ABSTRACT
 MATRIX TRANSFORMATIONS OF INTEGERS SEQUENCES

By

KHAIRIL WALID

The integer sequences with first term 1 comprise a group \mathcal{G} under convolution, namely, the appell group, and the lower triangular infinite integer matrices with all diagonal entries 1 comprise a group \mathbb{G} under matrix multipication. If $A \in \mathbb{G}$ and $M \in \mathbb{G}$, then $M A \in \mathbb{G}$. The groups \mathcal{G} and \mathbb{G} and various subgroups are discussed. These include the group $\mathbb{G}^{(1)}$ of matrices whose columns are identical except for initial zeros, and also the group $\mathbb{G}^{(2)}$ of matrices in which the oddnumbered columns are identical except for initial zeros and the same is true for even-numbered columns. Conditions are determined for the product of two matrices in $\mathbb{G}^{(m)}$ to be in $\mathbb{G}^{(1)}$. Conditions are also determined for two matrices in $\mathbb{G}^{(2)}$ to commute

Keyword : The Integer Sequences, Matrix Transformations,Convolution, Appell Group.

