PARTITION DIMENSION OF AMALGAMATION OF STARS GRAPH $\boldsymbol{n} \boldsymbol{S}_{\boldsymbol{m}, \boldsymbol{k}}$

Abstract
by
Ana Istiani

Given graph $G=(V, E), v \in V(G)$ and $S \subset V(G)$. The distance between v and S is $d(v, S)=\min \{d(v, x), x \in S\}$, where $d(v, x)$ is the distance from v to x. Let $\Pi=\left\{S_{1}, S_{2}, \ldots, S_{k}\right\}$ as the partition of $V(G)$. The representation of v with respect to Π is the k-vectors $r(v \mid \Pi)=\left(d\left(v, S_{1}\right), d\left(v, S_{2}\right), \ldots, d\left(v, S_{k}\right)\right)$. The partition Π is called as a resolving partition of $V(G)$ if $r(u \mid \Pi) \neq r(v \mid \Pi)$ for every two different vertices of $V(G)$. The partition dimension of G, written as $p d(G)$ is the minimum k for which there is a resolving k-partition. The amalgamation of star graphs $n S_{m, k}$ obtained from n copies of amalgamation stars $S_{m, k}$ by connecting a leaf from each $S_{m, k}$ through a path. The result of the research is
$\operatorname{pd}\left(n S_{m, k}\right)=\left\{\begin{array}{c}\mathrm{k}, 1 \leq \mathrm{n} \leq\left\lfloor\frac{\mathrm{k}}{\mathrm{m}-1}\right\rfloor \\ \mathrm{k}+1 \text {, lainnya }\end{array}\right.$ for $\mathrm{k} \geq \mathrm{m}$.

Keyword : graph, distance, partition, partition dimension, amalgamation of stars,

