Lampiran H

VARIASI JUMLAH TUMBUKAN TERHADAP KARAKTERISTIK AC-WC GRADASI KASAR DENGAN SUHU IDEAL PENCAMPURAN ASPAL

Jl. Prof. Dr. Sumantri Brojonegoro No. 1 Bandar Lampung

PEMERIKSAAN PENETRASI BAHAN-BAHAN BITUMEN

(Penetrastion of Bituminous Materials)

No	Kegiatan	Uraian		
1	Pembukaan Contoh	Contoh dipanaskan Mulai jam = 09.40 Selesai jam = 10.00	Pembacaan suhu oven = 70° C	
2	Mendinginkan Contoh	Didiamkan di suhu ruangan Mulai jam = 10.00 Selesai jam = 11.00		
3	Mencapai suhu pemeriksaan	Direndam pada suhu 25°C Mulai jam = 11.00 Selesai jam = 12.30	Pembacaan suhu waterbath = 25° C	
4.	Pemeriksaan	Penetrasi pada suhu 25°C Mulai jam = 12.30 Selesai jam = 13.00	Pembacaan suhu penetrometer $= 25^{\circ}C$	

No	Penetrasi pada 25C, 100gr, 5 detik	I	_ II
1.	Pengamat I	72	63
2.	Pengamat 2	66	67
3.	Pengamat 3	69	68
	Rata-rata	69	66

Catatan : Rata-rata penetrasi dari kedua sampel tersebut adalah 67,5.

Berdasarkan SNI 06-2456-1991 pen 60/70 berkisar antara 60-79.

Jadi penetrasi sampel tersebut masuk dalam spesifikasi.

Jl. Prof. Dr. Sumantri Brojonegoro No. 1 Bandar Lampung

PEMERIKSAAN BERAT JENIS BITUMEN KERAS DAN TER

(Specific Gravity of Semi Solid Bituminous Materials)

No	Kegiatan Uraia	Uraian	
1	Pembukaan Contoh	Contoh dipanaskan Mulai jam =10.00 Selesai jam =10.15	Pembacaan suhu oven = 70° C
2	Mendinginkan Contoh	Didiamkan di suhu ruangan Mulai jam =10.15 Selesai jam =10.45	
3	Mencapai suhu pemeriksaan	Direndam pada suhu 25°C Mulai jam =10.45 Selesai jam =11.15	Pembacaan suhu waterbath = 25° C

		Sampel 1	Sampel 2
Berat piknometer + air	=	51,51 gr	51,50 gr
Berat Piknometer	=	27,24 gr	27,26 gr
Berat air / Isi piknometer	=	24,27 gr	24,24 gr
Berat piknometer + contoh	=	32,45 gr	32,25 gr
Berat piknometer	=	27,24 gr	27,26 gr
Berat contoh		5,21 gr	4,99 gr
Berat piknometer + air + contoh	=	51,67 gr	51,67 gr
Berat piknometer + contoh	-	32,45 gr	32,25 gr
Berat air	=	19,22 gr	19,42 gr
Isi bitumen sampel 1 Isi bitumen sampel 2		24,27 – 19,22 = 24,24 – 19,42 =	
Berat jenis sampel 1	= ^E	Berat contoh Isi bitumen	$\frac{5,21}{5,05}$ = 1,0317 gr/cm ³
Berat jenis sampel 2	_ <u>E</u>	Berat contoh Isi bitumen =	$\frac{4,99}{4,82} = 1,0353 \text{ gr/cm}^3$

Jl. Prof. Dr. Sumantri Brojonegoro No. 1 Bandar Lampung

PEMERIKSAAN TITIK LEMBEK ASPAL DAN TER

(Softening Point of Asphalt and Tar in Ethylene Glycol (Ring and Ball))

Na	Subu Vana Diamati (⁰ C)	Wa	aktu
No.	Suhu Yang Diamati (^o C)	Sampel 1	Sampel 2
1.	5	. 0	0
2.	10	2'19"	2'19"
3.	15	1'47"	1'47"
4.	20	1'41"	1'41"
5.	25	1'14"	1'14"
6.	30	1'07"	1'07"
7.	35	1'00"	1'00"
8.	40	1'02"	1'02"
9.	45	1'01"	1'01"
12.	50	1'02"	1'02"
13.	53	1'09"	1'15"

Catatan : Menurut spesifikasi SNI 06-2434-1991 yaitu untuk jenis aspal 60/70 titik lembek berkisar antara 48°C – 58°C. Hasil pengujian menunjukkan kedua sampel memenuhi persyaratan.

Jl. Prof. Dr. Sumantri Brojonegoro No. 1 Bandar Lampung

PEMERIKSAAN DAKTILITAS BAHAN-BAHAN BITUMEN

(Ductility Of Bituminous Materials)

No	Kegiatan	Uraian	
1	Pembukaan Contoh	Contoh dipanaskan Mulai jam =10.00 Selesai jam =10.15	Pembacaan suhu oven = 70° C
2	Mendinginkan Contoh	Didiamkan di suhu ruangan Mulai jam =10.15 Selesai jam =10.45	
3	Mencapai suhu pemeriksaan	Direndam pada suhu 25°C Mulai jam =10.45 Selesai jam =11.15	Pembacaan suhu waterbath = 25° C

Daktilitas pada 25°C, 5 cm per menit	Pembacaan pengukuran pada alat	
Pengamatan I Pengamatan II	101 cm 101 cm	
Rata-rata	101 cm	

Catatan : Dari hasil praktikum nilai daktilitas lebih dari 100 cm, dengan demikian aspal tersebut mempunyai daktilitas yang baik, berarti mampu mengikat aspal dengan baik dalam perkerasan.

Jl. Prof. Dr. Sumantri Brojonegoro No. 1 Bandar Lampung

PENGUJIAN KEHILANGAN BERAT MINYAK DAN ASPAL

No	Kegiatan	Uraian	
1	Pembukaan Contoh	Contoh dipanaskan Mulai jam =13.00 Selesai jam =13.15	Pembacaan suhu oven = 70° C
2	Mendinginkan Contoh	Didiamkan di suhu ruangan Mulai jam =13.15 Selesai jam =14.45	
3	Mencapai suhu pemeriksaan	Direndam pada suhu 25°C Mulai jam = Selesai jam =	Pembacaan suhu waterbath = 25° C

	Sampel I	Sampel II	
Berat cawan + aspal keras Berat cawan kosong	= 66,81 gr = 14,89 gr	= 68,24 gr = 14,76 gr	
Berat aspal keras	= 51,92 gr	= 53,48 gr	
Berat sebelum pemanasan Berat sesudah pemanasan	= 66,81 gr = 66,47 gr	= 68,24 gr = 67,77 gr	
Berat endapan	= 0,34 gr	= 0,47 gr	
Atau Rata-rata	= 0,6549 % = 0,7194%	= 0,7839 %	

Catatan : Dari hasil praktikum yang dilakukan didapatkan kehilangan berat rata-rata yaitu 0,7194 %. Maka hasil yang diperoleh ini memenuhi standar persyaratan SNI

yaitu untuk penetrasi 60 – 70 kehilangan berat maksimum 0,8 %.

Jl. Prof. Dr. Sumantri Brojonegoro No. 1 Bandar Lampung

PENGUJIAN KEKUATAN AGREGAT TERHADAP TUMBUKAN

(Aggregate Impact Value)

Itaan Dan ariiga	Berat (gram)		
Item Pengujian	Sampel I	Sampel II	
Berat sampel awal (A)	575,1	657,6	
Berat sampel setelah penekanan dan tertahan saringan 2,36 mm (B)	539,3	622,5	
Berat sampel setelah penekanan dan lolos saringan 2,36 mm (C)	35,8	35,1	
Aggregate Impact Value (AIV)	6,2250 %	5,3376 %	
Rata-rata AIV (%)	5,781	13 %	

Catatan : Dari percobaan yang telah dilakukan, didapat nilai AIV (Aggregate Impact Value) untuk sampel I sebesar 6,2250 % dan untuk sampel II sebesar 5,3376 %. Hasil ini masuk dalam standar spesifikasi Bina Marga untuk perkerasan jalan yaitu < 30 %.

Jl. Prof. Dr. Sumantri Brojonegoro No. 1 Bandar Lampung

BERAT JENIS DAN PENYERAPAN AGREGAT HALUS

(Specific Gravity and Water Absorption of Fine Aggregate)

No.	Kegiatan	Berat Sampel
1.	Mengukur Berat benda uji kering permukaan jenuh (Bk)	500 gr
2.	Mengukur Berat benda uji kering oven (Bk) 487,28 gr	
3.	Mengukur Berat Piknometer yangdiisi air (B)	723,83 gr
4.	Mengukur Berat Piknometer + Benda uji SSD + air (Bt)	1031,81 gr

No.	Perhitungan	Sampel A
1.	Berat Jenis Bulk Bk $\overline{B + A - Bt}$	$\frac{487,28}{723,83+500-1031,81} = 2,5377$
2.	Berat Jenis Permukaan Jenuh A B+A-Bt	$\frac{500}{723,83+500-1031,81} = 2,6039$
3.	Berat Jenis Semu Bk B+Bk-Bt	$\frac{487,28}{723,83+487,28-103181} = 2,7177$
4.	Penyerapan A-Bk Bk x 100%	$\frac{500-487,28}{487,28} \ge 100\% = 2,6104\%$

Catatan : Berdasarkan SKBI penterapan maksimum maximum 5% dan berat jenis minimum 2,5 jadi agregat halus tersebut memenuhi standar.

Jl. Prof. Dr. Sumantri Brojonegoro No. 1 Bandar Lampung

BERAT JENIS DAN PENYERAPAN AGREGAT KASAR

(Specific Gravity and Water Absorption of Coarse Aggregate)

No.	Kegiatan	Berat Sampel
1.	Mengukur Berat sampel kering oven (Bk)	5000 gr
2.	Mengukur Berat sampel kering permukaan jenuh (Bj)	5000,1 gr
3.	Mengukur Berat sampel di dalam air (Ba)	3115,2 gr

No.	Perhitungan	Sampel A
1.	Berat Jenis Bulk Bk Bj – Ba	$\frac{5000}{5001,1-3115,2} = 2,6513$
2.	Berat Jenis Permukaan Jenuh Bj Bj-Ba	$\frac{5001,1}{5001,1-3115,2} = 2,6518$
3.	Berat Jenis Semu Bk Bk-Ba	$\frac{5000}{5000-3115,2} = 2,6528$
4.	Penyerapan Bj-Bk Bk x 100%	$\frac{5001,1-5000}{5000} \ge 100\% = 0,022\%$

Catatan : Berdasarkan SKBI penyerapan maximum 3 % dan berat jenis bulk minimum

2,5. Jadi agregat ini memenuhi standar.

Jl. Prof. Dr. Sumantri Brojonegoro No. 1 Bandar Lampung

PENGUJIAN KEKUATAN AGREGAT TERHADAP TEKANAN

(Aggregate Crushing Value)

Itom Domention	Berat (gram)		
Item Pengujian	Sampel I	Sampel II	
Berat sampel awal (A)	1000	1000	
Berat sampel setelah penekanan dan tertahan saringan 2,36 mm (B)	988,7	989,6	
Berat sampel setelah penekanan dan lolos saringan 2,36 mm (C)	11,3	10,4	
Aggregate Crushing Value (ACV)	1,13 %	1,04 %	
Rata-rata ACV (%)	1,08	5 %	

Catatan : Dari percobaan yang telah dilakukan, didapat nilai ACV (Aggregate Crushing Value) untuk sampel I sebesar 1,13 % dan untuk sampel II

sebesar 1,04 %. Hasil ini masuk dalam standar spesifikasi Bina Marga untuk perkerasan jalan yaitu < 30 %.

Jl. Prof. Dr. Sumantri Brojonegoro No. 1 Bandar Lampung

PENGUJIAN KEAUSAN AGREGAT DENGAN MESIN LOS ANGELES

Gradasi p	emeriksaan		Fraksi B (10	– 20 mm)	
Saringan (mm)		Berat s	ampel I	Berat Sampel 2	
Lolos	Tertahan	Sebelum	Sesudah	Sebelum	Sesudah
76,2	63,5	-	-	-	-
63,5	50,8	- ·	-		
50,8	37,5		-	-	-
37,5	25,4	-	-	-	-
25,4	19,0	-	-	-	-
19,0	12,5	2500 gr	-	-	-
12,5	9,5	2500 gr	-	-	-
9,5	6,3	-	-	-	-
6,3	4,75	-		-	-
4,75	2,38	-	-	-	-
Jumlah berat		5000 gr	-	-	-
Berat tertal	han saringan				

A = 5000 gr

B = 4394,4 gr

A - B = 605,6 gr

Keausan I = $\frac{A-B}{A} \ge 100 \% = \frac{5000 - 4394,4}{5000} \ge 12,1120 \%$

Catatan : Berdasarkan standar keausan SKBI keausan maksimum yaitu 40 %.

Jadi agregat tersebut memenuhi persyaratan standar.

Lampiran B

VARIASI JUMLAH TUMBUKAN TERHADAP KARAKTERISTIK AC-WC GRADASI KASAR DENGAN SUHU IDEAL PENCAMPURAN ASPAL

TABEL PERHITUNGAN JOB MIX FORMULA (JMF)

Tabel Pembagian Butir Agregat Halus dan Agregat I	Kasar Pada G	radasi Batas Tengah
---	--------------	---------------------

Saringan	Diameter	% Lolos	%Tertahan	PB
3/4"	19	100		
1/2"	12.5	95	5	CA=
3/8"	9.5	81	14	CA-
No.4	4.75	53	28	66.45
No.8	2.36	33.55	19.45	
No.16	1.18	22.3	11.25	
No.30	0.6	16.05	6.25	FA=
No.50	0.3	12.25	3.8	ГА-
No.100	0.15	9.5	2.75	26.55
No.200	0.075	7	2.5	
Pan	-	0	7	7

Kadar Aspal Ditentukan dengan Cara Menghitung Nilai Pb

Pb

= (0.035 x CA) + (0.045 x FA) + (0.18 x Filler) + K

= $(0.035 \times 66.45) + (0.045 \times 26.55) + (0.18 \times 7) + 0.75$

				-
=	5.53	*	5.5	%

Fraksi	% Tertahan		Berat Jenis		%	BJ Terpakai	[2] / [7]
TURS	/ Tertainai	Bulk	SSD	Apparent	Penyerapan	Dr Tripaan	1-17 171
1	2	3	4	5	6	7	8
Kasar	66,45	2.6513	2.6518	2.6528	0.0220	2.6528	25.05
Halus	26.55	2.5377	2.6039	2.7177	2.6104	2.6277	10.10
Filler	7.00					3.1500	2.22
Total						-	37.38

Kadar Aspal (%)	BJ Aspal (gr/cm ³)	[9] / [10]	∑[8] x {(100- [9])/100}	[11] + [12]	BJ Teori Max 100 / [13]
9	10	11	12	13	14
4.50	1.0317	4.36	35.69	40.05	2.4966
5.00	1.0317	4.85	35.51	40.35	2.4781
5.50	1.0317	5.33	35.32	40.65	2.4600
6.00	1.0317	5.82	35.13	40.95	2.4421
6.50	1.0317	6.30	34.95	41.25	2.4245

Diameter Benda Uji	=	10.16	cm	-		
Tinggi Benda Uji	=	6.35	cm			
Volume Benda Uji	=	$\frac{1}{4} \times \pi \times d^2 \times d^2$				
	=	¼ x π x (10.1	6) ² x (6.1	35)	=	514.8148 cm ³

Contoh Perhitungan untuk Kadar Aspal 4.5 % :

Berat Total	-	Volume Benda Uji x BJ Teori	Max x 0	.96	
	=	514.8148 x 2.4966 x 0.96	=	1233.9	gr
Berat Aspal	-	Kadar Aspal x Berat Total			
	#	4.53% x 1233.9	=	55.5	gr
Berat Agregat	=	Berat Total - Berat Aspal			
	=	1233.3 - 55.5	=	1178.3	gr
the second se					

Catatan :

0.96 didapat dari : 100% - void = 100% - 4% = 96% = 0.96

Perhitungan Selanjutnya Ditabelkan.

Kadar	Berat (gr)				
Aspal	Total	Aspal	Agregat		
4.50	1233.9	55,5	1178.3		
5.00	1224.8	61.2	1163.5		
5.50	1215.8	66.9	1148.9		
6.00	1206.9	72.4	1134.5		
6.50	1198.2	77.9	1120.3		

JMF

<u>.</u>	%	96		Ka	adar Aspal (%)			Total	Total
Saringan	Lolos	Tertahan	4.50	5.00	5.50	6.00	6.50	Agregat	3 Benda Uj
19	100	0	0	0	0	0	0	0	0
12.5	95.00	5.00	58.9	58.2	57.4	56.7	56.0	287.3	861.8
9.5	81.00	14.00	165.0	162.9	160.8	158.8	156.8	804.4	2413.2
4.75	53.00	28.00	329.9	325.8	321.7	317.7	313.7	1608.8	4826.3
2.36	33.55	19.45	229.2	226.3	223.5	220.7	217.9	1117.5	3352.6
1.18	22.30	11.25	132.6	130.9	129,3	127,6	126.0	646.4	1939.2
0.6	16.05	6.25	73.6	72.7	71.8	70.9	70.0	359.1	1077.3
0.3	12.25	3.80	44.8	44.2	43.7	43.1	42.6	218,3	655.0
0.15	9.50	2.75	32.4	32.0	31.6	31.2	30.8	158.0	474.0
0.075	7.00	2.50	29.5	29.1	28.7	28.4	28.0	143.6	430.9
Pan	0	7	82.5	81.4	80.4	79.4	78.4	402.2	1206.6
erat Total Agrega	at (gr)		1178.3	1163.5	1148.9	1134.5	1120.3	5745.6	17236.9
erat Aspal (gr)			55.5	61.2	66.9	72.4	77.9	333.9	1001.8
erat Total Benda	Uji (gr)		1233.9	1224.8	1215.8	1206.9	1198.2	6079.6	18238.7
J Teori Max			2.4966	2.4781	2.4600	2.4421	2.4245	-	-

<u>Volume Benda Uji</u>

BJ Bulk

Vol	=	Berat Jenuh	-	Berat dalam Air
	=	1239.60	-	674.40
	#	565.20	gr	

Berat Jenis Padat (BJ Bulk) Campuran = Berat Isi

-	Berat kering			
-	Vol Benda Uji			
_	1204.60	-	2,131	Kg/m ³
-	565.2	-	2.151	Kg/m

Berat Jenis Padat (BJ Bulk) Agregat Gabungan (Gsb)

DI Dulle Arm	_				100		
BJ Bulk Agg	=	%Agg Kasar		% Agg Halus		% Filler	% ATK
		8) Bulk Agg Kasar	- + -	BJ Bulk Agg Halus	Ŧ	BJ Filler	 BJ ATK
					100		
	-	66.45		26.55		7	0
		2.6513	- + -	2.5377	+	3.15	 0.5475
	=	2.6492	Kg/m ³				

...

100

Berat Jenis Efektif Agregat Gabungan (Gse)

BJ Eff Agg

BJ Eff Agg

g Kasar % Agg Halu

LITAGE	-	%Agg Kasar		% Agg Halus	+	% Filler		% ATK
		BJ Eff Agg Kasar		BJ Eff Agg Halus	T	BJ Filler		BJ ATK
				1	100			
	=	66.45		26.55		7		0
		2.6528	- + ·	2.6277	T I	3.15	Ŧ	0.5475
	=	2.6756	Kg/m ³					

dengan Menggunakan Rumus Lain :

Catatan : % Aspal dari Berat Campuran

	100	-	% Aspal	
=	100		% Aspal	
	BJ Teori Max		BJ Aspal	
	100	-	4.5	
.=	100		4.5	
	2.4966		1.0317	
=	2.6756	Kg/m ³		

<u>Berat Jenis Teori Maksimum Campuran (Gmm)</u> Catatan : % Agregat & % Aspal dari Berat Campuran

DI Tarad Mary			100	
BJ Teori Max	= -	% Agregat		% Aspai
		BJ Eff Agg	- +	BJ Aspal
			100	
	= -	100 -4.5		4.5
		2.6756	- +	1.0317
	=	2.4966	Kg/m ³	

Persen Rongga dalam Campuran (VIM)

		100	-	100		Berat Isi
VIM	=	100	-	100	x	BJ Teori Max
	=	100	<u>_</u>	100	v	2.131
		100		100	x	2.4966
	=	14.6	%			

Persen Rongga dalam Mineral Agregat (VMA)

Catatan : % Aspal dari Berat Campuran

10.00	_	100		(100 - % Aspal)	x	BJ Bulk	
VMA	=	100	-	BJ Bul	k Agreg	at	
	_	100		(100 - 4.31)	x	2.131	
	=	100	•	2.6492			
	=	23.0	%				

Persen Rongga Terisi Aspal (VFA)

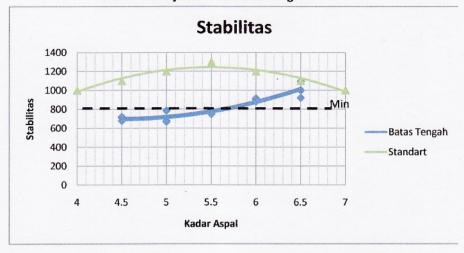
		100		VMA	-	VIM
VFA	-	100	x —		VMA	
Contoh Pe	rhitungan l	Kadar Aspal 4	4.5% ATK 0	%		
		100		23.0	-	14.6
VFA	= 100 ×		23.0			
	=	36.4	%			

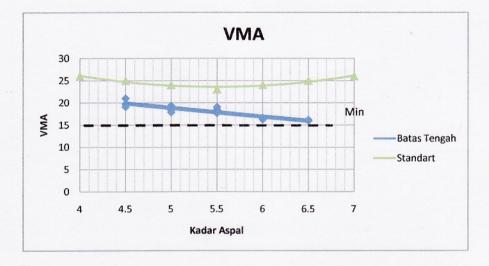
Kadar	Nomor	Tin	inggi Benda Ilii		Tinggi Benda Uji	Berat	Berat Dalam	Berat	Pembacaan	Flow
Acnal %	Renda Ilii				rata rata	Kering (gr)	air	Jenuh	Stabilitas	
of inder	The man	1	2	3	(mm)	(gram)	(gram)	(gram)	(kg)	(mm)
	1	74	74.5	75	74.50	1,204.60	674.40	1,239.90	73.0	1.6
4.50	2	75.3	75.2	75	75.17	1,209.80	677.60	1,236.30	73.0	3.2
	3	74.7	73.8	73	73.83	1,208.00	683.30	1,237.00	74.0	1.4
Rata-rata					74.50	1207.47	678.43	1237.73	73.33	2.07
	1	71	72.7	72.6	72.10	1194.20	676.50	1216.40	71.0	5.2
5.00	2	72.4	73	73.2	72.87	1,195.40	674.50	1,220.90	71.0	1.9
	3	72.6	72	73	72.53	1,191.00	674.70	1,209.70	83.0	3.6
Rata-rata					72.50	1193.53	675.23	1215.67	75.00	3.57
	1	72	71	72.8	71.93	1,187.00	664.90	1,202.70	80.0	2.3
5.50	2	70	69.7	70.1	69.93	1,189.80	668.80	1,199.30	76.0	3.2
	3	70.7	70.5	70.4	70.53	1,191.60	665.60	1,201.30	80.0	4.6
Rata-rata					70.80	1189.47	666.43	1201.10	78.67	3.37
	1	99	66.6	66.2	66.27	1,180.10	672.80	1,188.80	81.5	3.8
6.00	2	67.6	67.3	67.5	67.47	1,194.30	680.60	1,203.30	82.0	3.9
	3	65.7	65.4	65.6	65.57	1,184.30	678.00	1,194.30	82.0	3.4
Rata-rata					66.43	1186.23	677.13	1195.47	81.83	3.70
	1	64.3	64.2	64.5	64.33	1,170.70	671.30	1,178.00	80.0	3.5
6.50	2	63.1	63.8	63.4	63.43	1,159.00	665.00	1,166.50	85.0	4.1
	3	63.6	64	63.5	63.70	1166.30	669.30	1173.40	94.0	4.3
Rata-rata	~				63.82	1165.33	668.53	1172.63	86.33	3.97

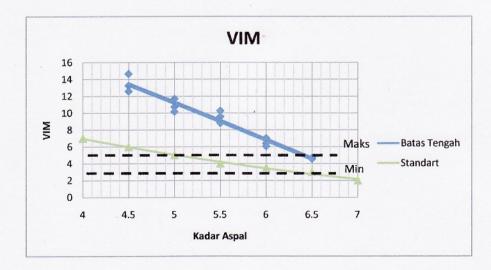
Data Hasil Pengukuran & Pengujian Benda Uji Marshall Batas Tengah

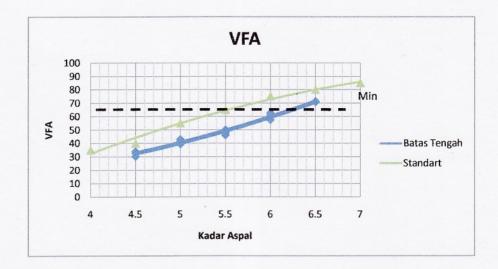
3	C
7	T
2	2
2	2
2	2
u	4
ŀ	-
	-
2	2
5	۰.
ŀ	
4	E
Ċ	o
_	_
ū	ñ
÷	÷
2	2
s,	2
-	T,
c	c
ē	η
-	-
2	2
7	7
2	2
Ξ	
-	7
c	0
÷	÷
2	1
2	÷
-	1
u	М
۵	۵
2	7
ĉ	2
r	-

		VMA		N	23.210	21.940	21.352	22.168	20.681	21.546	20.169	20.799	21.268	19.996	20.653	20.639	18.850	18.927	18,609	18.795	18.455	18.433	18.343	18.410
		5			23.	21.	21.	22.	20.	21.	20.	20.	21.	19.	20.	20.	18.	18.	18	18.	18	18.	18.	18.
UME	AGREGAT	EFEKTIF	TERHADAP	v	76.032	77.290	77.871	77.064	78.536	77.680	79.043	78.420	77.955	79.214	78.564	78.578	80.349	80.273	80.588	80.403	80.740	80.762	80.851	80.784
% VOLUME	ASPAL	TERHADAP	CAMPURAN	L L	9.291	9.445	9.516	9.4173	10.720	10.603	10.789	10.7037	11.766	11.956	11.858	11.8603	13.300	13.288	13.340	13.3095	14.556	14.560	14.577	14.5644
BERAT	JENIS BULK	GMB	(gr/cm3)	K	2.1302	2.1654	2.1817	2.1591	2.2119	2.1878	2.2262	2.2086	2.2071	2.2428	2.2244	2.2248	2.2870	2.2849	2.2938	2.2886	2.3104	2.3111	2.3136	2.3117
VOLUME	DILIK	BOLN	(cm3)	. (565.50	558.7	553.7	559.30	539.9	546.40	535	540.43	537.8	530.5	535.7	534.67	516	522.70	516.3	518.33	506.70	501.5	504.1	504.10
H	KONDISI	SSD	(gr)	-	1,239.90	1,236.30	1,237.00	1,237.73	1,216.40	1,220.90	1,209.70	1,215.67	1,202.70	1,199.30	1,201.30	1,201.10	1,188.80	1,203.30	1,194.30	1,195.47	1,178.00	1,166.50	1,173.40	1,172.63
BERAT BENDA UJI	ō	AIR	(gr)	н	674.40	677.60	683.30	678.43	676.50	674.50	674.70	675.23	664.90	668.80	665.60	666.43	672.80	680.60	678.00	677.13	671.30	665.00	669.30	668.53
BI	ā	UDARA	(gr)	9	1,204.60	1,209.80	1,208.00	1,207.47	1,194.20	1,195.40	1,191.00	1,193.53	1,187.00	1,189.80	1,191.60	1,189.47	1,180.10	1,194.30	1,184.30	1,186.23	1,170.70	1,159.00	1,166.30	1,165.33
BERAT JENIS	m3)	GCE	300	LL.		2.676		2.676		2.676		2.676		2.676		2.676		2.676		2.676		2.676		2.676
BERAT	(gr/cm3)	GAAMA	MIMD	ш		2.497		2.497		2.478		2.478		2.460		2,460		2.442		2.442		2.424		2.424
	TINGGI	BENDA UJI	RERATA	٥	74.50	75.17	73.83	74.50	72.10	72.87	72.53	72.50	71.93	69.93	70.53	70.80	66.27	67.47	65.57	66.43	64.33	63.43	63.70	63.82
DEDAT	DENAL	ACDAI	THICH	J	1.0317	1.0317	1.0317		1.0317	1.0317	1.0317		1.0317	1.0317	1.0317		1.0317	1.0317	1.0317		1.0317	1.0317	1.0317	
	NOMOR	BENDA UII		8	1	2	3	RATA-RATA	1	2	m	RATA-RATA	1	2	3	RATA-RATA	1	2	3	RATA-RATA	1	2	9	RATA-RATA
	KADAR	ASPAL (%)		A		4.5				S				5.5				9				6.5		

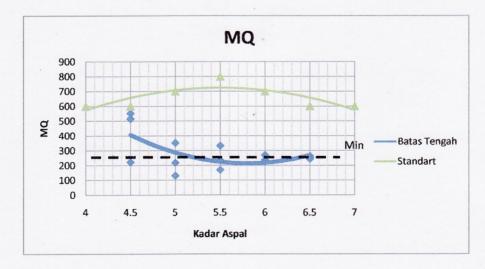

2.4966 2.4781 2.4600 2.4421 2.4245 4.5 5.0 5.5 6.0 6.5 11 Bj Teori Max (K × (100-A)) / F 100- ((K × (100-A)) / GSB (100 × (E-K)) / E 11 11 Z O ١ 10 8 1 9 GSB = BERAT JENIS GABUNGAN GSB = 2.649173 F = (100-A)/((100/E)-(A/C)) L = (A × K)/C


n n n


% PORI			STABILITAS	UTAS		Service Service	NADCUAL	
VIM	VFA	BACA SEBELUM KOREKSI	ANGKA KALIBRASI ALAT	KORELASI TINGGI	NILAI SESUDAH KOREKSI	FLOW (mm)	QUOTIENT (kg/mm)	KEPADATAN (gr/cm3)
0	d	ø	R	s	T	5	>	M
14.677	36.7655	73.0	11.754	167.0	678.926	1.60	424.329	2.130
13.266	39.5372	73.0	11.754	0.830	712.175	3.20	222.555	2.165
12.613	40.9313	74.0	11.754	0.830	721.931	1.40	515.665	2,182
13.518	39.078	73.3	11.754	0.817	704.344	2.07	387.516	2.159
10.744	48.0483	71.0	11.754	0.811	677.016	5.20	130.195	2.212
11.717	45.6169	71.0	11.754	0.802	669.018	1.90	352.115	2.188
10.168	49.5860	83.0	11,754	0.806	786.156	3.60	218.377	2.226
10.8765	47.7504	75.0	11.754	0.806	710.730	3.57	233.562	2.209
10.279	51.6707	80.0	11.754	0.813	764.794	2.30	332.519	2.207
8.829	55.8444	76.0	11.754	0.838	748.887	3.20	234.027	2.243
9.578	53.6248	80.0	11.754	0.831	781.249	4.60	169.837	2.224
9.5620	53.7133	78.7	11.754	0.828	764.976	3.37	245.461	2.225
7.032	62.6973	81.5	11.754	0.938	898.678	3.80	236.494	2.287
6.439	65.9808	82.0	11.754	0.916	882.505	3.90	226.283	2.285
6.072	67.3703	82.0	11.754	0.951	916.841	3.40	269.659	2.294
6.5141	65.3495	81.8	11.7540	0.935	899.341	3.70	244.146	2.289
4.704	74.5138	80.0	11.754	0.979	920.730	3.50	263.066	2.310
4.678	74.6234	85.0	11.754	1.002	1000.755	4.10	244,087	2.311
4.572	75.0743	94.0	11.754	0.992	1095.976	4.30	254.878	2.314
4.6511	74.7372	86.3	11.7540	0.991	1005.820	3.97	254.010	2312


LANJUTAN TABEL PENGUJIAN GRADASI BATAS TENGAH


Grafik Hasil Uji Marshall Batas Tengah



TABEL PERHITUNGAN JOB MIX FORMULA (JMF) UNTUK TAMBAHAN BATAS BAWAH Tabel Pembagian Butir Agregat Halus dan Agregat Kasar Pada Gradasi Batas Bawah

Saringan	Diameter	% Lolos	%Tertahan	PB
3/4"	19	100		
1/2"	12.5	90	10	CA=
3/8"	9.5	72	18	CA-
No.4	4.75	43	29	72
No.8	2.36	28	15	
No.16	1.18	19	9	
No.30	0.6	13	6	FA=
No.50	0.3	9	4	FA-
No.100	0.15	6	3	24
No.200	0.075	4	2	Section:
Pan	-		4	4

Kadar Aspal Ditentukan dengan Cara Menghitung Nilai Pb

= (0.035 x CA) + (0.045 x FA) + (0.18 x Filler) + K

$$(0.035 \times 72) + (0.045 \times 24) + (0.18 \times 7) + 0.75$$

JMF

Pb

Product	R/ Tartakan		Berat Jenis		%	BJ Terpakai	[2] / [7]
Fraksi	% Tertahan	Bulk	SSD	Apparent	Penyerapan	Б теграка	[2] / [/]
1	2	3	4	5	6	7	8
Kasar	72.00	2.6513	2.6518	2.6528	0.0220	2.6528	27.14
Halus	24.00	2.5377	2.6039	2.7177	2.6104	2,6277	9.13
Filler	4.00					3.1500	1.27
Total							37.54

Kadar Aspal	BJ Aspai	[9] / [10]	∑[8] x {(100- {9])/100}	[11] + [12]	BJ Teori Max
(%)	(gr/cm ³)		[9])(100)		100 / [13]
9	10	11	12	13	14
4.10	1.0317	3.97	36.01	39.98	2.5013
4.60	1.0317	4.46	35.82	40.28	2.4829
5.10	1.0317	4.94	35.63	40.57	2.4647
5.60	1.0317	5.43	35.44	40.87	2.4468
6.10	1.0317	5.91	35.25	41.17	2.4291
6.60	1.0317	6.40	35.07	41.46	2.4117
7.10	1.0317	6.88	34.88	41.76	2.3946

Diameter Benda Uji		10.16 cm	
Tinggi Benda Uji	. =	6.35 cm	
Volume Benda Uji	-	$\frac{1}{4} \times \pi \times d^2 \times t$	
		$\frac{1}{4} \times \pi \times (10.16)^2 \times (6.35)$	 514.8148 cm ³

Contoh Perhitungan untuk Kadar Aspal 4.1% :

Berat Total	-	Volume Benda Uji x BJ Teo	ri Max	x 0.96	
		514.8148 x 2.5013 x 0.9t	20	1236.2	gr
Berat Aspal		Kadar Aspal x Berat Total			
		4.1% x 1236.2	-	50.7	gr
Berat Agreg	=	Berat Total - Berat Aspal			
	=	1236.2 - 50.7	=	1185.5	gr

Catatan :

0.96 didapat dari : 100% - void = 100% - 4% = 96% = 0.96

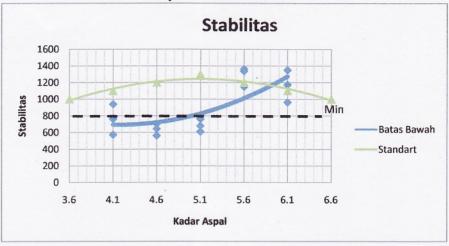
Perhitungan Selanjutnya Ditabelkan.

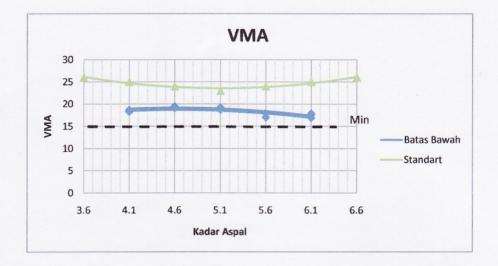
Kadar		Berat (gr)	
Aspal	Total	Aspal	Agregat
4.10	1236.2	50.7	1185.5
4.60	1227.1	56.4	1170.6
5.10	1218.1	62.1	1156.0
5.60	1209.3	67.7	1141.5
6.10	1200.5	73.2	1127.3
6.60	1191.9	78.7	1113.3
7.10	1183.5	84.0	1099.4

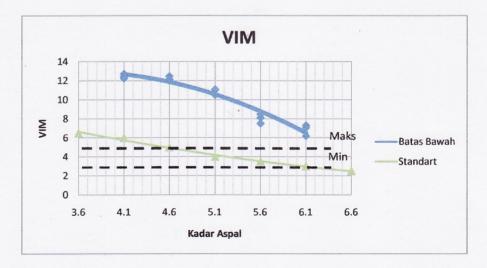
	%	%			F	Kadar Aspal (?	6)			Total
Saringan	Lolos	Tertahan	4.10	4.60	5.10	5.60	6.10	6.60	7.10	Agregat
19	100	0	0	0	0	0	0	0	0	0
12.5	90	10	118.6	117.1	115.6	114.2	112.7	111.3	109.9	799.4
9.5	72	18	213.4	210.7	208.1	205.5	202.9	200.4	197.9	1438.9
4.75	43	29	343.8	339.5	335.2	331.0	326.9	322.8	318.8	2318.2
2.36	28	15	177.8	175.6	173.4	171.2	169.1	167.0	164.9	1199.1
1.18	19	9	106.7	105.4	104.0	102.7	101.5	100.2	98.9	719.4
0.6	13	6	71.1	70.2	69.4	68.5	67.6	66.8	66.0	479.6
0.3	9	4	47.4	46.8	46.2	45.7	45.1	44.5	44.0	319.7
0.15	6	3	35.6	35.1	34.7	34.2	33.8	33.4	33.0	239.8
0.075	4	2	23.7	23.4	23.1	22.8	22.5	22.3	22.0	159.9
Pan	0	4	47.4	46.8	46.2	45.7	45.1	44.5	44.0	319.7
Berat Total Ag	gregat (gr)		1185.5	1170.6	1156.0	1141.5	1127.3	1113.3	1099.4	7993.7
Berat Aspal (g	уг)		50.7	56.4	62.1	67.7	73.2	78.7	84.0	310.2
Berat Total Be	enda Uji (gr)		1236.2	1227.1	1218.1	1209.3	1200.5	1191.9	1183.5	6091.2
J Teori Max			2.5013	2,4829	2.4647	2.4468	2.4291	2.4117	2.3946	-

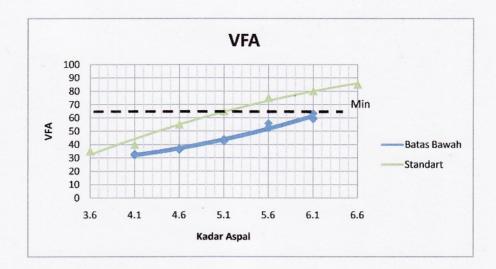
	Damhao
awah	Bornt Damhan
all Batas I	
Uji Marsh	1
ı & Pengujian Benda Uji Marshall Batas bawah	Tinner Banda Hiii
Data Hasil Pengukuran &	

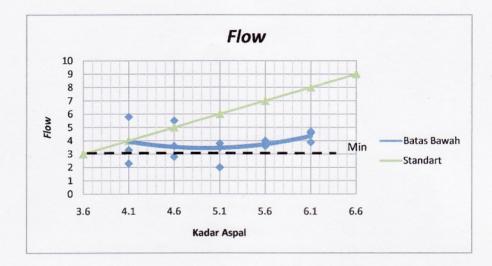
	N	i.L	Danda		Tinggi Benda Uji	Berat	Berat	Berat	Pembacaan	
Acnel 0/	Dondo Itii		i inggi benua uji	По	rata rata	Kering (gr)	Dalam air	Jenuh	Stabilitas	LIUW
0/ Index	Denua oli	1	2	3	(mm)	(gram)	(gram)	(gram)	(kg)	(mm)
	1	74	74	74	74.00	1,207.50	685.50	1,235.70	49.0	3.3
4.10	2	73.5	72.5	73	73.00	1,202.60	675.60	1,226.50	65.0	2.3
	3	72	72.5	72.5	72.33	1,204.70	675.50	1,225.50	80.0	5.8
Rata-rata					73.11	1204.93	678.87	1229.23	64.67	3.80
	1	73	73	73	73.00	1191.40	677.50	1222.90	48.0	3.6
4.60	2	72	72	71.5	71.83	1,192.10	667.50	1,216.10	60.0	5.5
	3	72.5	72.5	72	72.33	1,198.10	673.00	1,222.30	55.0	2.8
Rata-rata	1.4				72.39	1193.87	672.67	1220.43	54.33	3.97
	1	71	71.5	71.5	71.33	1,184.30	667.10	1,204.00	52.0	3.8
5.10	2	70.5	71.5	11	71.00	1,189.10	665.80	1,208.10	58.0	2.0
	3	70	11	71.5	70.83	1,189.60	667.90	1,210.80	65.0	3.5
Rata-rata					71.06	1187.67	666.93	1207.63	58.33	3.10
	1	66.6	65.9	99	66.17	1,130.90	638.10	1,137.50	116.0	7.8
5.60	2	62.9	99	99	65.97	1,160.40	651.50	1,164.30	114.0	4.8
	3	65.3	66.1	65.9	65.77	1,139.60	638.50	1,147.50	98.0	5.9
Rata-rata					65.97	1143.63	642.70	1149.77	109.33	6.17
	1	6:59	66.7	66.8	66.47	1,172.00	658.20	1,178.70	82.0	5.7
6.10	2	66.1	65.6	65.7	65.80	1,172.20	661.80	1,176.20	100.0	5.8
	3	99	65.4	66.1	65.83	1157.30	650.50	1163.20	115.0	4.7
Rata-rata					66.03	1167.17	656.83	1172.70	99.00	5.40
	1	67	6.99	66.4	66.77	1148.3	647.3	1163	85	7
9.9	2	65.8	65.1	65	65.30	1152.1	646.8	1160.2	113	8
	3	99	65.9	66.1	66.00	1153.8	647.6	1164.5	98	7.1
Rata-rata					66.02	1151.40	647.23	1162.57	98.67	7.37
	1	64	63.9	63.1	63.67	1146	646	1150.2	60	6
7.1	2	64	63.2	63.4	63.53	1143.2	648.3	1147.8	102	7.5
	3	64	64.5	64.2	64.23	1141.4	642.3	1146.3	70	7.8
Rata-rata					63.81	1143.53	645.53	1148.10	77.33	7.10

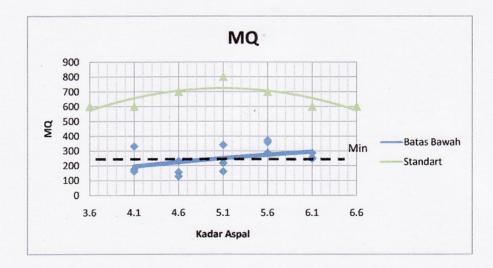

I
◄
2
2
÷.
5
₹.
Υ.
ß
5
Z
9
2
σ
Ż
4
=
⊇.
<u>o</u>
z
ä.
-
ω.
9
2
-


TINGGI BERAT JENIS (gr/cm3) DI
RERATA GMM GSE (gr)
DEF
73.00 2.5013 2.6635 1,202.60
73.11 2.5013 2.6635
73.00
71.83 2.4829 2.6635
72.33
72.39 2.4829 2.6635
71.33
71.00 2.4647 2.6635
70.83
71.06 2.4647 2.6635
66.17
65.97 2.4468 2.6635
65.77
65.97 2.4468 2.6635
65.80 2.4291 2.6635
65.83
66.03 2.4291 2.6635
66.77
65.30 2.4117 2.6635
+
66.02 2.4117 2.6635
67
63,53 2.3946 2.6635
64.23
63.81 2.3946 2.6635
7
(100-A)/((100/E)-(A/C)) 8
10


% PORI			STABILITAS	JTAS			NADCUAL	
WIN	VFA	BACA SEBELUM KOREKSI	ANGKA KALIBRASI ALAT	KORELASI TINGGI	NILAI SESUDAH KOREKSI	FLOW (mm)	QUOTIENT (kg/mm)	KEPADATAN (gr/cm3)
0	Ь	۵	×	S	T	þ	2	M
12.26	40.35	49.0	11.75	0.80	459.32	3.3	139.19	2.19
12.73	39.33	65.0	11.75	0.83	637.42	2.3	277.14	2.18
12.43	39,97	80.0	11.75	0.82	769.50	5.8	132.67	2.19
12.47	39.88	64.67	11.75	0.82	622.08	3.80	183.00	2.19
12.02	43.67	48.0	11.75	0.80	451.35	3.6	125.38	2.18
12.48	42.61	60.0	11.75	0.81	574.48	5.5	104.45	2.17
12.15	43.36	55.0	11.75	0.81	522.56	2.8	186.63	2.18
12.22	43.21	54.33	11.75	0.81	516.13	3.97	138.82	2.18
10.50	49.94	52.0	11.75	0.82	501.70	3.8	132.03	2.21
11.04	48.56	58.0	11.75	0.83	562.43	2.0	281.21	2.19
11.10	48.40	65.0	11.75	0.83	631.90	3.5	180.54	2.19
10.88	48.97	58.33	11.75	0.82	565.34	3.10	197.93	2.20
8.12	57.93	116.0	11.75	0.94	1,281.66	3.8	337.28	2.26
7.52	61.18	114.0	11.75	0.94	1,264.58	3.6	351.27	2.26
8.50	57.98	98.0	11.75	0.95	1,091.42	4.0	272.85	2.24
8.04	59.03	109.33	11.75	0.94	1,212.55	3.80	320.47	2.26
7.31	63.81	82.0	11.75	0.93	892.34	3.9	228.81	2.25
6.19	67.81	100.0	11.75	0.94	1,107.81	4.6	240.83	2.28
7.08	64.61	115.0	11.75	0.94	1,272.86	4.7	270.82	2.26
6.86	65.41	99.00	11.75	0.94	1,091.01	4.40	246.82	2.26
8.33	91.42	85.0	11.75	0.93	927.90	3.8	244.19	2.23
6.95	92.84	113.0	11.75	0.96	1,270.09	3.6	352.80	2.24
7.45	92.33	98.0	11.75	0.94	1,086.38	4.0	271.59	2.23
7.58	92.19	98.67	11.75	0.94	1,094.79	3.80	289.53	2.23
5.08	94.76	60.0	11.75	1.00	702.30	3.9	180.08	2.27
4.42	95.44	102.0	11.75	1.00	1,197.91	4.6	260.41	2.29
5.43	94.41	70.0	11.75	0.98	807.70	7.8	103.55	2.26
4.98	94.87	77.33	11.75	0.99	902.64	5.43	181.35	2.28


LANJUTAN TABEL PENGUJIAN GRADASI BATAS BAWAH





Saringan	Diameter	% Lolos	%Tertahan	PB	
3/4"	19	100			1
1/2"	12.5	95	5	CA=	
3/8"	9.5	81	14	CA-	
No.4	4.75	53	28	66.45	
No.8	2.36	33.55	19.45		
No.16	1.18	22.3	11.25		1
No.30	0.6	16.05	6.25	FA=	
No.50	0.3	12.25	3.8	FA-	
No.100	0.15	9.5	2.75	26.55	
No.200	0.075	7	2.5		
Pan	-	0	7	7	1

TABEL PERHITUNGAN JOB MIX FORMULA (JMF) DENGAN KAO Tabel Pembagian Butir Agregat Halus dan Agregat Kasar Pada Gradasi Batas Tengah

Kadar Aspal Optimum = 6.75%

JMF

Fraksi	% Tertahan		Berat Jenis		%	BJ Terpakai	[2]/[7]
FTAKSI	% reitanan	Bulk	SSD	Apparent	Penyerapan	Бэ тегракат	[4] / [7]
1	2	3	4	5	6	7	8
Kasar	66.45	2.6513	2.6518	2.6528	0.0220	2.6528	25.05
Halus	26.55	2.5377	2.6039	2.7177	2.6104	2.6277	10.10
Filler	7.00					3.1500	2.22
Total							37.38

Kadar Aspal .(%)	BJ Aspal (gr/cm ³)	[9] / [10]	∑[8] x {(100- [9])/100}	[11] + [12]	BJ Teori Max 100 / [13]
9	10	11	12	13	14
6.75	1.0317	6.54	34.85	41.39	2.4158

Diameter Benda Uji		10.16	cm			
Tinggi Benda Uji	-	6.35	cm	-		
Volume Benda Uji	=	$\frac{1}{4} \times \pi \times d^2 \times t$				
		¹ / ₄ x π x (10.16) ²	² x (6.35)		-	514.8148 cm ³

Perhitungan untuk Kadar Aspal Optimum 6.75 % :

Berat Total	-	Volume Benda Uji x BJ Teori M	ax x 0.96		
		514.8148 x 2.4158 x 0.96	=	1193.9	gr
Berat Aspal	==	Kadar Aspal x Berat Total			
	=	6.75% x 1193.9	×	80.6	gr
Berat Agregat	_	Berat Total - Berat Aspal			
		1193.9 - 80.6	=	1113.3	gr
Catatan :					

0.96 didapat dari : 100% - void = 100% - 4% = 96% = 0.96

	%	%	Kadar Aspal (%)	Total
Saringan	Lolos	Tertahan	6.75	15 Benda uji
19	100	0	0	0
12.5	95.00	5.00	55.7	835
9.5	81.00	14.00	155.9	2338
4.75	53.00	28.00	311.7	4676
2.36	33.55	19.45	216.5	3248
1.18	22.30	11.25	125.2	1879
0.6	16.05	6.25	69.6	1044
0.3	12.25	3.80	42.3	635
0.15	9.50	2.75	30.6	459
0.075	7.00	2.50	27.8	417
Pan	0	7	77.9	1169
Berat Total Agregat	(gr)		1113.3	16700.0
Berat Aspal (gr)			80.6	1208.8
Berat Total Benda U	lji (gr)		1193.9	17908.8
BJ Teori Max			2.4158	*

Data Hasil Pengukuran & Pengujian Benda Uji Marshall Batas Tengah (KAO = 6.75%)

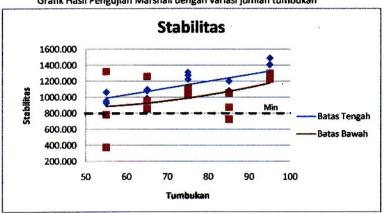
		i			Tinggi Benda Uji rata Berat Kering Berat Dalam	Berat Kering	Berat Dalam	Berat	Pembacaan	
Tumbulton	Dende III		l inggi Benda	nJu	rata	(gr)	air	Jenuh	Stabilitas	Hlow
I MUNNMAN I	Denua oji	1	2	3	(mm)	(gram)	(gram)	(gram)	(kg)	(mm)
	1	65	65.1	64.9	65.00	1,149.50	654.50	1,158.20	94.0	4.8
2x55	2	65.3	65.4	65	65.23	1,153.30	651.70	1,161.20	79.0	3.5
	3	65	64.9	65	64.97	1,148.40	649.70	1,157.50	81.0	4.1
Rata-rata					65.07	1150.40	651.97	1158.97	84.67	4.13
	1	64.6	64.2	63.9	64.23	1147.60	654.70	1154.20	95.0	5.0
2x65	2	64	64.1	63.9	64.00	1,149.80	657.10	1,157.10	85.0	5.0
	3	64.1	63.9	63.7	63.90	1,141.20	648.50	1,148.10	93.0	4.5
Rata-rata					64.04	1146.20	653.43	1153.13	91.00	4.83
	1	63.6	63.5	63.3	63.47	1,145.90	654.40	1,152.00	108.0	4.0
2x75	2	63.2	63.3	63.5	63.33	1,148.10	655.70	1,154.60	111.0	4.4
	3	64.4	63.5	63.8	63.90	1,151.50	655.20	1,158.20	105.0	4.3
Rata-rata					63.57	1148.50	655.10	1154.93	108.00	4.23
	1	62.8	63.2	63.5	63.17	1,140.70	650.90	1,146.10	91.0	5.0
2x85	2	64.7	64.3	64.1	64.37	1,143.70	648.40	1,150.00	91.0	5.0
	3	63.4	63.6	63.4	63.47	1,141.60	651.10	1,146.90	102.0	4.5
Rata-rata					63.67	1142.00	650.13	1147.67	94.67	4.83
	1	61.8	62	62.2	62.00	1,162.10	670.00	1,165.90	122.0	5.9
2x95	2	62.5	61.8	62.5	62.27	1,136.40	652.50	1,141.00	101.0	5.7
	3	64.4	65	64.7	64.70	1176.50	671.20	1181.00	118.0	5.4
Rata-rata					62.99	1158.33	664.57	1162.63	113.67	5.67

TABEL PENGUJIAN GRADASI BATAS TENGAH

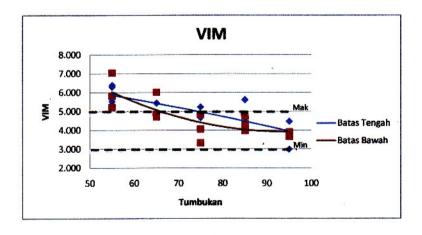
BULK BULK BULK Tr 1 J K T 58.20 503.70 2.3821 C 58.20 509.5 2.2821 E 57.50 507.8 2.2615 E 54.20 499.5 2.2695 E 54.10 500.00 2.2996 E 54.10 499.6 2.2938 E 54.10 499.6 2.2996 E 55.10 500.00 2.2998 E 54.10 499.6 2.2938 E 55.10 499.70 2.2996 E 54.60 498.9 2.3033 E 54.60 498.9 2.3035 E 54.60 498.9 2.3035 E 56.90 503 2.3035 E 56.90 495.8 2.3035 E 65.90 495.8 2.3035 E 65.90 495.8 2.3035 E <t< th=""><th>TINGGI (gr/cm3) DI</th><th>(gr/cm3) DI</th><th></th><th>DI</th><th>100</th><th>AT BENDA</th><th></th><th>KONDISI</th><th>VOLUME</th><th>BERAT</th><th>ASPAL</th><th>% VOLUME</th><th></th></t<>	TINGGI (gr/cm3) DI	(gr/cm3) DI		DI	100	AT BENDA		KONDISI	VOLUME	BERAT	ASPAL	% VOLUME	
(gr) (cm3) (gr/cm3) CAMPURAN TERHADAP CAMPURAN 1 J K L M 1 58.20 503.70 2.2821 14.910 79.535 11 58.20 503.70 2.2815 14.810 79.535 11 51.20 503.70 2.2815 14.810 79.535 11 57.50 507.80 2.2615 14.796 78.817 20 54.20 499.5 2.2975 15.032 80.071 11 57.10 500.00 2.2938 15.032 80.145 11 57.10 500.00 2.2938 15.045 80.203 11 53.13 499.76 2.3013 15.067 80.203 11 54.60 498.5 2.3013 15.067 80.203 11 54.61 499.63 2.3013 15.017 80.231 11 54.60 498.5 2.3013 15.017 80.203 11 54.		(BI/UII3) GMM GCF	(ciin)	SF	UDARA		AR S	SIGNION	BULK	BULK	TERHADAP	AGREGAT EFEKTIF	VMA
I J K L M 58.20 503.70 2.2821 14.910 79.535 11 58.20 503.70 2.2831 14.810 79.535 11 51.20 509.5 2.2651 14.810 78.817 20 57.50 507.8 2.2615 14.796 78.817 20 58.97 507.00 2.2691 14.8456 79.081 20 57.10 500.00 2.2938 15.032 80.071 11 57.10 500.00 2.2938 15.073 80.145 11 57.10 500.00 2.2303 14.945 79.609 11 53.13 499.70 2.23013 15.071 80.231 11 54.60 498.5 2.3013 15.071 80.231 11 54.61 499.63 2.3035 15.017 80.241 11 54.60 498.5 2.3035 15.017 80.281 11 54.61	RERATA JUNIM	TA UNIN UL U		_	(gr)		(gr)	(gr)	(cm3)	(gr/cm3)	CAMPURAN	TERHADAP CAMPURAN	
1,158,20 503.70 2.2821 14.910 79.535 11 1,161,20 509.5 2.2636 14.810 78.817 20 1,157,50 507.00 2.2631 14.845 79.081 20 1,157,10 507.00 2.2691 14.845 79.081 20 1,154,10 500.00 2.2995 15.032 80.071 11 1,154,10 500.00 2.2996 15.032 80.145 11 1,154,10 499.6 2.2938 15.0073 80.145 11 1,154,10 499.6 2.2938 15.0073 11 11 1,154,10 499.6 2.3013 15.067 80.258 11 1,154,10 499.7 2.3013 15.067 80.203 11 1,154,10 499.3 2.3013 15.017 80.281 11 1,146,10 499.5 2.3035 14.918 79.465 11 1,146,10 495.2 2.3035 15.017 80.247 11 1,146,10 495.2 2.3035 15.0178 79.465 11 1,146,10 495.2 2.3035 14.918 79.465 11 1,146,10 495.5 2.30	B C D E F G	F	F	F G	ß		H	-	l	K	L	W	z
61.20 509.5 2.2636 14.810 78.890 2 57.50 507.8 2.2615 14.796 78.817 20 58.97 507.00 2.2691 14.8456 79.081 20 54.20 499.5 2.2975 15.032 80.071 11 57.10 500.00 2.2996 15.032 80.145 11 57.10 500.00 2.2938 15.037 80.145 11 53.13 499.76 2.2938 15.073 80.203 11 53.13 499.70 2.3023 14.978 79.942 11 54.60 498.9 2.3013 15.071 80.203 11 54.10 497.6 2.3023 14.978 79.784 11 54.01 495.1 2.3013 15.071 80.231 11 54.03 50.335 14.918 79.465 11 54.04 495.3 2.3025 15.0178 79.465 11 46.10 495.5 2.3025 15.0178 79.465 11 46.0 495.5 2.3025 15.0178 79.465 11 41.00 495.5 2.3025 15.0178 81.675 11	1 1.0317 65.00 1 1,149.50 0	1,149.50				10.6	654.50	1,158.20	503.70	2.2821	14.931	79.535	19.670
57:50 507.8 2.2615 14.796 78.817 20 58.97 507.00 2.2691 14.8456 79.081 20 54.20 499.5 2.2975 15.032 80.071 11 57.10 500.00 2.2996 15.045 80.145 11 57.10 500.00 2.2938 15.073 80.145 11 53.13 499.76 2.2938 15.073 80.269 11 53.13 499.70 2.2033 15.073 80.258 11 54.60 498.9 2.3013 15.071 80.258 11 54.61 498.9 2.3013 15.071 80.281 11 54.60 498.5 2.3013 14.918 79.465 11 54.01 495.2 2.3013 15.071 80.281 11 56.00 501.60 2.2893 14.918 79.465 11 56.01 495.3 2.3025 15.071 80.281 11 56.00 501.60 2.3323 15.0178 79.465 11 41.00 495.5 2.3025 15.0178 79.465 11 41.00 495.5 2.3025 15.0178 81.67	2:4158 2.676 1,153.30	2:4158 2.676 1,153.30	2.676 1,153.30	1,153.30			551.70	1,161.20	509.5	2.2636	14.810	78.890	20.322
58.97 507.00 2.2691 14.8456 79.081 2 54.20 499.5 2.2975 15.032 80.071 11 57.10 500.00 2.2996 15.045 80.145 11 48.10 499.6 2.2938 15.0073 80.145 11 48.10 499.6 2.2938 15.0073 80.145 11 53.13 499.70 2.2938 15.0073 79.942 11 54.60 498.9 2.3013 15.067 80.258 11 54.61 498.9 2.3013 15.071 80.203 11 54.60 498.3 2.3013 15.071 80.203 11 54.61 498.3 2.3013 14.918 79.465 11 56.00 501.60 2.165 80.281 11 56.01 495.8 2.3025 15.0178 79.465 11 46.10 495.2 2.3025 15.0178 79.465 11 46.10 495.3 2.3025 15.0178 79.465 11 41.01 485.5 2.3025 15.0178 81.075 11 41.01 485.5 2.3025 15.0178 81.075 11 <td>3 1.0317 64.97 1 1,148.40 6</td> <td>1,148.40</td> <td></td> <td></td> <td></td> <td>•</td> <td>549.70</td> <td>1,157.50</td> <td>507.8</td> <td>2.2615</td> <td>14.796</td> <td>78.817</td> <td>20.395</td>	3 1.0317 64.97 1 1,148.40 6	1,148.40				•	549.70	1,157.50	507.8	2.2615	14.796	78.817	20.395
54.20 499.5 2.2975 15.032 80.071 11 57.10 500.00 2.2996 15.045 80.145 11 48.10 499.6 2.2842 14.945 79.609 11 53.13 499.70 2.2938 15.0073 79.942 11 53.13 499.70 2.2938 15.0073 79.942 11 54.60 497.6 2.3029 15.067 80.258 11 54.60 498.9 2.3013 15.071 80.203 11 54.61 498.9 2.3013 14.978 79.784 11 54.93 499.83 2.2078 15.071 80.281 11 54.01 495.2 2.3013 14.918 79.465 11 46.10 495.2 2.3025 15.077 80.247 11 46.00 495.8 2.3025 15.0178 79.998 11 46.00 495.5 2.3025 15.0178 79.998 11 41.00 485.5 2.3073 15.2170 81.672 11 41.00 485.5 2.32563 15.2170 81.672 11 41.00 485.5 2.32763 15.2170 81.	2.4158 2.676 1,150.40	2.4158 2.676 1,150.40	2.676 1,150.40	1,150.40	_		51.97	1,158.97	507.00	2.2691	14.8456	79.081	20.129
57.10 500.00 2.2996 15.045 80.145 1 48.10 499.6 2.2842 14.945 79.609 1 53.13 499.70 2.2938 15.0073 79.609 1 53.13 499.70 2.2938 15.0073 79.942 1 54.00 497.6 2.3029 15.067 80.258 1 52.01 497.6 2.3013 15.071 80.203 1 54.60 498.9 2.3013 15.071 80.231 1 54.61 498.3 2.3013 14.918 79.784 1 54.93 499.83 2.3015 14.918 79.465 1 54.00 501.60 2.15.01 14.918 79.465 1 56.01 495.2 2.3025 15.0178 80.247 1 46.00 495.8 2.3025 15.0178 81.672 1 41.00 485.5 2.32753 15.2170 81.672 1 41.00 495.8 2.3078 15.2170 81.675 1 41.00 509.8 15.2170 81.075 1 65.90 495.90 2.32563 15.2170 81.075 <td< td=""><td>1,147.60</td><td>1,147.60</td><td>1.5</td><td>1.5</td><td>1.0</td><td>9</td><td>54.70</td><td>1,154.20</td><td>499.5</td><td>2.2975</td><td>15.032</td><td>80.071</td><td>19.129</td></td<>	1,147.60	1,147.60	1.5	1.5	1.0	9	54.70	1,154.20	499.5	2.2975	15.032	80.071	19.129
48.10 499.6 2.2842 14.945 79.609 11 53.13 499.70 2.2938 15.0073 79.942 11 52.00 497.6 2.3029 15.067 80.258 11 54.60 498.9 2.3013 15.056 80.203 11 54.60 498.9 2.3013 15.056 80.203 11 58.20 503 2.2038 14.978 79.784 11 58.20 503 2.2035 15.071 80.281 11 58.20 501.60 5.071 14.918 79.465 11 46.10 495.2 2.3035 15.071 80.281 11 50.00 501.60 2.2304 14.918 79.465 11 41.01 495.2 2.3025 15.0178 80.247 11 41.00 495.50 2.3434 15.320 81.672 11 41.00 485.5 2.3263 15.2170 81.672 11 41.00 498.5 2.3278 15.2170 81.075 11 65.90 498.07 2.3228 15.2170 81.075 11 62.63 498.07 2.3228 15.2170 81.059 <td>2.4158 2.676 1,149.80</td> <td>2.4158 2.676 1,149.80</td> <td>2.676 1,149.80</td> <td>1,149.80</td> <td>1993</td> <td>9</td> <td>57.10</td> <td>1,157.10</td> <td>500.00</td> <td>2.2996</td> <td>15.045</td> <td>80.145</td> <td>19.055</td>	2.4158 2.676 1,149.80	2.4158 2.676 1,149.80	2.676 1,149.80	1,149.80	1993	9	57.10	1,157.10	500.00	2.2996	15.045	80.145	19.055
53.13 499.70 2.2938 15.0073 79.942 11 52.00 497.6 2.3029 15.067 80.258 11 54.60 498.9 2.3013 15.056 80.258 11 58.20 503 2.3013 15.057 80.203 11 58.20 503 2.2078 15.071 80.281 11 58.20 503 2.2078 15.071 80.281 11 54.93 499.83 2.2078 15.071 80.281 11 54.00 501.60 2.160 14.918 79.465 11 46.10 495.2 2.3025 15.077 80.247 11 47.67 497.53 2.3025 15.0178 79.998 11 41.00 485.5 2.3253 15.2170 81.672 11 41.00 485.5 2.32563 15.2170 81.075 11 41.00 498.07 2.3258 15.2170 81.075 11 62.63 498.07 2.3258 15.2170 81.075 11 62.63 498.07 2.3258 15.2170 81.075 11 62.63 498.07 2.3258 15.2170 81.059	1	1,141.20	1	1	1	9	48.50	1,148.10	499.6	2.2842	14.945	79.609	19.596
52.00 497.6 2.3029 15.067 80.258 11 54.60 498.9 2.3013 15.056 80.203 11 58.20 503 2.3013 15.056 80.203 11 58.20 503 2.3013 15.071 80.281 11 54.91 499.83 2.2078 15.071 80.281 11 54.03 495.2 2.3035 15.071 80.281 11 46.10 495.2 2.3035 15.071 80.281 11 46.00 501.60 2.160 14.918 79.465 11 46.90 495.8 2.3025 15.0178 80.247 11 47.67 497.53 2.3025 15.0178 81.672 11 41.00 488.5 2.3078 15.2170 81.672 11 41.00 509.8 2.32563 15.2170 81.075 11 41.00 509.8 15.2170 81.075 11 62.63 498.07 2.32563 15.2170 81.075 11 62.63 498.07 2.32563 15.2170 81.075 11 62.63 498.07 2.32563 15.2170 81.075 12<	64.04 2.4158 2.676 1,146.20	2.4158 2.676 1,146.20	2.676 1,146.20	1,146.20		9	53.43	1,153.13	499.70	2.2938	15.0073	79.942	19.260
54.60 498.9 2.3013 15.056 80.203 14 58.20 503 2.2893 14.978 79.784 11 58.20 503 2.2893 14.978 79.784 11 54.93 499.83 2.2978 15.071 80.281 11 46.10 495.2 2.3035 15.071 80.281 11 46.10 495.2 2.3035 15.071 80.281 11 50.00 501.60 2.1801 14.918 79.465 11 40.95.8 2.3025 15.0178 80.247 11 47.67 497.53 2.3025 15.0178 79.998 11 47.67 497.53 2.3243 15.2170 81.672 11 41.00 488.5 2.32758 15.2170 81.075 11 81.00 509.8 2.32758 15.2170 81.075 11 81.00 509.8 15.2170 81.075 11 62.63 498.07 2.3258 15.2170 81.075 11 62.63 498.07 2.3258 15.2170 81.059 11 62.63 498.07 2.3258 15.2170 81.059 6.75 <	63.47 1,145.90	1,145.90	同時	同時	同時	9	54.40	1,152.00	497.6	2.3029	15.067	80.258	18.940
58.20 503 2.2893 14.978 79.784 11 54.93 499.83 2.2978 15.0335 80.082 11 46.10 495.2 2.3035 15.071 80.281 11 46.10 495.2 2.3035 14.918 79.465 11 50.00 501.60 2.1801 14.918 79.465 11 46.90 495.8 2.3025 15.065 80.247 11 47.67 497.53 2.3025 15.0178 79.998 11 47.67 497.53 2.3243 15.312 81.672 11 41.00 488.5 2.33263 15.2170 81.672 11 41.00 509.8 2.3258 15.2170 81.075 11 81.005 509.8 15.2170 81.059 11 62.63 498.07 2.3258 15.2170 81.059 11 62.63 498.07 2.3258 15.2170 81.059 11 62.63 498.07 2.3258 15.2170 81.059 11 62.63 498.07 2.3258 15.2170 81.059 6.75	2.4158 2.676 1,148.10	2.4158 2.676 1,148.10	2.676 1,148.10	1,148.10	1	9	55.70	1,154.60	498.9	2.3013	15.056	80.203	18.996
54.93 499.83 2.2978 15.0335 80.082 11 46.10 495.2 2.3035 15.071 80.281 11 50.00 501.60 2.2801 14.918 79.465 11 50.00 501.60 2.3025 15.077 80.247 11 46.90 495.8 2.3025 15.065 80.247 11 47.67 497.53 2.3025 15.0178 79.998 11 47.67 497.53 2.3434 15.312 81.672 11 41.00 488.5 2.3078 15.2170 81.075 11 41.00 509.8 2.3078 15.2170 81.075 11 41.00 509.8 15.2170 81.075 11 62.63 498.07 2.3258 15.2170 81.059 11 62.63 498.07 2.3258 15.2170 81.059 11 62.63 498.07 2.3258 15.2170 81.059 6.75 61.05 503.8 15.2170 81.059 6.75 61.05 6.75 6.75 6.75 91) / G5B 6.75 6.75 6.75	3 1.0317 63.90 61.1121.50 6	90 1,151.50				9	55.20	1,158.20	503	2.2893	14.978	79.784	19.419
46.10 495.2 2.3035 15.071 80.281 11 50.00 501.60 2.2801 14.918 79.465 11 46.90 495.8 2.3025 15.065 80.247 11 46.90 495.8 2.3025 15.065 80.247 11 47.67 497.53 2.3025 15.0178 79.998 11 47.67 497.53 2.3434 15.312 81.672 11 41.00 488.5 2.3343 15.2170 81.672 11 41.00 498.07 2.3258 15.2170 81.075 11 41.00 509.8 2.3258 15.2170 81.059 11 62.63 498.07 2.3258 15.2170 81.059 11 62.63 498.07 2.3258 15.2170 81.059 11 62.63 498.07 2.3258 15.2170 81.059 11 62.63 498.07 2.3258 15.2170 81.059 6.75 61.05 6.75 6.75 6.75 6.75 6.75	2.4158 2.676 1,148.50	2.4158 2.676 1,148.50	2.676 1,148.50	1,148.50		9	55.10	1,154.93	499.83	2.2978	15.0335	80.082	19.118
50.00 501.60 2.2801 14.918 79.465 11 46.90 495.8 2.3025 15.065 80.247 11 47.67 497.53 2.3025 15.0178 79.998 11 47.67 497.53 2.3254 15.0178 80.247 11 65.90 495.90 2.3434 15.332 81.672 11 41.00 488.5 2.3378 15.210 81.075 11 81.00 509.8 2.3378 15.2170 81.075 11 62.63 498.07 2.3258 15.2170 81.059 11 62.63 498.07 2.3258 15.2170 81.059 11 62.63 498.07 2.3258 15.2170 81.059 11 62.63 498.07 2.3258 15.2170 81.059 11 62.63 498.07 2.3258 15.2170 87.059 6.75 9) / G5B 81.059 6.75 6.75 6.75	1 1.0317 63.17 63.17 63.17	1,140.70				9	50.90	1,146.10	495.2	2.3035	15.071	80.281	18.917
46.90 495.8 2.3025 15.065 80.247 11 47.67 497.53 2.2954 15.0178 79.998 11 65.90 495.50 2.3434 15.332 81.672 11 41.00 485.5 2.3378 15.210 81.075 11 41.00 509.8 2.3078 15.2170 81.075 11 81.00 509.8 2.3078 15.2170 81.059 11 81.00 509.8 2.3258 15.2170 81.059 11 81.00 509.8 15.2170 81.059 11 62.63 498.07 2.3258 15.2170 81.059 11	2 1.0317 64.37 2.4158 2.676 1,143.70 6	37 2.4158 2.676 1,143.70	2.676 1,143.70	1,143.70		9	48.40	1,150.00	501.60	2.2801	14.918	79.465	19.741
47.67 497.53 2.2954 15.0178 79.998 11 65.90 495.90 2.3434 15.332 81.672 11 41.00 488.5 2.3434 15.332 81.672 11 81.00 509.8 2.3078 15.2170 81.075 11 81.00 509.8 2.3078 15.2170 81.059 11 81.00 509.8 2.3258 15.2170 81.059 11 81.05 2.3258 15.2170 81.059 11 62.63 498.07 2.3258 15.2170 81.059 11 62.63 498.07 2.3258 15.2170 81.059 11	3 1.0317 63.47 53.47 53.47	1,141.60				9	51.10	1,146.90	495.8	2.3025	15.065	80.247	18.951
65.90 495.90 2.3434 15.332 81.672 11 41.00 488.5 2.3263 15.220 81.075 18 81.00 509.8 2.3078 15.2170 80.429 11 81.00 509.8 2.3258 15.2170 81.059 11 81.01 203.8 2.3258 15.2170 81.059 11 81.05 498.07 2.3258 15.2170 81.059 11 62.63 498.07 2.3258 15.2170 81.059 11 6.75 6.75 6.75 6.75 6.75 6.75	2.4158 2.676 1,142.00	2.4158 2.676 1,142.00	2.676 1,142.00	1,142.00			50.13	1,147.67	497.53	2.2954	15.0178	79.998	19.203
41.00 488.5 2.3263 15.220 81.075 11 81.00 509.8 2.3078 15.099 80.429 11 62.63 498.07 2.3258 15.2170 81.059 14 6.75 81.059 14 b) / GSB 15.01 Max = 6.75 8.75 6.75 6.75 6.75 6.75 6.75 6.75 6.75 6.75 6.75 6.75 6.75 6.75	1,162.10	1,162.10				9	70.00	1,165.90	495.90	2.3434	15.332	81.672	17.513
81.00 509.8 2.3078 15.099 80.429 11 62.63 498.07 2.3258 15.2170 81.059 11 8] Teori Max = 6.75 4) / GSB 8] Teori Max = 6.75 6.75 6.75 6.75	2 1.0317 62.27 2.4158 2.676 1,136.40 E	2.4158 2.676 1,136.40	2.676 1,136.40	1,136.40		w	52.50	1,141.00	488.5	2.3263	15.220	81.075	18.115
62.63 498.07 2.3258 15.2170 81.059 11 Bj Teori Max = 6.75 6.75 6.75 6.75 6.75	1,176.50	1,176.50	-	-	-	ω	71.20	1,181.00	509.8	2.3078	15.099	80.429	18.767
Bj Teori Max = 6.75 4) / GSB Bj Teori Max = 6.75 6.75 6.75	99 2.4158 2.676 1,158.33	2.4158 2.676 1,158.33	2.676 1,158.33	1,158.33		-	64.57	1,162.63	498.07	2.3258	15.2170	81.059	18.132
Bj Teori Max = 6.75 6.75 6.75 6.75 6.75													
4)//GSB 6.75 6.75 6.75	GSB = BERAT JENIS GABUNGAN 6 M = (K)	AN 6 M=	= W	= W		£	(100-A)	1/F		Bj Teori Ma		6.75	2.4158
6.75 6.75 6.75	GSB = 2.649173 7 N = 100	u	u	u	u	ğ	D- ((K × (1	00-A)) / GSB	_			6.75	2.4158
	= (100-A)/((100/E)-(A/C)) 8 0 = (10	8	8	# 0	łł	10	0 x (E-K)	/E				6.75	2.4158
	= (A × K)/C 10	10	10	10								6.75	2.4158
												6.75	2.4158

6.75	6.75	6.75	6.75	6.75
11				
Bj Teori Max				
(K × (100-A)) / F	100- ((K × (100-A)) / GSB	$0 = (100 \times (E-K)) / E$		
۳ ۲	" Z	⊪ 0		
9	7	80	10	
		(C)		
RAT JENIS GABUNGAN	2.649173	(100-A)/((100/E)-(A/C))	(A × K)/C	
B = BERAT JENIS GABUNGAN	= 5	= (100-A)/((100/E)-(A/	= (A × K)/C	
BERAT JE	2	E	$L = (A \times K)/C$	

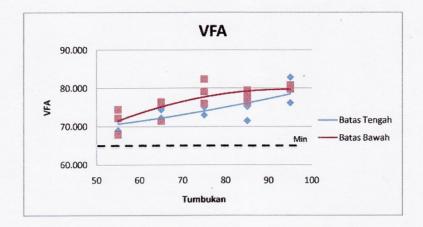
% PORI		and the second	STAB	STABILITAS			NANDELLAN	
VIM	VFA	BACA SEBELUM KOREKSI	ANGKA KALIBRASI ALAT	KORELASI TINGGI	NILAI SESUDAH KOREKSI	FLOW (mm)	QUOTIENT (kg/mm)	KEPADATAN (gr/cm3)
0	Р	o	R	S	F	n	~	M
5.534	71.8670	94.0	11.754	0.963	1063.443	4.80	221.551	2.282
6.301	68.9970	0.67	11.754	1.000	928.566	3.50	265.305	2.264
6.386	68.6874	81.0	11.754	1.000	952.074	4.10	232.213	2.262
6.074	69.850	84.7	11.754	0.988	981.361	4.13	239.689	2.269
4.897	74.3998	0'56	11.754	0.982	1096.158	5.00	219.232	2.297
4.810	74.7571	85.0	11.754	0.988	986.601	5.00	197.320	2.300
5.446	72.2068	93.0	11.754	066.0	1082.191	4.50	240.487	2.284
5.0511	73.7879	91.0	11.754	0.986	1054.984	4.83	219.013	2.294
4.675	75.3155	108.0	11.754	1.001	1270.490	4.00	317.622	2.303
4.741	75.0416	111.0	11.754	1.004	1310.130	4.40	297.757	2.301
5.238	73.0268	105.0	11.754	0660	1221.828	4.30	284.146	2.289
4.8848	74.4613	108.0	11.754	966.0	1267.483	4.23	299.842	2.298
4.648	75.4297	91.0	11.754	1.008	1078.527	5.00	215.705	2.304
5.617	71.5465	91.0	11.754	0.978	1046.439	2.00	209.288	2.280
4.688	75.2616	102.0	11.754	1.001	1199.907	4.50	266.646	2.303
4.9844	74.0793	94.7	11.7540	0.996	1108.291	4.83	230.546	2.295
2.996	82.8907	122.0	11.754	1.038	1487.763	5.90	252.163	2.343
3.705	79.5495	101.0	11.754	1.031	1223.758	5.70	214.694	2.326
4.472	76.1719	118.0	11.754	1.013	1404.694	5.40	260.129	2.308
3.7242	79.5374	113.7	11.7540	1.027	1372.072	5.67	242.329	2.326

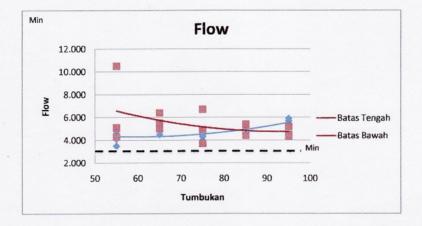

Data Hasil Pengukuran & Pengujian Benda Uji Marshall Batas Bawah (KAO = 7.1%)

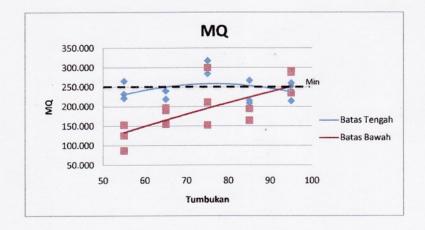
		Ē			Tinggi Benda Uji	Berat	Berat	Berat	Pembacaan	E
Tumbulan	Nomor Bondo Hit		I inggi benda	In	rata rata	Kering (gr)	Dalam air	Jenuh	Stabilitas	LIOW
Temparan T		1	2	3	(mm)	(gram)	(gram)	(gram)	(kg)	(m m)
	1	64	64.3	64.9	64.40	1,107.80	628.20	1,119.40	68.0	5.1
2x55	2	69.8	72.4	71.3	71.17	1,123.90	638.10	1,143.00	32.0	4.3
	3	64.7	65	63.6	64.43	1,117.30	634.10	1,126.40	115.0	10.5
Rata-rata					66.67	1116.33	633.47	1129.60	71.67	6.63
	1	64.6	65.1	64.6	64.77	1132.80	644.80	1141.30	75.0	5.5
2x65	2	65	62.9	65.7	65.53	1,135.80	641.60	1,146.30	85.0	5.0
	3	64.7	64.5	64.7	64.63	1,121.50	639.10	1,131.30	110.0	6.4
Rata-rata					64.98	1130.03	641.83	1139.63	90.00	5.63
	-	63.7	64	64.2	63.97	1,126.30	641.70	1,135.90	88.0	6.7
2x75	2	63.7	64	63.6	63.77	1,140.40	654.80	1,147.40	95.0	3.7
	3	63.7	63.4	63.3	63.47	1,134.70	649.10	1,143.00	88.0	4.9
Rata-rata					63.73	1133.80	648.53	1142.10	90.33	5.10
	1	65.6	6:59	99	65.83	1,131.50	642.50	1,138.60	65.0	4.4
2x85	2	64	64.3 .	63.5	63.93	1,132.00	645.90	1,140.10	75.0	5.3
	3	63.2	64.6	63.9	63.90	1,138.60	650.60	1,145.80	93.0	5.4
Rata-rata					64.56	1134.03	646.33	1141.50	77.67	5.03
	1	63.5	63.4	64.5	63.80	1,135.70	647.10	1,140.50	111.0	4.5
2x95	2	63.8	64	63.9	63.90	1,132.90	646.20	1,138.50	105.0	5.2
	3	63.9	64	64.2	64.03	1134.30	648.40	1140.10	108.0	4.3
Rata-rata					63.91	1134.30	647.23	1139.70	108.00	4.67


		VMA		z	20.91	21.94	20.41	21.09	19.99	21.08	20.10	20.39	20.08	18.82	19.43	19.44	20.02	19.68	19.37	19.69	19.28	19.30	19.10	19.23	2.3946	2.3946	2.3946	2.3946	2.3946
% VOLUME	ACDEGAT ECEVTIC	TERHADAP CAMPURAN		W	78.66	77.64	79.16	78.49	79.58	57'82	79.47	79.18	79.49	80.75	80.13	80.12	79.55	79.89	80.20	79.88	80.28	80.26	80.46	80.34	7.1	7.1	1.7	1.7	1.7
	ASPAL	TERHADAP	CAMPURAN	٦	15.52	15.32	15.62	15.49	15.70	15.49	15.68	15.62	15.68	15.93	15.81	15.81	15.70	15.76	15.82	15.76	15.84	15.84	15.88	15.85	= X				
BERAT	JENIS	BULK	(gr/cm3)	K	2.26	2.23	2.27	2.25	2.28	2.25	2.28	2.27	2.28	2.32	2.30	2.30	2.28	2.29	2.30	2.29	2.30	2.30	2.31	2.30	Bj Teori Max				
VOLIME	AULUIVIC BILLIK	AUL A	(cm3)	ſ	491.20	504.90	492.30	496.13	496.50	504.70	492.20	497.80	494.20	492.60	493.90	493.57	496.10	494.20	495.20	495.17	493.40		491.70	492.47		8			
UJI	KONDISI	SSD	(gr)	-	1,119.40	1,143.00	1,126.40	1,129.60	1,141.30	1,146.30	1,131.30	1,139.63	1,135.90	1,147.40	1,143.00	1,142.10	1,138.60	1,140.10	1,145.80	1,141.50	1,140.50	1,138.50	1,140.10	1,139.70))/F	100- ((K × (100-A)) / GSB)/E		
BERAT BENDA UJI	ā	AIR	(gr)	н	628.20	638.10	634.10	633.47	644.80	641.60	639.10	641.83	641.70	654.80	649.10	648.53	642.50	645.90	650.60	646.33	647.10	646.20	648.40	647.23	(K × (100-A)) / F	100- ((K × ()	(100 × (E-K)) / E		
BE	ō	UDARA	(gr)	U	1,107.80	1,123.90	1,117.30	1,116.33	1,132.80	1,135.80	1,121.50	1,130.03	1,126.30	1,140.40	1,134.70	1,133.80	1,131.50	1,132.00	1,138.60	1,134.03	1,135.70	1,132.90	1,134.30	1,134.30	=W	H Z	= 0		
BERAT JENIS	(gr/cm3)	GSE		ц.		2.6635		2.6635		2.6635		2.6635		2.6635		2.6635		2.6635		2.6635		2.6635		2.6635	9	1	00	10	
BERAT	(gr/	GMM		E		2.3946		2.3946		2.3946		2.3946		2.3946		2.3946		2.3946		2.3946		2.3946		2.3946			(c))		
TINGGI	RENDA IIII	RERATA		D	64.40	71.17	64.43	66.67	64.77	65.53	64.63	64.98	63.97	63.77	63.47	63.73	65.83	63.93	63.90	64.56	63.80	63.90	64.03	63.91	ABUNGAN		[100/E]-(A/C)]		
BERAT	IENIC	ASPAL		c	1.0317	1.0317	1.0317		1.0317	1.0317	1.0317		1.0317	1.0317	1.0317		1.0317	1.0317	1.0317	1	1.0317	1.0317	1.0317		GSB = BERAT JENIS GABU	2.649173	(100-A)/((100	(A × K)/C	
	NOMOR	ASPAL (%) BENDA UJI		8	1	2	3	RATA-RATA	1	2	æ	RATA-RATA	GSB = BER	GSB =	11 11	۳ ب													
	KADAR	ASPAL (%)		A		7.10				7.10				7.10				7.10				7.10			1	2	m	S	
Variaci	delmul	Tumbukan				2x55				2x65				2x75				2x85				2x95							

TABEL PENGUJIAN GRADASI BATAS BAWAH


(gr/cm3)	3)	3)	(6)	(E)	()
~	2.25	2.26 2.23 2.27 2.25 2.28 2.28 2.28 2.28	226 223 223 223 225 228 228 228 228 228 228 228 228 228	2.26 2.23 2.23 2.28 2.28 2.28 2.28 2.28 2.28	2.26 2.23 2.23 2.23 2.28 2.28 2.23 2.23 2.23
>	153.19 86.96 125.73	153.19 86.96 125.73 125.73 125.73 155.21 195.20 196.30	153.19 86.96 125.73 125.21 155.21 196.30 196.30 196.30 196.30 196.57 152.58 152.58 152.58 299.78 299.78 211.27	153.19 86.96 125.73 125.73 155.21 155.21 196.30 196.30 196.57 201.27 211.27 211.27 211.27 211.27 164.31 164.33	153.19 86.96 125.73 125.21 155.21 190.20 196.30 196.30 194.33 194.33 194.33 194.33 194.33 194.33 194.33 194.33 221.21 164.53 194.33 231.97 231.97 231.97
5.1	10.5	4.3 10.5 6.63 5.5 5.0 6.4	4.3 10.5 6.63 5.5 6.4 6.4 6.4 6.7 3.7 4.9	4.3 10.5 5.6 5.6 5.6 5.6 6.4 6.7 6.7 7 6.7 4.9 5.10 5.10 5.10 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3	4.3 10.5 5.5 5.0 5.6 5.6 5.6 4.9 4.9 4.4 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
781.29 373.93	1,320.17	1,320.17 825.13 853.63 951.01 1,256.31	1,320.17 825.13 853.63 951.01 1,256.31 1,256.31 1,266.31 1,022.28 1,022.28 1,09.19 1,09.19	1,320,17 825,13 853,63 951,01 1,256,31 1,020,32 1,022,28 1,022,28 1,022,28 1,022,28 1,022,28 1,022,28 1,022,28 1,035,21 1,035,21 1,035,26 1,035,21,	1,320,17 825,13 853,63 951,01 1,256,31 1,022,28 1,022,28 1,022,28 1,022,28 1,022,28 1,022,28 1,022,28 1,022,28 1,022,28 1,024,94 872,00 1,049,40 1,049,40 1,049,40 1,294,91 1,221,83
0.98 0.99	0.98	0.98 0.98 0.97 0.95 0.97	0.98 0.97 0.97 0.95 0.99 0.99 0.99 1.00	0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99	0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99
11.75	11.75	11.75 11.75 11.75 11.75 11.75	11.75 11.75 11.75 11.75 11.75 11.75 11.75 11.75 11.75	11.75 11.75 11.75 11.75 11.75 11.75 11.75 11.75 11.75 11.75 11.75 11.75	11.75 11.75
68.0 32.0	115.0	115.0 71.67 75.0 85.0 110.0	115.0 71.67 75.0 85.0 85.0 90.00 88.0 88.0 88.0	115.0 71.67 75.0 75.0 85.0 88.0 88.0 95.0 95.0 95.0 65.0 75.0 75.0	115.0 71.67 75.0 85.0 85.0 88.0 95.0 88.0 95.0 88.0 95.0 93.0 93.0 93.0 93.0 111.0 111.0
72.18 67.91	74.42	74.42 71.50 76.39 71.45 73.88	74.42 74.50 76.39 71.45 75.88 75.97 75.97 75.97 75.97 75.97	74.42 74.50 76.39 76.39 75.97 75.97 79.12 79.14 76.26 76.26 76.26	74.42 74.50 76.39 71.45 75.97 75.97 75.97 75.97 79.14 79.14 76.26 77.92 79.14 77.92 79.45 79.45 79.45 79.45
5.82	5.22	5.22 6.03 4.72 6.02 4.85	5.22 6.03 6.02 6.02 6.02 7.20 7.83 7.32 7.33 7.32 4.06	5.22 6.03 6.02 6.02 6.02 7.20 4.75 4.07 4.75 4.75 3.38 3.38	5.22 6.03 4.72 6.02 5.20 4.85 4.85 4.05 4.05 4.75 4.34 4.05 4.34 3.38 3.38 3.39




VMA 23.000 22.000 21.000 20.000 ¥ 19.000 18.000 Batas Tengah 17.000 Batas Bawah 16.000 Min 15.000 14.000 50 60 70 80 90 100 Tumbukan

Grafik Hasil Pengujian Marshall dengan variasi jumlah tumbukan

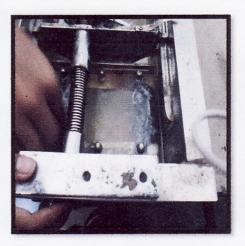
Lampiran C

VARIASI JUMLAH TUMBUKAN TERHADAP KARAKTERISTIK AC-WC GRADASI KASAR DENGAN SUHU IDEAL PENCAMPURAN ASPAL

Jl. Prof. Dr. Sumantri Brojonegoro No. 1 Bandar Lampung

FOTO-FOTO DALAM PELAKSANAAN PENELITIAN

Nama: Andi Syah Putra SNPM: 0915011038Judul Skripsi: VARIASI JUMLAH TUMBUKAN TERHADAP
KARAKTERISTIK AC-WC GRADASI KASAR DENGAN
SUHU IDEAL PENCAMPURAN ASPAL


Penetrasi Bitumen

Titik Lembek Bitumen

Berat Jenis Aspal

Daktilitas Bitumen

Jl. Prof. Dr. Sumantri Brojonegoro No. 1 Bandar Lampung

Piknometer dan Kerucut Abram

Oven

Pemanas Aspal

Jl. Prof. Dr. Sumantri Brojonegoro No. 1 Bandar Lampung

Alat pemadat

Kompor dan Gas untuk pencampuran

Jl. Prof. Dr. Sumantri Brojonegoro No. 1 Bandar Lampung

Mold dan Ejecktor

Memasukkan campuran

Menusuk-nusuk campuran

LABORATORIUM INTI JALAN RAYA FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL UNIVERSITAS LAMPUNG Jl. Prof. Dr. Sumantri Brojonegoro No. 1 Bandar Lampung

Benda Uji

Merendam Benda Uji

Jl. Prof. Dr. Sumantri Brojonegoro No. 1 Bandar Lampung

Waterbath

Alat Uji Marshall

Lampiran D

VARIASI JUMLAH TUMBUKAN TERHADAP KARAKTERISTIK AC-WC GRADASI KASAR DENGAN SUHU IDEAL PENCAMPURAN ASPAL

KARTU ASISTENSI

Nama	: Andi Syah Putra S
NPM	:0915011038
Jurusan	: Teknik Sipil
Judul Skripsi	: VARIASI JUMLAH TUMBUKAN TERHADAP
	KARAKTERISTIK AC-WC GRADASI KASAR
	DENGAN SUHU OPTIMUM PENCAMPURAN
	ASPAL
Pembimbing I	: Ir. Priyo Pratomo, M.T.
Pembimbing II	: Ir. Syukur Sebayang, M.T.

No. Tanggal Keterangan Paraf Mylip hylps / Mus / Inthili mage Alin Min + preshla / poneletian // //2013 All Aminal fell

Bandar Lampung,

2013

Dosen Pembimbing I,

Ir. Priyo Pratomo, S.T. M.T. NIP. 195309261985031003

KARTU ASISTENSI

Nama	: Andi Syah Putra S
NPM	:0915011038
Jurusan	: Teknik Sipil
Judul Skripsi	: VARIASI JUMLAH TUMBUKAN TERHADAP KARAKTERISTIK LAPISAN ASPAL BETON (LASTON) DENGAN SUHU OPTIMUM ASPAL SAAT PENCAMPURAN
Pembimbing I	: Ir. Priyo Pratomo, M.T.
Pembimbing II	: Ir. Syukur Sebayang, M.T.

No.	Tanggal	Keterangan	Paraf
	-	hubits wis leveles	
	1	Cater belang leber geerpt.	1.4
	22/-20/2	- Puter justal ~ & tanks	Va
	//0 /	Sausah withit.	
	n	Ma Maria	1
	20/ -20/3	all then Propond	Mar
	10 1		1
			Y
		and the definition of the second method of the second se	

Bandar Lampung,

2013

Dosen Pembimbing II,

Ir. Syukur Sebayang, M.T. NIP. 195003091986031001

KARTU ASISTENSI

Nama	: Andi Syah Putra S
NPM	:0915011038
Jurusan	: Teknik Sipil
Judul Skripsi	: VARIASI JUMLAH TUMBUKAN TERHADAP
	KARAKTERISTIK <i>AC-WC</i> GRADASI KASAR DENGAN SUHU IDEAL PENCAMPURAN ASPAL
Pembimbing I	: Ir. Priyo Pratomo, M.T.
Pembimbing II	: Ir. Svukur Sebavang, M.T.

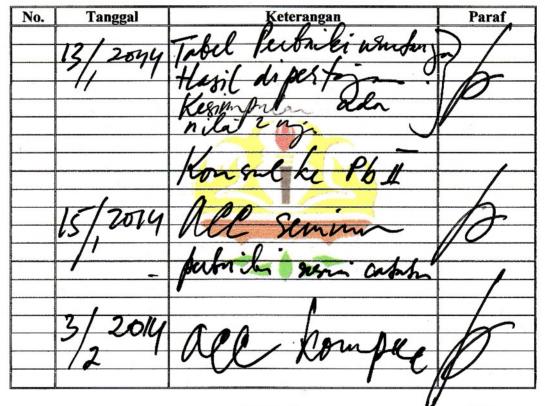
No.	Tanggal	Keterangan	Paraf
		Bust augling late hart	Reylit
		Λ . Λ	for
			tur
		Jeonger min	
			<i>[</i>
İ			

Bandar Lampung,

2014

Dosen Pembimbing II,

Ir. Syukur Sebayang, M.T. NIP. 195003091986031001


KARTU ASISTENSI

Nama		
NPM		
Jurusan		
Judul Skrip	si	

: Andi Syah Putra S : 0915011038 : Teknik Sipil : VARIASI JUMLAH TUMBUKAN TERHADAP KARAKTERISTIK *AC-WC* GRADASI KASAR DENGAN SUHU IDEAL PENCAMPURAN ASPAL : Ir. Priyo Pratomo, M.T.

Pembimbing I Pembimbing II

: Ir. Syukur Sebayang, M.T.

Bandar Lampung,

2014

Dosen Pembimbing I,

Ir. Priyo Pratomo, M.T. NIP. 195309261985031003

KARTU ASISTENSI

Nama	: Andi Syah Putra S
NPM	: 0915011038
Jurusan	: Teknik Sipil
Judul Skripsi	: VARIASI JUMLAH TUMBUKAN TERHADAP
-	KARAKTERISTIK AC-WC GRADASI KASAR
	DENGAN SUHU IDEAL PENCAMPURAN ASPAL
Pembimbing I	: Ir. Priyo Pratomo, M.T.
Pembimbing II	: Ir. Svukur Sebavang, M.T.

No.	Tanggal	Keterangan	Paraf
		Arbute tempules serves	
		days types fauelit	
	y/27	Old Aberro Perton	. F. 1
	12	- Catro 200 Conter	- Mar
		have	
		alpi	
	l	& Peraugh Thein Kongroe	for
			Česta do segundo de la processione de la compositione de la compositione de la compositione de la compositione

Bandar Lampung,

2014

Dosen Pembimbing II,

Ir. Syukur Sebayang, M.T. NIP. 195003091986031001