Let \(c \) be a proper \(k \)-coloring of connected graph \(G \) and \(\Pi = \{C_1, C_2, ..., C_k\} \) is the set consisting of the color classes of \(V(G) \). The color code \(c_i(v) \) of \(v \) is ordered \(k \)-tuple \((d(v, C_1), d(v, C_2), ..., d(v, C_k)) \) which is \(d(v, C_i) = \min\{d(v, x) | x \in C_i\} \) for \(1 \leq i \leq k \). If every \(G \) has different color code, then \(c \) is called the locating coloring of \(G \). The minimum numbers of colors needed in a locating coloring of \(G \) is called the locating chromatic number of \(G \), denoted by \(\chi_L(G) \).

Amalgamation of star graphs, \(nS_{k,m} \) obtained from \(n \) copies of amalgamation star \(S_{k,m} \) by connecting a leaf from each \(S_{k,m} \) through a track. The result of the research are:

- If \(k \leq m, k \geq 2, \) and \(m \geq 2 \) then \(\chi_L(nS_{k,m}) = m + 1 \) to \(1 \leq n \leq \left\lfloor \frac{m}{k-1} \right\rfloor \), then \(\chi_L(nS_{k,m}) = m + 2 \) another \(n \).
- If \(a \geq 0, k > m, k \geq 2, \) and \(m \geq 2 \) then \(\chi_L(nS_{k,m}) = k - a \) to \(1 \leq n \leq H(a) \), then \(\chi_L(nS_{k,m}) = k - a + 1 \) for another \(n \).

Keywords: Graph, Color code, Locating-chromatic number