II. TINJAUAN PUSTAKA, KERANGKA PEMIKIRAN, DAN HIPOTESIS

A. Tinjauan Pustaka

1. Tinjauan Agronomis Padi

Berdasarkan sistem budidaya, padi dibedakan dalam dua tipe, yaitu padi kering (gogo) dan padi sawah. Padi sawah yaitu padi yang ditanam pada petakan sawah yang digenangi air dan dibatasi oleh pematang. Padi sawah irigasi mempunyai ciri-ciri yaitu varietas padi yang ditanam biasanya khusus untuk padi sawah, pengolahan tanah dilakukan hingga tanah melumpur,
waktu tanam biasanya mencapai 2 –3 kali setahun, masalah gulma mudah
diatasi karena adanya genangan air, potensi hasil 5 – 8 ton atau tergantung
varietas yang dipakai.

Teknis Budidaya Padi

a) Persemaian benih

Budidaya padi sawah dilakukan dengan persemaian dimana tempat
persemaian harus berdekatan agar memudahkan penanaman. Persemaian
dilakukan 21 – 25 hari sebelum tanam. Benih yang digunakan tiap
hektarnya adalah 25 – 40 kg tergantung jenis varietasnya. Lahan
persemaian harus sudah siap paling lambat sehari sebelum sebar benih,
untuk setiap 1 kg benih dibutuhkan lahan persemaian seluas 20 m² atau
300 – 400 m² untuk penanaman seluas 1 hektar. Pengolahan tanah
dilakukan terdiri dari beberapa tahap yaitu pembersihan, pencangkulan
atau pembajakan dan penggaruan. Setelah pengolahan lahan selesai bibit
siap ditanam dengan kedalaman 3 – 4 cm dan tiap lubang terdiri dari 2 –
3 bibit.

b) Persiapan Lahan

Lahan sawah disiapkan paling lambat 15 hari sebelum tanam.
Pengolahan tanah dilakukan 2 – 3 kali. Pengolahan tanah I, tanah
diolah/dibajak dalam keadaan basah; pengolahan II, tanah diolah/dibajak
dan digarun untuk melumpurkan dan meratakan lahan agar siap ditanami
bibit padi. Pada pengolahan tanah III, diberikan pupuk kandang atau
pupuk kompos jerami.
c) Penanaman dan Penyulaman Tanaman

Penanaman dilakukan pada saat bibit berumur 15 –18 hari setelah sebar untuk padi hibrida dan 15 – 20 hari setelah sebar untuk padi inihrida, atau bibit telah berdaun 5 –7 helai dengan sistem penanaman menggunakan jajar legowo atau sistem tegel dengan jarak tanam 20 x 20 cm, 22,5 x 22,5 cm atau 25 x 25 cm. Tanam bibit pada kedalaman 1 – 1,5 cm, dengan jumlah bibit yang ditanam hanya 1 bibit perlubang atau paling banyak 2 bibit perlubang tanam. Penyulaman, untuk mendapatkan populasi maksimal, setelah tanam dilakukan penyulaman terhadap bibit yang tidak tumbuh/mati dengan bibit yang sudah dipersiapkan sebelumnya. Penyulaman dilakukan maksimal 1 minggu setelah tanam untuk mempertahankan populasi yang optimal. Untuk penyiangan dilakukan pada saat tanaman berumur 2 – 3 minggu setelah tanam.

d) Pengairan

Disekeliling petakan sawah dibuat parit-parit dengan kondisi tanah basah. Secara berangsur-angsur lahan diairi setinggi 2 – 5 cm setelah pindah tanam sampai tanaman berumur 10 HIST. Pengaturan air setelah 10 IIST lahan dibiarakan mengering selama 5 – 6 hari hingga tanah retak, lalu digenangi kembali setinggi 5 cm dan dibiarakan mengering sendiri (5 – 6 hari) dan sterusnya. Pengaturan air setelah 50 HIST keadaan lahan dijaga agar tetap lembab dan yang terakhir pada masa fase berbunga hingga masak lahan sawah dalam keadaan basah dan kadang digenangi air setinggi 1 – 2 cm.
e) Pemupukan

Pemupukan diperlukan untuk menambah unsur hara. Pupuk yang digunakan oleh petani yaitu pupuk organik dan anorganik. Pupuk buatan yang digunakan adalah urea, SP 36, dan KCl sedangkan pupuk organik yang digunakan terdiri kotoran hewan dan sisa tanaman. Pemberian pupuk dilakukan sebanyak 2 – 3 kali. Dosis pemupukan dasar pupuk SP36 sebanyak 100 kg/ha. Waktu pemupukan dasar yaitu 2 minggu setelah tanam (14 HST). Pemupukan susulan I dosis penerapan pupuk urea sebanyak 66,7 kg/ha dan waktu pemupukannya pada saat umur tanaman 30 HST. Pemupukan susulan II dosis penerapan pupuk urea 66,7 kg/ha dan waktu pemupukan pada saat tanaman berumur 50 HST.

f) Penyiangan

Penyiangan dilakukan sesuai dengan kebutuhan setelah dilihat terdapat gulma dilahan padi.

g) Pengendalian hama dan penyakit

h) Panen dan Pasca Panen

Keberhasilan budidaya padi di atas sangat dipengaruhi faktor iklim, ketersediaan air yang cukup, kondisi serangan hama dan penyakit (PT SAS, Pedoman Bertanam Padi).

2. Intensifikasi Pertanian

Intensifikasi merupakan usaha peningkatan produksi pertanian dengan jalan menambah modal dan tenaga (skill) perkesatuan luas tanah yang sama (Hadisapoetro, 1977). Program intensifikasi pertanian tidak pernah terlepas dari paket penerapan teknologi pertanian. Menurut Mubyarto (1997) teknologi pertanian adalah suatu cara bertani yang oleh masyarakat dianggap baru yang dimaksudkan untuk menaikkan produktivitas baik produktivitas tanah, modal, atau tenaga kerja. Teknologi pertanian memegang peranan penting dalam peningkatan produksi pertanian, melalui teknologi pertanian memungkinkan peningkatan produksi dari jumlah masukan tetap atau penurunan jumlah masukan untuk memperoleh hasil yang tetap. Dengan demikian pengembangan teknologi pertanian merupakan suatu langkah yang
strategis untuk meningkatkan produktivitas pertanian, bahwa manfaat dari perubahan teknologi dapat terjadi secara langsung berupa peningkatan produktivitas dapat juga secara tidak langsung melalui penyesuaian harga faktor produksi (Tohir, K. A, 1993).

Intensifikasi padi merupakan salah satu program pemerintah dalam rangka meningkatkan produksi padi yang dicanangkan pada tahun 1958. Program ini bertujuan untuk meningkatkan produktivitas dengan memanfaatkan potensi lahan, daya, dan dana yang ada secara optimal serta kelestarian sumberdaya alam. Awalnya program ini dinamakan Padi Sentra dengan menerapkan teknologi Panca Usaha Tani.

Program intensifikasi pertanian khususnya padi menerapkan teknologi- teknologi sapta usahatani. Penerapan teknologi sapta usahatani padi
merupakan segala kegiatan yang harus dilakukan oleh petani dalam rangka meningkatkan produksi padi. Adapun beberapa teknologi sapta usahatani pada program intensifikasi adalah sebagai berikut:

a) Penggunaan benih unggul

Asal benih padi juga menentukan mutu benih yang ditanam petani. Benih yang berasal dari pedagang/penjual benih umumnya memiliki kualitas benih yang baik daripada benih yang berasal dari benih sendiri karena benih yang berasal dari pedagang benih umumnya memiliki label benih berkualitas yang berasal dari pemuliaan benih. Kebutuhan jumlah benih merupakan salah satu kegiatan dalam intensifikasi pertanian. Menurut

b) Teknik bercocok tanam

Salah satu usaha yang tidak kurang pentingnya untuk diperhitungkan oleh para petani kita untuk mencapai hasil pertanamannya semaksimal mungkin yaitu perbaikan teknik bercocok tanam. Kegiatan perbaikan teknik bercocok tanam dalam sapta usaha tani yaitu berkenaan dengan persemaian, pengolahan tanah, jarak tanam yang digunakan petani, jumlah bibit yang diberikan dalam tiap lubang, umur bibit pada saat akan ditanam, waktu tanam, waktu tanam bibit, penyiangan dan rotasi tanaman.

pengolahan tanah sekitar 20 – 25 cm, jika terlalu dalam dapat
menyebabkan terangkatnya lapisan pint (lapisan beracun). Pengolahan
tanah dapat menggunakan cangkul, bajak tradisional maupun traktor.
Namun, pengolahan tanah sebaiknya menggunakan bajak traktor dengan
tujuan agar pengolahan lebih ringan, cepat, mudah, dan hasilnya lebih
sempurna (Suastika dkk, 1997).

Jarak tanam adalah suatu faktor yang ikut serta dalam menentukan tinggi
rendahnya hasil pertanaman padi. Menurut Siregar (1981) jarak tanam
yang terbaik adalah 25 x 25 cm. Jarak tanam yang lebih lebar dari 25 x
25 cm, jauh menurunkan hasil. Penelitian terbaru saat ini membuktikan
Jarak tanam dengan jajar legowo juga memiliki manfaat besar untuk
meningkatkan hasil dari pengaruh tanaman pinggiran (border effect)
sehingga meningkatkan produksi. Jarak tanam jajar legowo yang
dianjurkan adalah 50 x 25 x 12,5 cm, 50 x 25 x 15 cm, dan 40 x 20 x 15
cm.

Jumlah bibit yang ditanam sesuai anjuran yaitu 1 – 3 per lubang,
sehingga dapat menghemat benih. Manfaat lain dari pengurangan bibit
yang ditanam juga agar dapat tumbuh dan berkembang lebih baik
perakaran lebih intensif dan anakan lebih banyak. Umur bibit yang
ditanam sebaiknya sekitar 10 – 15 hari. Hal ini memungkinkan bagi
tanaman untuk tumbuh lebih baik dengan jumlah anakan cenderung lebih
banyak. Perakaran bibit berumur kurang dari 15 hari lebih cepat
beradaptasi dan lebih cepat pulih dan stress akibat dipindahkan dari
persemaian ke lahan pertanaman dibandingkan bibit yang lebih tua.
Waktu tanam bibit sebaiknya dilakukan pada pagi hari agar bibit yang baru dipindahkan tidak stres terhadap sinar matahari langsung. Waktu menanam sebaiknya sesuai musim tanam, hal ini bertujuan agar tanam dilakukan serempak sehingga akan mengurangi kerentanan terhadap serangan hama dan penyakit tanaman (Suastika, 1997).

Pergiliran (rotasi) tanaman pada tanaman padi sebaiknya dilakukan terutama dengan tanaman palawija ketika tidak ada air, hal ini bertujuan agar dapat mempertahankan kesuburan tanah. Selain itu juga, usaha rotasi tanaman akan memberikan tambahan pendapatan dari hasil yang diperoleh.

c) Pengairan

Peningkatan produksi dapat dilakukan dengan mengatur sistem irigasi atau pengairan yang baik karena air merupakan kebutuhan vital bagi tanaman. Sistem pengairan sawah sangat mendukung ketersediaan air bagi tanaman, dimana sistem pengairan berfungsi untuk mengalirkan air untuk kebutuhan tanaman. Sistem pengairan sawah terdapat tiga tipe yaitu sistem irigasi teknis, irigasi ½ teknis, dan irigasi nonteknis. Sistem
irigasi teknis merupakan sistem irigasi yang paling baik dan maju karena dalam sistem irigasi ini mempunyai bangunan sadap yang permanen.

Bangunan sadap serta bangunan bagi mampu mengatur dan mengukur.

Disamping itu terdapat pemisahan antara saluran pemberi dan pembuang.

Pengaturan dan pengukuran dilakukan dari bangunan penyadap sampai ke petak tersier. Pengairan pada lahan sawah sebaiknya tercukupi airnya, jika air yang diberikan terlalu banyak akan mengakibatkan pupuk atau zat makanan disekitar tanaman akan hilang terbawa oleh air. Sebaliknya, jika terlalu sedikit tumbuhan akan mati karena tidak mendapatkan air.

d) Pemupukan.

Peningkatan produksi tidak terlepas dari kontribusi pupuk. Pemupukan yang baik salah satunya dapat kita lakukan melalui cara pemupukan yang tepat, yaitu tepat dosis. Jumlah pupuk yang diberikan sesuai dengan jumlah pupuk yang dibutuhkan tanaman (tidak boleh terlalu banyak atau terlalu sedikit). Dosis pupuk yang diberikan untuk pupuk urea yaitu 230 kg/ha untuk padi hibrida dan 130 kg/ha untuk padi inhibrida, dosis pupuk SP 36 yang dianjurkan yaitu 130 kg/ha, pupuk KCl yaitu 100 kg/ha untuk padi hibrida dan 50 kg/ha untuk padi inhibrida, sedangkan dosis pupuk majemuk yang dianjurkan yaitu 200 kg/ha (Dinas Tanaman Pangan dan Hortikultura, 2009). Selain tepat jumlah, pemupukan juga harus tepat waktu artinya pupuk yang diberikan sesuai dengan waktu pemberian pupuk bagi tanaman. Menurut Suastika (1997) pemberian pupuk yang baik khususnya pupuk urea yaitu seperti takaran pada saat tanam,
sepertiga takaran pada empat minggu setelah tanam, dan sepertiga takaran pada tujuh minggu setelah tanam.

Cara pemupukan juga menentukan efektifitas penyerapan unsur pupuk oleh tanaman. Pemupukan diberikan harus dengan cara yang tepat agar pupuk yang diberikan dapat diterima sasaran tanaman dengan maksimal. Berdasarkan penelitian yang telah dilakukan menyatakan bahwa pemupukan dengan cara memebenamkan pupuk kedalam tanah lebih baik dibandingkan ditabur. Hal ini dikarenakan pupuk yang dibenamkan dalam tanah akan terserap penuh oleh akar tanaman daripada pupuk yang ditebar. Pupuk yang ditebar berpotensi tidak terserap secara sempurna oleh tanaman.

e) Pengendalian hama dan penyakit tanaman

Proses selanjutnya dalam intensifikasi padi adalah pemberantasan hama dan penyakit tanaman. Pada prinsipnya pemberantasan hama dan penyakit tanaman bertujuan untuk mencegah tanaman mati karena diserang oleh hama atau penyakit tanaman. Serangan hama dan penyakit
tanaman akan menurunkan tingkat produktifitas tanaman bahkan gagal sama sekali. Maka dari itu, hal yang perlu diperhatikan yaitu berkenaan dengan intensitas pengendalian HPT, dosis dan konsentrasi yang digunakan, alat untuk pemberantasan hama, cara penyemprotan, dan waktu penyemprotan.

Kegiatan pengendalian hama dan penyakit tanaman menggunakan pestisida harus tepat dosis/ konsentrasi. Dosis adalah kebutuhan pestisida per ha (lt/ha) sedangkan konsentrasi adalah kebutuhan pestisida per liter air (ml/l). Dalam penggunaan pestisida, penggunaan dosis dibawah anjuran akan mengakibatkan hama/ penyakit tidak mati kadang mengakibatkan hama resisten sedangkan dengan dosis berlebihan akan mengakibatkan boros biaya.

Menurut Paryanto (2011) pengendalian hama dan penyakit tanaman sebaiknya dilakukan ketika hama dan penyakit tanaman menyerang tanaman. Penyemprotan menggunakan alat semprot pertanian (sprayer) dengan menyemprotkan cairan pestisida dari atas kebawah agar cairan yang disemprotkan merata dan tidak mengenai badan penyemprot. Waktu penyemprotan sebaiknya pagi hari sebelum jam 10 karena dipagi hari banyak angin dan matahari belum terik serta saat pagi hari hama-hama masih enggan bergerak.

f) Panen dan pascapanen

Permasalahan kehilangan hasil pada saat panen akan mempengaruhi produksi. Untuk menekan kehilangan hasil yang dimulai pada saat panen
hingga pengolahan hasil diperlukan teknologi tepat guna. Sebagai contoh untuk padi menggunakan alat perontok padi (*ilesar*) akan menurunkan tingkat kehilangan hasil.

Pasca panen adalah kegiatan yang dilakukan para petani setelah melakukan panen. Contoh kegiatannya antara lain menanam jenis tanaman yang berbeda (selain tanaman pokok) yang umurnya pendek. Hal ini ditujukan untuk mengembalikan kesuburan tanah. Dan, selain itu juga dapat menambah penghasilan petani.

g) Pemasaran

Pemasaran yang baik termasuk hal yang penting dalam sapta usahatani. Misalnya, apabila hasil panen baik tetapi cara pemasaran kurang sama saja petani akan merugi. Ada beberapa sistem pemasaran padi yang dilakukan oleh petani padi yaitu misalnya tengkulak yang langsung membeli hasil panen dengan cara ditebas. Hal ini sangat merugikan bagi para petani karena harga yang ditawarkan sangat rendah sehingga jumlah pengeluaran lebih besar dari hasil yang didapat. Namun, petani terkadang juga menjual hasil panennya di pasar dimana harga jual dipasar akan lebih tinggi dibandingkan dengan harga yang diberikan oleh tengkulak.

Kendala utama dalam penerapan teknologi adalah petani belum menerapkan komponen teknologi sesuai anjuran (*Adisarwanto dan Yustina, 2004*). Beberapa kasus yang sering terjadi di kalangan petani, sebagai berikut: (1) penggunaan varietas unggul belum banyak dilaksanakan petani, (2) jarak tanam yang diterapkan petani belum sesuai anjuran dan jumlah benih
perlubang tanamanpun lebih banyak, (3) pemberian pupuk belum berimbang dan sering terlambat dari waktu yang dianjurkan, (4) penyiangan dan pembubunan sering terlambat, dan (5) pengaturan jarak tanam pada pola tanam tumpang sari belum tepat.

3. **Konsep Usaha Tani**

Menurut Soekartawi (1995), ilmu usahatani diartikan sebagai ilmu yang mempelajari bagaimana seseorang mengalokasikan sumberdaya yang ada secara efektif dan efisien dengan tujuan memperoleh keuntungan yang tinggi pada waktu tertentu. Usahatani dikatakan efektif bila petani dapat mengalokasikan sumberdaya yang mereka miliki dengan sebaik-baiknya dan dikatakan efisien bila pemanfaatan sumberdaya tersebut menghasilkan keluaran (output) yang melebihi masukan (input).
Peningkatan produksi dilakukan petani dengan mempertimbangkan adanya hubungan antara biaya dan penerimaan yang diperoleh. Hubungan tersebut dapat digunakan untuk mengetahui tingkat pendapatan petani dari usahatani yang bersangkutan. Pendapatan dihitung berdasarkan selisih antara penerimaan dengan biaya. Biaya adalah hasil perkalian antara jumlah faktor-faktor produksi dengan harganya, sedangkan penerimaan adalah hasil perkalian antara jumlah produksi (output) dengan harganya.

Keuntungan adalah selisih antara penerimaan dan biaya-biaya. Secara matematis menghitung keuntungan digunakan persamaan sebagai berikut:

$$\pi = YP_Y - X_iP_{xi} - BTT$$...(1)
Keterangan :

\begin{align*}
\pi & = \text{keuntungan} \\
Y & = \text{produksi} \\
P_y & = \text{harga produksi} \\
X_i & = \text{faktor produksi (i= 1,2,3, ...,n)} \\
P_{x_i} & = \text{harga faktor produksi} \\
\text{BTT} & = \text{biaya tetap total}
\end{align*}

Biaya produksi adalah seluruh biaya yang dikeluarkan untuk kegiatan usahatani dalam satu kali musim tanam. Menurut Mubyarto (1985), biaya pada kenyataannya dibagi menjadi dua yaitu biaya tetap (seperti sewa tanah, pembelian alat-alat pertanian) dan biaya tidak tetap (seperti biaya yang diperlukan untuk pembelian bibit, pupuk, obat-obatan, pembayaran upah tenaga kerja).

Keberhasilan usahatani dapat diuji dengan beberapa analisis, yaitu: (1) analisis biaya per satuan hasil, (2) analisis imbangan penerimaan dan biaya atau R/C rasio, (3) analisis pendapatan atau keuntungan cabang usaha, serta (4) analisis imbangan tambahan manfaat dan biaya atau B/C rasio. Analisis pertama biasanya digunakan untuk menghitung harga pokok suatu produksi. Analisis kedua dan ketiga digunakan untuk menguji keuntungan dan keberhasilan suatu cabang usahatani. Analisis keempat digunakan untuk pergantian teknologi yang berakibat pada pertambahan biaya (Soekartawi, 1995).

Analisis R/C rasio (Return Cost Ratio) digunakan untuk mengetahui apakah usahatani padi menguntungkan atau tidak. R/C rasio merupakan perbandingan (nisbah) antara penerimaan dan biaya. Kriteria pada pengukuran ini adalah sebagai berikut:
1) jika R/C > 1, maka usahatani yang dilakukan menguntungkan, karena penerimaan lebih besar dari biaya total.

2) jika R/C < 1, maka usahatani yang dilakukan tidak menguntungkan, karena penerimaan lebih kecil dari biaya total.

3) jika R/C = 1, maka usahatani yang dilakukan tidak rugi maupun untung, karena penerimaan sama besar dengan biaya total.

4. Teori Produksi

Istilah faktor produksi sering pula disebut dengan korbanan produksi, karena faktor produksi tersebut dikorbankan untuk menghasilkan produksi. Macam faktor produksi atau input serta jumlah dan kualitasnya perlu diketahui oleh seorang produsen. Oleh karena itu, untuk menghasilkan suatu produk, maka diperlukan pengetahuan tentang hubungan antara faktor produksi (input) dan produk (output). Hubungan antara input dan output ini sering disebut dengan
fungsi produksi. Dengan fungsi produksi, dapat diketahui hubungan antara variabel yang dijelaskan (dependent variable) \(Y\), dan variabel yang menjelaskan (independent variable) \(X\), serta mengetahui hubungan antar variabel penjelas. Secara matematis, fungsi produksi dinyatakan dalam bentuk:

\[
Y = f(X_1, X_2, X_3, \ldots, X_n)
\]

dimana:
- \(Y\) = Jumlah produk yang dihasilkan
- \(X_1, \ldots, X_n\) = Faktor-faktor produksi
- \(f\) = Fungsi yang menunjukkan hubungan dari perubahan input menjadi output

Menurut Arifin (1995), dalam perhitungan ekonomi usahatani dikenal tiga macam produk, yaitu produk total (PT), produk rata-rata (PR), dan produk marginal (PM). Produk total (PT) adalah jumlah produk (hasil yang diperoleh dalam proses produksi) yang diproduksi selama periode waktu tertentu, dengan menggunakan semua faktor produksi yang dibutuhkan dalam proses produksi. Produk rata-rata (PR) adalah perbandingan antara produk total dengan input produksi. Produk marginal (PM) adalah perubahan produksi (output) karena kenaikan satu-satuan faktor produksi (input). Secara grafik, hubungan antara PT, PR, dan PM dinyatakan dalam kurva produksi seperti disajikan pada Gambar 1.
Gambar 1. Hubungan antara PT, PR, dan PM (Sumber: Arifin, 1995)

Pada Gambar 1 dapat dilihat bahwa terdapat tiga tahapan produksi, yaitu:

Daerah I : terjadi kenaikan hasil yang semakin bertambah *(increasing return to scale)*, di mana nilai dari elastisitas produksi lebih dari satu *(Ep > 1)*, dan daerah ini termasuk daerah irrasional karena penggunaan faktor produksi masih dapat ditingkatkan lagi untuk menambah hasil *(output/produksi)*.

Daerah II : terjadi kenaikan hasil berkurang *(decreasing return to scale)*, di mana nilai dari elastisitas produksi lebih besar dari nol tetapi lebih kecil dari satu *(0 < EP <1)*. Daerah ini termasuk daerah rasional, karena produksi optimal tercapai pada daerah tersebut.

Fungsi produksi Cobb-Douglas merupakan fungsi logaritma yang umum digunakan untuk menduga fungsi produksi dan dinilai lebih sesuai untuk menganalisis lebih dari dua faktor produksi yang saling berkaitan dalam hubungan logis. Alasan penggunaan fungsi produksi Cobb-Douglas adalah karena penggunaannya melibatkan teknik-teknik kuantitatif, sehingga pengetahuan tentang proses pengambilan keputusan yang mendasarkan diri pada teknik-teknik kuantitatif juga harus dimengerti. Caranya adalah menerangkan bagaimana pengambilan keputusan dengan teknik kuantitatif yang baik, kemudian memperlihatkan bagaimana analisis kuantitatif yang tepat dapat dipakai untuk membantu petani dalam membuat keputusan yang terbaik dalam berusaha hati (Soekartawi, 2003).

Dalam penelitian ini fungsi produksi yang digunakan adalah fungsi produksi Cobb-Douglas. Fungsi Cobb-Douglas adalah suatu fungsi atau persamaan yang melibatkan dua atau lebih variabel yang saling berkaitan dalam suatu hubungan yang logis. Secara matematis fungsi produksi Cobb-Douglas dirumuskan sebagai berikut:

\[Y = b_0 X_1^{b_1} X_2^{b_2} X_3^{b_3} \ldots \ldots \ldots X_n^{b_n} e^u \] ...(3)

Untuk memudahkan pendugaan maka persamaan diubah bentuk menjadi bentuk linier berganda dengan cara melogaritmakan persamaan tersebut sebagai berikut:

\[\ln Y = \ln b_0 + b_1 \ln X_1 + b_2 \ln X_2 + b_3 \ln X_3 \ldots \ldots \ldots + b_n \ln X_n + u \](4)
Keterangan:

\[Y = \text{peubah yang dijelaskan} \]
\[X_i = \text{input} \ (i = 1, 2, 3, \ldots, n) \]
\[b_0 = \text{titik potong (intersep)} \]
\[b_i = \text{koefisien regresi} \]
\[e = \text{bilangan natural} \]
\[n = 1, 2, 3, \ldots, n \]
\[u = \text{unsur sisa} \]

Berdasarkan persamaan tersebut terlihat bahwa nilai b1 dan b2 adalah tetap walaupun variabel tersebut dilogaritmaikan. Hal ini karena b1 dan b2 merupakan elastisitas produksi.

Jumlah penduga parameter regresi \((\sum b_i)\) dalam fungsi produksi Cobb-Douglas memberikan petunjuk terhadap peubah keluaran secara proporsional. Bila \(\sum b_i = 1\), menunjukkan skala usaha konstan, artinya bila masukan menjadi dua kali, maka secara proporsional keluaran akan sama besar. Bila \(\sum b_i < 1\), maka akan ada penurunan skala usaha artinya bila masukan menjadi dua kali, maka secara proporsional keluaran kurang dari dua kali. Bila \(\sum b_i > 1\), maka akan terjadi peningkatan skala usaha, artinya bila masukan menjadi dua kali, maka secara proporsional keluaran akan menjadi lebih besar dari dua kali (Soekartawi, 2003).

Menurut Jatileksono (1993) dalam Prasmatiwi (2011), dalam proses produksi dianggap terdapat tiga input, yaitu: tanah (A), tenaga kerja (L), dan modal lancar (C). Selain itu, produksi padi juga dipengaruhi oleh lingkungan fisik usahatani (E), teknologi (T), dan karakteristik sosial ekonomi keluarga petani (S). Fungsi produksi dapat dirumuskan:
Y = F (A, L, C, E, T, S)..(5)

keterangan: Y adalah output/produksi. Fungsi ini dianggap memenuhi asumsi
baku untuk fungsi produksi dan A, E, T, dan S adalah variabel-variabel eksogen.

Penerapan intensifikasi dipandang sebagai suatu teknologi baru dibandingkan
dengan petani yang tidak menerapkan intensifikasi dalam usahataninya.
teknologi dalam bidang pertanian umumnya memiliki dua karakteristik, yaitu
(1) dapat membentuk fungsi produksi yang baru yang lebih tinggi pada
penggunaan input yang jumlahnya tetap, dan (2) bahwa pada output yang
sama akan dapat diperoleh dengan cara mengkombinasikan input yang lebih
sedikit, sehingga dapat menurunkan biaya produksinya. Adanya perbaikan
teknologi terjadi pergeseran fungsi produksi secara positif dan vertikal ke atas.

Pada Gambar 1, X menunjukkan input variabel, dimana input lainnya
dianggap tetap dan Y adalah output. Kurva Y1 menggambarkan fungsi
produksi pada keadaan sebelum ada perbaikan teknologi dan Y2
menggambarkan fungsi produksi setelah adanya perbaikan teknologi. Fungsi
produksinya masing-masing adalah Y1 = f(X) dan untuk Y2 = f(X). Garis P1
dan P2 menunjukkan garis harga, yaitu yang menunjukkan rasio harga input
X (PX) dengan harga output Y (PY) yang secara matematis ditulis sebagai
PX/PY1, dan PX/PY. Titik A1 dan A2, masing-masing menunjukkan letak
dari tingkat penggunaan input X yang optimum, yang dalam hal ini masing-
masing merupakan tangen dari garis P1 dengan kurva Y1 dan P2 dengan kurva Y2

Gambar 2. Perubahan Fungsi Produksi karena Perubahan Teknologi (Sumber: Gathak and Ingersent, 1984 dalam Prasmatiwi, 2011)

Keuntungan maksimum yang diperoleh setelah perbaikan teknologi lebih tinggi dibanding dengan keuntungan maksimum yang diperoleh sebelum perbaikan teknologi. Hal itu sebagaimana ditunjukkan oleh \(\partial Y_2/\partial X = PX/PY_2 \) pada titik A2 yang lebih tinggi dari \(\partial Y_1/\partial X = PX/PY_1 \) pada titik A1.

Dalam hal ini yang dimaksud dengan \(\partial Y/\partial X \) adalah merupakan produk marginal dan PX/PY merupakan rasio harga input X dengan harga output Y. PX/PY1 ditunjukkan oleh garis P1 dan PX/PY2 ditunjukkan oleh garis P2.

parameter fungsi produksi. Perubahan teknologi dalam fungsi produksi dapat
ditelusuri dari perubahan nilai elastisitas produksi pada fungsi produksi Cobb-
Douglas yang menjadi lebih besar nilainya.

B. Tinjauan Penelitian Terdahulu

Penelitian ini berkaitan dengan penerapan intensifikasi dan pengaruhnya
terhadap produksi dan pendapatan usahatani padi. Sejumlah hasil penelitian
yang berusaha menjelaskan faktor-faktor yang mempengaruhi penerapan
teknologi intensifikasi pertanian dari berbagai tinjauan.

Hasil penelitian Yuliarmi (2006) menyatakan bahwa proses adopsi teknologi
pemupukan berimbang di Kecamatan Plered dipengaruhi secara nyata oleh
luas lahan garapan petani, biaya pupuk, dan harga gabah. Faktor pendorong
bagi petani dalam menerapkan teknologi pemupukan berimbang adalah
produksi yang lebih tinggi. Hal ini dipertegas melalui penelitian yang
dilakukan Kemala (1977) menyimpulkan bahwa proses adopsi teknologi
sawit duga dipengaruhi oleh ketersediaan modal dan resiko produksi padi
varietas unggul, pendapatan petani, besarnya jumlah anggota keluarga,
pendidikan petani, umur dan luas lahan yang dimiliki.

Sementara itu penelitian lain menunjukkan bahwa peluang petani untuk
melanjutkan teknologi tabela dipengaruhi nyata oleh luas lahan, biaya benih,
biaya pestisida, biaya tanam, dan curah hujan setahun menurut Nahraeni
bahwa Penggunaan benih padi varietas unggul oleh petani di Kecamatan
Seputih Raman nyata dipengaruhi oleh harga benih, produksi, harga pupuk urea, dan harga pupuk SP-36.

C. Kerangka Pemikiran

Permintaan pangan terutama beras akan terus meningkat sejalan dengan pertambahan jumlah penduduk sehingga untuk meningkatkan produksi

Penerapan intensifikasi oleh petani yang merupakan bagian dari teknologi padi dipengaruhi oleh beberapa faktor. Proses pengambilan keputusan apakah seorang menerima atau menolak inovasi dari teknologi pertanian yang dalam hal ini intensifikasi pertanian tergantung dari faktor intern, yaitu pendidikan, umur, pengalaman berusahahtani, dan suku petani serta faktor ekstern yaitu jumlah tanggungan keluarga, tenaga kerja keluarga, luas lahan yang dimiliki petani, tingkat pendapatan dan frekuensi kontak dengan sumber informasi.
Penerapan intensifikasi usahatani yang tepat akan mendorong tercapainya pemecahan permasalahan produksi dan produktivitas yang selama ini dirasakan masih rendah. Penerapan intensifikasi pertanian dengan program sapta usahatani oleh petani diharapkan mampu meningkatkan produksi padi serta produktivitas padi dan pada gilirannya akan meningkatkan pendapatan usahatani padi.

D. Hipotesis

Berdasarkan kerangka pemikiran, maka hipotesis yang diajukan dalam penelitian ini adalah:

1) Diduga pendapatan petani, luas lahan, pengalaman petani, usia petani, jumlah tanggungan keluarga, tenaga kerja keluarga, suku petani, pendidikan petani, dan frekuensi bimbingan penyuluhan pertanian mempengaruhi tingkat penerapan intensifikasi usahatani padi.

2) Diduga intensifikasi usahatani padi, luas lahan, penggunaan benih, pupuk urea, pupuk NPK, pupukSP36, pupuk KCl, pupuk kandang, tenaga kerja, dan usia petani mempengaruhi produksi padi.

3) Diduga tingkat intensifikasi usahatani padi dapat meningkatkan pendapatan usahatani padi.
Gambar 3. Kerangka pemikiran penerapan intensifikasi dan pengaruhnya terhadap produksi dan pendapatan usahatani padi.