PARTITION DIMENSION OF AMALGAMATION OF STARS GRAPH $nS_{m,k}$

Abstract

by Ana Istiani

Given graph G = (V,E), $v \in V(G)$ and $S \subset V(G)$. The distance between v and S is $d(v,S) = min\{d(v,x), x \in S\}$, where d(v,x) is the distance from v to x. Let $\Pi = \{S_1, S_2, ..., S_k\}$ as the partition of V(G). The representation of v with respect to Π is the k-vectors $r(v|\Pi) = (d(v, S_1), d(v, S_2), ..., d(v, S_k))$. The partition Π is called as a resolving partition of V(G) if $r(u|\Pi) \neq r(v|\Pi)$ for every two different vertices of V(G). The partition dimension of G, written as pd(G) is the minimum k for which there is a resolving k-partition. The amalgamation of star graphs $nS_{m,k}$ obtained from n copies of amalgamation stars $S_{m,k}$ by connecting a leaf from each $S_{m,k}$ through a path. The result of the research is

$$pd(nS_{m,k}) = \begin{cases} k, 1 \le n \le \left\lfloor \frac{k}{m-1} \right\rfloor \\ k+1, lainnya \end{cases} \text{ for } k \ge m.$$

Keyword: graph, distance, partition, partition dimension, amalgamation of stars,