ABSTRACT
 FACTORIZATION IN IDEAL RING QUADRATIC $\mathbb{Q} \sqrt{d}$

BY

M. CHALID FANSURY

For a square free integer d other than 1
Let,

$$
K=Q[\sqrt{d}]=\{x+y \sqrt{d} ; x, y \in Q\}
$$

Next, K is called quadratic field and it has two variable set of rational number Q , the form number of K is,

$$
\{a+b \sqrt{d} ; a, b \in Z\} \text { if } d \not \equiv 1 \bmod 4
$$

and

$$
\left\{a+b\left(\frac{1+\sqrt{d}}{2}\right) ; a, b \in Z\right\} \text { if } d \equiv 1 \bmod 4
$$

For $\alpha \in K$, set of $\operatorname{Tr}(\alpha)=\alpha+\bar{\alpha}$ and $N(\alpha)=\alpha \bar{\alpha}$ itself is called trace and norm from α. Every ideal in \mathcal{O}_{K} that built by element Z is principal ideal. If an ideal in \mathcal{O}_{K} has 1 element from Z that relatively prime, then that ideal is unit ideal. Then let (2) ideal in \mathcal{O}_{K} with $\alpha \in \mathcal{O}_{K}$ and ideal (α) can be factorized.

Key Words : square free, principal ideal, unit ideal, trace, norm, irreducible, ring quadratic.

