LAMPIRAN A

Jumlah canaan	0,5 detik	1 detik	2 detik	
Juman sensor	Throughput(KBps)	Throughput (KBps)	Throughput (KBps)	
4	0	0	0	
16	0.124	0.065	0.037	
25	0.063	0.032	0.018	
49	1.794	1.122	0.625	
64	2.475	1.298	0.696	
100	2.805	1.864	0.850	
144	1.708	1.413	0.668	

Tabel 1. Tabel rata-rata *throughput* dengan ketinggian 0-5 meter untuk interval penyensoran 0,5 detik, 1 detik dan 2 detik

Tabel 2. Tabel rata-rata *delay* dengan ketinggian 0-5 meter untuk interval penyensoran 0,5 detik, 1 detik dan 2 detik

Jumlah concor	0.5 detik	1 detik	2 detik	
Juinan sensor	Delay (ms)	Delay (ms)	Delay (ms)	
4	0	0	0	
16	6	7	11	
25	6	7	9	
49	61	204	166	
64	64	178	129	
100	129	139	115	
144	266	251	292	

Jumlah aanaan	0.5 detik	1 detik	2 detik	
Julinali sensor	Jitter (ms)	Jitter (ms)	Jitter (ms)	
4	0	0	0	
16	1	1	1	
25	1	1	1	
49	1	1	1	
64	1	1	1	
100	0.876	0.950	1	
144	1	1	1	

Tabel 3. Tabel rata-rata *jitter* dengan ketinggian 0-5 meter untuk interval penyensoran 0,5 detik, 1 detik dan 2 detik

Tabel 4. Tabel rata-rata *packet loss* dengan ketinggian 0-5 meter untuk interval penyensoran 0,5 detik, 1 detik dan 2 detik

Jumlah concor	0.5 detik	1 detik	2 detik
Juman sensor	Packet loss (%)	Packet loss (%)	Packet loss (%)
4	100	100	100
16	81	87	87.5
25	96	95	96
49	40	27	29
64	37	36	40
100	54	40.4	52.5
144	80	73	74

Tabel 5. Tabel rata-rata *throughput* dengan ketinggian 0-10 meter untuk interval penyensoran 0,5 detik, 1 detik dan 2 detik

Jumlah sansar	0.5 detik	1 detik	2 detik	
Juman sensor	Throughput (KBps)	Throughput (KBps)	Throughput (KBps)	
4	0	0	0	
16	0.121	0.067	0.038	
25	0.062	0.034	0.019	
49	1.953	1.176	0.640	
64	1.931	1.410	0.800	
100	2.119	1.656	1.044	
144	1.583	1.204	0.394	

Tabel 6. Tabel rata-rata *delay* dengan ketinggian 0-10 meter untuk interval penyensoran 0,5 detik, 1 detik dan 2 detik

Jumlah sensor	0.5 detik	1 detik	2 detik
	Delay (ms)	Delay (ms)	Delay (ms)
4	0	0	0
16	6	7	9
25	6	6	8
49	53	86	181
64	61	92	177
100	150	162	203
144	270	262	359

Tabel 7. Tabel rata-rata *jitter* dengan ketinggian 0-10 meter untuk interval penyensoran 0,5 detik, 1 detik dan 2 detik

Jumlah sensor	0.5 detik	1 detik	2 detik	
	Jitter (ms)	Jitter (ms)	Jitter (ms)	
4	0	0	0	
16	1.003	1.003	1.003	
25	1.001	1.001	1.001	
49	0.856	0.856	0.856	
64	0.732	0.732	0.732	
100	0.041	0.041	0.041	
144	0.025	0.025	0.025	

Tabel 8. Tabel rata-rata *packet loss* dengan ketinggian 0-10 meter untuk interval penyensoran 0,5 detik, 1 detik dan 2 detik

Jumlah aanaan	0.5 detik	1 detik	2 detik	
Juman sensor	Packet loss (%)	Packet loss (%)	Packet loss (%)	
4	100	99.40	100	
16	87	87	87.50	
25	95.70	95.70	96	
49	24.70	24.70	27	
64	30.50	30.50	31	
100	46	47	41.75	
144	82	73	67	

Jumlah	Rata-rata Throughput (KBps)									
nodal										
sensor		0 meter			0-5 meter			0-10 Ineter		
	0.5detik	1 detik	2 detik	0.5 detik	1 detik	2 detik	0.5 detik	1 detik	2 detik	
4	0	0	0	0	0	0	0	0	0	
16	0	0	0	0.124	0.065	0.037	0.121	0.067	0.038	
25	0.065	0.019	0.032	0.063	0.032	0.018	0.062	0.034	0.019	
49	1.926	0.688	1.322	1.794	1.122	0.625	1.953	1.176	0.640	
64	2.626	0.946	1.578	2.475	1.298	0.696	1.931	1.410	0.800	
100	2.686	1.161	2.484	2.805	1.864	0.850	2.119	1.656	1.044	
144	-	-	-	1.708	1.413	0.668	1.583	1.204	0.394	

Tabel 9. Tabel perbandingan rata-rata *throughput* dengan variasi ketinggian nodal sensor dan interval penyensoran 0.5 detik, 1 detik dan 2 detik

Tabel 10. Tabel perbandingan rata-rata *delay* dengan variasi ketinggian nodal sensor dan interval penyensoran 0.5 detik, 1 detik dan 2 detik

Jumlah	Rata-rata Delay (ms)								
nodal									
sensor	0 meter				0-5 meter			0-10 meter	
	0.5detik	1 detik	2 detik	0.5 detik	1 detik	2 detik	0.5 detik	1 detik	2 detik
4	0	0	0	0	0	0	0	0	0
16	0	0	0	6	7	11	6	7	9
25	6	10	7	6	7	9	6	6	8
49	88	177	126	61	204	166	53	86	181
64	63	116	119	64	178	129	61	92	177
100	149	203	96	129	139	115	150	162	203
144	-	-	-	266	251	292	270	262	359

Jumlah	Rata-rata <i>Jitter</i> (ms)								
nodal									
sensor		0 meter			0-5 meter			0-10 meter	
sensor									
	0.5detik	1 detik	2 detik	0.5 detik	1 detik	2 detik	0.5 detik	1 detik	2 detik
4	0	0	0	0	0	0	0	0	0
16	0	0	0	1	1	1	1.003	1.003	1.003
25	0.002	0.006	0.003	1	1	1	1.001	1.001	1.001
49	0.141	0.294	0.205	1	1	1	0.856	0.856	0.856
64	0.057	0.164	0.209	1	1	1	0.732	0.732	0.732
100	0.220	0.336	0.128	0.876	0.950	1	0.041	0.041	0.041
144	-	-	-	1	1	1	0.025	0.025	0.025

Tabel 11. Tabel perbandingan rata-rata *jitter* dengan variasi ketinggian nodal sensor dan interval penyensoran 0.5 detik, 1 detik dan 2 detik

Tabel 12. Tabel perbandingan rata-rata *packet loss* dengan variasi ketinggian nodal sensor dan interval penyensoran 0.5 detik, 1 detik dan 2 detik

Jumlah	Rata-rata Packet Loss (%)									
nodal										
sensor		0 meter			0-5 meter			0-10 meter		
5011501	0.5detik	1 detik	2 detik	0.5 detik	1 detik	2 detik	0.5 detik	1 detik	2 detik	
4	100	100	100	100	100	100	100	99.40	100	
16	100	100	100	81	87	87.50	87	87	87.50	
25	95.66	96.41	96.00	96	95	96	95.70	95.70	96	
49	35.47	15.49	23.98	40	27	29	24.70	24.70	27	
64	33.16	21.93	18.36	37	36	40	30.50	30.50	31	
100	56.13	20.74	35.25	54	40.40	52.50	46	47	41.75	
144	0	0	0	80	73	74	82	73	67	

LAMPIRAN B

Instalasi NS-2 dengan Tambahan Modul Mannasim

Perangkat lunak yang digunakan untuk simulasi adalah *Network Simulator* versi 2 (NS-2) dengan penambahan modul Mannasim sebagai pendukung bagi NS-2 untuk melakukan simulasi JSN. Tahapan-tahapan untuk menyiapkan penginstalan perangkat lunak simulasi ini adalah :

 Melakukan pengunduhan perangkat lunak NS-2 dan modul Mannasim. Perangkat lunak NS-2 dan perangkat lunak Mannasim masing-masing dapat diunduh dari : <u>http://sourceforge.net/projects/nsnam/files/allinone/ns-allinone-2.34/ns-2.34/ns-allinone-2.34/ns-allinone-2.34/ns-allinone-2.34/ns-allinone-2.34/ns-2.34/ns-2.34/ns-2.34/ns-2.34/ns-2.34/ns-2.34/ns-2.34/ns-2.34/ns-2.34/</u>

http://www.mannasim.dcc.ufmg.br/download/mannasim-patch-ns2.34.tar.gz.

- Setelah perangkat lunak tersebut diunduh, tahap selanjutnya adalah pembuatan direktori instalasi NS-2. Direktori instalasi NS-2 dibuat didalam direktori *home* dengan nama *simulasi*. Agar dapat meudahkan dalam proses instalasi perangkat lunak NS-2 cd /home/simulasi
- 3. Meletakkan file ns-allinone-2.34.tar.gz pada direktori *simulasi* yang telah dibuat tersebut.
- 4. Melakukan ekstraksi dari file kompresi ns-allinone-2.34.tar.gz. ekstraksi dapat dilakuakan dengan perintah :

```
cd /home/simulation/
```

tar -zxvf ns-allinone-2.34.tar.gz

perintah pertama merupakan perintah untuk meletakkan terminal konsole pada direktori penyimpanan file ns-allinone-2.34.tar.gz. Perintah kedua merupakan perintah untuk ekstraksi file ns-allinone-2.34.tar.gz. Setalah ekstraksi selesai maka akan terbentuk folder ns-allinone-2.34 yang berisikan kode sumber instalasi terpadu perangkat lunak ns-2 yang akan digunakan.

- 5. Meletakkan file perangkat lunak mannasim-patch-ns34.tar.gz di dalam folder nsallinone-2.34.
- Melakukan ekstraksi terhadap file mannasim-patch-ns229.tar.gz dengan perintah : cd /root/simulation/ns-allinone-2.34/

tar -xzvf mannasim-patch-ns234.tar.gz

perintah pertama merupakan perintah untuk memposisikan terminal konsole pada tempat peletakan file kompresi mannasim-patch-ns2.34.tar.gz. Perintah kedua merupakan perintah untuk mengekstraksi file mannasim-patch-ns2.34.tar.gz. Setelah ekstraksi dilakukan, akan terciptakan file mannasim-patch.diff pada folder yang sama.

- 7. Memodifikasi dan memberikan beberapa modul tambahan Mannasim dan NS-2. Modifikasi dan penambahan ini dilakukan agar NS-2 dapat melakukan simulasi jaringan sensor nirkabel (JSN). Berikut ini cara memodifikasi pada maingg-masing modul.
 - Masuk pada direktori /home/simulasi/ns-allinone-2.34./otcl 1.13/configure.kemudian buka file configure tersebut dan melakukan perubahan pada bagian berikut ini :

Modul awal Linux*) SHLIB_CFLAGS="-fpic" SHLIB_LD="ld -shared"

```
SHLIB_SUFFIX=".so"
DL_LIBS="-ldl"
SHLD_FLAGS=""
Kemudian diubah menjadi
Linux*)
SHLIB_CFLAGS="-fpic"
SHLIB_LD="ld -shared"
SHLIB_SUFFIX=".so"
DL_LIBS="-ldl"
SHLD FLAGS=""
```

b. Masuk pada direktori /home/simulasi/ns-allinone-2.34/tools/ranvar.cc. kemudian membuka file ranvar.cc tersebut dan melakukan perubahan pada baris ke 219 berikut ini:

```
Modul awal
return GammaRandomVariable::GammaRandomVariable(1.0 + alpha_,
beta_).value() * pow (u, 1.0 / alpha_);
```

kemudian diubah menjadi

```
return GammaRandomVariable(1.0 + alpha_, beta_).value() * pow
(u, 1.0 / alpha_);
```

c. Masuk pada direktori /home/simulasi/ns-allinone-2.34/mac/mac-802_11Ext.h. kemudian membuka file tersebut dan melakukan penambahan pada line 65 seperti berikut ini:

#include "cstddef"

d. Masuk pada direktori /home/simulasi/ns-allinone-2.34/mobile/nakagami.cc. kemudian membuka file tersebut dan melakukan pada bagian merikut ini:

```
Modul awal
if (int_m == m) {
resultPower = ErlangRandomVariable::ErlangRandomVariable(Pr/m,
int_m).value();
} else {
resultPower = GammaRandomVariable::GammaRandomVariable(m,
Pr/m).value();
```

```
}
return resultPower;
}
Kemudian diubah menjadi
if (int_m == m) {
resultPower = ErlangRandomVariable(Pr/m, int_m).value();
} else {
resultPower = GammaRandomVariable(m, Pr/m).value();
}
return resultPower;
}
```

e. Masuk pada direktori /home/simulasi/ns-allinone-

2.34/mannasim/onDemandData.cc. kemudian membuka file tersebut dan melakukan perubahan seperti berikut ini:

```
OnDemandData :: OnDemandData()
{
    /// REAL request type is default.
    OnDemandData::OnDemandData(REAL);
}
```

f. Masuk pada direktori /home/simulasi/ns-allinone-2.34/linkstate/ls.h. kemudian mebuka file tersebut dan melakukan perubahan pada line 137 seperti berikut ini:

```
Modul awal
void eraseAll() { erase(baseMap::begin(), baseMap::end()); }
```

```
Kemudian diubah menjadi:
void eraseAll() { this->erase(baseMap::begin(),
baseMap::end()); }
```

- g. Setelah modul-modul tersebut diubah, maka langkah selanjutnya adalah menyimpan perubahan tersebut dengan cara sudo apt-get install build-essential autoconf automake libxmu-dev pada terminal konsol.
- 8. Setelah semua modifikasi dilakukan, langkah selanjutnya adalah melakukan instalasi perangkat lunak ns-2. instalasi dapat dilakukan dengan menggunakan perintah : cd /home/simulation/ns-allinone-2.34/
- 9. Jika proses instalasi berhasil, maka akan muncul beberapa parameter pada terminal konsole sebagai berikut :

LD_LIBRARY_PATH

OTCL_LIB=/home/novia/simulasi/ns-allinone-2.34/otcl-1.13

NS2_LIB=/home/novia/simulasi/ns-allinone-2.34/lib

X11_LIB=/usr/X11R6/lib

USR_LOCAL_LIB=/usr/local/lib

```
export
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$OTCL_LIB:$NS2_LIB:$X11_LI
B:$USR_LOCAL_LIB
```

TCL_LIBRARY

TCL_LIB=/home/novia/simulasi/ns-allinone-2.34/tcl8.4.18/library

USR_LIB=/usr/lib

export TCL_LIBRARY=\$TCL_LIB:\$USR_LIB

PATH

XGRAPH=/home/novia/simulasi/ns-allinone-2.34/bin:/home/novia/simulasi/ns-allinone2.34/tcl8.4.18/unix:/home/novia/simulasi//ns-allinone-2.34/tk8.4.18/unix NS=/home/novia/simulasi//ns-allinone-2.34/ns-2.34/ NAM=/home/novia/simulasi/ns-allinone-2.34/nam-1.14/ PATH=\$PATH:\$XGRAPH:\$NS:\$NAM

10. Setelah proses instalasi berhasil dilakukan, langkas selanjutnya adalah melakukan pengaturan pada *environment variable* untuk NS-2. hal ini dapat dilakukan dengan menggunakan perintah :

cd

```
kwrite ~/.bashrc
```

perintah pertama merupakan perintah untuk meletakkan posisi terminal konsole pada *home directory*. Perintah kedua merupakan perintah untuk membuka file .bashrc

- 11. setelah file .bashrc terbuka maka masukkan parameter berikut pada file tersebut ini:
- # LD_LIBRARY_PATH

OTCL_LIB=/home/novia/simulasi/ns-allinone-2.34/otcl-1.13

NS2_LIB=/home/novia/simulasi/ns-allinone-2.34/lib

X11_LIB=/usr/X11R6/lib

USR_LOCAL_LIB=/usr/local/lib

export
LD_LIBRARY_PATH=\$LD_LIBRARY_PATH:\$OTCL_LIB:\$NS2_LIB:\$X11_LI
B:\$USR_LOCAL_LIB

TCL_LIBRARY

```
TCL_LIB=/home/novia/simulasi/ns-allinone-
2.34/tcl8.4.18/library
```

USR_LIB=/usr/lib

export TCL_LIBRARY=\$TCL_LIB:\$USR_LIB

PATH

```
XGRAPH=/home/novia/simulasi/ns-allinone-
2.34/bin:/home/novia/simulasi/ns-allinone-
2.34/tcl8.4.18/unix:/home/novia/simulasi//ns-allinone-
2.34/tk8.4.18/unix
NS=/home/novia/simulasi//ns-allinone-2.34/ns-2.34/
NAM=/home/novia/simulasi/ns-allinone-2.34/nam-1.14/
PATH=$PATH:$XGRAPH:$NS:$NAM
```

parameter-paramter tersebut hanya berfungsi tepat jika lokasi instalasi ns-2 adalah /homet/simulasi/ dan versi ns-2 yang digunakan adalah ns-allinone-2.34. Jika instalasi dilakukan pada direktori yang berbeda maka lokasi /home/simulasi/ pada parameter-parameter diatas diganti dengan lokasi penginstalan ns-2.

- 12. Melakukan implementasi isi dari file .bashrc (posisi terminal konsole harus berada pada home directory), hal ini dapat dilakukan dengan perintah : source ~/.bashrc
- 13. Setelah seluruh langkah diatas berhasil dilakukan, maka proses instalasi telah berhasil dilakukan. Untuk menjalankan simulator NS-2 dapat dilakuakan dengan mengetikkan perintah berikut pada terminal konsole:
 - ns

perintah tersebut dapat dimasukkan dimana saja posisi terminal konsole berada. Jika keluaran dari perintah tersebut adalah tanda "%" (tanpa tanda kutip), maka proses instalasi ns-2 berhasil dan ns-2 siap untuk digunakan. gunakan perintah exit untuk keluar dari mode tersebut. Jika timbul pesan kesalahan sebgai keluaran dari perintah diatas, maka dapat dilakukan *restart* pada komputer untuk memperoleh efek perubahan setelah instalsi ns-2. Setelah sistem operasi siap digunakan, dapat dituliskan ulang perintah ns untuk menjalankan NS-2. Jika tetap tidak muncul keluaran "%" dimungkinkan terjadi kesalahan pada proses instalasi ns-2 dan harus dilakukan peninjauan kembali.

14. Untuk menjalankan simulasi dengan ns-2 dapat dilakukan dengan menjalankan perintah berikut melalui terminal console :

ns < fileSimulasiNs.tcl >

LAMPIRAN C

Format trace file simulasi menggunakan NS-2 pada Jaringan Sensor Nirkabel.

s -t 0.039634818 -Hs 14 -Hd -2 -Ni 14 -Nx 339.63 -Ny 306.80 -Nz 0.00 -Ne 100.000000 -NI AGT -Nw --- -Ma 0 -Md e000000 -Ms 0 -Mt 0 -Is 14.0 -Id -1.0 -It tcp -Il 1 -If 0 -Ii 0 -Iv 32 -Pn tcp -Ps 0 -Pa 0 -Pf 0 -Po 0.

Keterangan :

1.Event Type

- s : send
- r : receive
- d : drop
- f : forward
- 2. General Tag
 - -t : time
- 3. Node Property Tags
 - -Ni : node id
 - -Nx : coordinate node X
 - -Ny : coordinate node Y
 - -Nz : coordinate node Z
 - -Ne : node energy level
 - -NI : trace file. AGT, RTR, MAC
 - -Nw : reason for the node
- 4. Packet information in level IP
 - -ls : source address, source port number

- -ld : destination port number
- -lt : packet type
- -il : packet size
- -lf : flow id
- -li : iniqui id
- -lv : ttl value

5. Next hop info

- -Hs : Id for this node
- -Hd : Id next hope forward node

6. Packet info pada level MAC

- -Ma : Duration
- -Md : destination Ethernet address
- -Ms : source Ethernet address
- -Mt : Ethernet Type
- 7. Packet info pada level aplikasi

-P arp

-Po : ARP request /Reply

-Pm	: src mac address
-Ps	: src address
-Pa	: destination mac address
-Pd	: destination address

-P cbr

-Pi	: sequence number
-Pf	: how many times this packet forwarded
-Po	: optimal number of forward

-p tcp

-Ps	: sequency number
-Pa	: ack number
-Pf	: how many times this packet forwarded
-Po	: optimal number forwarded