ABSTRACT
 CHARACTERISTIC OF CARMICHAEL NUMBER

By

DEVI PURNAMA SARI

Recall that Fermat's "little theorem" says that if p is prime and a is not a multiple of p, then $a^{p-1} \equiv 1(\bmod \mathrm{p})$. This theorem gives a possible way to detect primes, or more exactly, non-primes: if for a certain a coprime to n , $\mathrm{a}^{\mathrm{n}-1}$ is not congruent to $1 \bmod \mathrm{n}$, then, by the theorem, n is not prime. A lot of composite numbers can indeed be detected by this test, but there are some that evade it.

For a fixed $a>1$, we write $F(a)$ for the set of positive integers n satisfying $a^{n-1} \equiv 1 \bmod \mathrm{n}$. By Fermat's theorem, $F(a)$ includes all primes that are not divisors of a. If $\mathrm{n} \in F(\mathrm{a})$, then $\operatorname{gcd}(a, n)=1$, since, clearly, $\operatorname{gcd}\left(a^{n-1}, n\right)$ $=1$. Also, $a^{\mathrm{n}} \equiv a \bmod \mathrm{n}$;the reverse implication is true provided that a and n are coprime. A composite number n belonging to $F(a)$ is called an apseudoprime, or a pseudoprime to the base a. A number n that is apseudoprime for all a coprime to n is called a Carmichael number.

Numbers of the form $(6 m+1)(12 m+1)(18 m+1)$ where all three factors are simultaneously prime are the best known examples of Carmichael numbers.

Keywords : Carmichael number, positive integer , prime number, composite number, coprime, pseudoprima.

