
Abstract

ABSTRAK

\section*{SOLVING DIOPHANTINE EQUATIONS USING MODULAR ARITHMETIC IN RING OF GAUSSIAN INTEGER $\mathbb{Z}[i]$}

By

NOVIA LOVIRMA

Abstract

A Diophantine equation is a polynomial equation over \mathbb{Z} in n variables in which we look for integer solutions. In what follows, we call a Diophantine equation an equation of the form $f\left(x_{1}, x_{2}, \ldots, x_{2}\right)=0$, where f is an n-variable function with n ≥ 2. There are three basic problems arise in concerning a Diopjantine equation :is the equation solvable?, if it is solvable, and is the number of its solutions finite or infinite? It is easier to show that a Diophantine Equations has no solutions than it is to solve an equations with a solution. Elementary methods in solving Diophantine equations, such as decomposition, modular arithmetic, mathematical induction, and Fermat's infinite descent. Althought, some advanced methods for solving Diophantine equations involving Gaussian integers, quadratic rings, divisors of certain forms, and quadratic reciprocity.

A Gaussian integer is a complex number whose real part and imaginary part are both integers. The Gaussian integers, with ordinary addition and multiplication of complex numbers, form an integral domain, usually denoted by $\mathbb{Z}[i]$. This domain cannot be turned into an ordered ring, since it contains a square root of -1 . Formally, the set of Gaussian integers is $\mathbb{Z}[i]=\{a+b i: a, b \in \mathbb{Z}\}$.

Keyword : Diophantine equations, ring of Gaussian integer $\mathbb{Z}[i]$, prima, divisibility, norm.

