai $F_{n,k}^*$ disubdivisi sebanyak $s \ge 2$ titik genap pada masing – masing sisi $x_i y_i$ dan $y_i m_i$ untuk setiap $i \in [1, n]$, dinotasikan dengan $F_{n,k}^{s*}$. Akibatnya $x_i y_i$ dan $y_i m_i$ menjadi sebuah lintasan untuk setiap $i \in [1, n]$; untuk setiap $r \in [1, s]$ dan s + 2 genap. Misalkan lintasan $x_i y_i = \{x_i, a_{i1}, a_{i2}, \dots, a_{ir}, y_i\}$ dan lintasan $y_i m_i = \{x_i, b_{i1}, b_{i2}, \dots, b_{ir}, m_i\}$ untuk setiap $i \in [1, n]$; untuk setiap $r \in [1, s]$ dan s + 2 genap, diperoleh:

i.
$$_{L}(F_{n,4}^{s*}) = 4 ; n = 2$$

ii. Untuk $k \ge 5$

$$_{L}(F_{n,k}^{s*}) = \begin{cases} k-1 ; 1 & n & k-1 \\ k & ; lainnya \end{cases}$$

Sehingga terlihat perluasan yang dapat dilakukan pada graf kembang api $F_{n,k}$ sedemikian sehingga mempertahankan bilangan kromatik lokasinya.

4.2 Saran

Penelitian ini dapat dilanjutkan dengan menentukan bilangan kromatik lokasi graf $F_{n,k}$ dengan mensubdivisi n titik pada masing – masing sisi daun.