PERENCANAAN STRUKTUR APARTEMEN 4 LANTAI DENGAN MENGGUNAKAN MATERIAL KAYU

(Skripsi)

Oleh DEVI RAMONA SAGALA

FAKULTAS TEKNIK UNIVERSITAS LAMPUNG BANDAR LAMPUNG 2018

ABSTRAK

PERENCANAAN STUKTUR APARTEMEN 4 LANTAI DENGAN MENGGUNAKAN MATERIAL KAYU

Oleh

DEVI RAMONA SAGALA

NPM: 1315011031

(Fakultas Teknik, Jurusan Teknik Sipil)

Semakin pesatnya perkembangan jumlah penduduk di Indonesia mengakibatkan meningkatnya pembangunan perumahan ataupun apartemen untuk memenuhi kebutuhan tempat tinggal masyarakat Indonesia. Kayu sampai saat ini masih banyak digunakan sebagai bahan konstruksi bangunan karena sifat keunggulan utama yang dimiliki kayu: kekayaan alam (natural resources) yang tidak akan pernah habis (dapat diperbaharui), mudah dalam pemrosesan dan pengerjaan, lebih tahan terhadap gempa, memiliki kuat tarik dan kuat tekan yang tinggi, serta memiliki sifat -sifat spesifik lebih unggul yang tidak dimiliki oleh bahan konstruksi lain

Dalam penelitian yang dilakukan, perencanaan struktur apartemen 4 lantai dengan menggunakan material kayu ini dihitung elemen-elemen strukturnya seperti pelat, *joist*, balok, kolom, dan sambungan dengan memperhatikan efek gempa statik ekivalen terhadap elemen struktur pada daerah yang direncanakan.

Dengan bantuan program aplikasi SAP2000 dan *Microsoft Excel*, maka diperoleh hasil penelitian sebagai berikut: ketebalan pelat = 2 cm; *joist* = 10/15 cm; balok arah-x = 10/25 cm; balok arah-y = 10/15 cm; kolom lantai 1-4 = 20/20 cm; sambungan balok ke kolom menggunakan 4 baut berdiameter 19 mm; sambungan perpanjangan balok menggunakan 4 baut berdiameter 19 mm; sambungan perpanjangan kolom menggunakan 4 baut berdiameter 15,9 mm

Kata kunci : Apartemen, material kayu, SAP2000, Microsoft Excel, elemen struktur

ABSTRACT

THE DESIGN OF 4 FLOORS APARTMENT USING WOOD MATERIAL

By

DEVI RAMONA SAGALA

NPM: 1315011031

(Faculty of Engineering, Departement of Civil Engineering)

The rapid growth of the population in Indonesia resulted in increased housing or apartment construction to meet the needs of Indonesian residents. Wood is still widely used as a building construction material because of the main properties of wood: as natural resources that will never run out (renewable), easy in processing and workmanship, more resistant to earthquakes, has high tensile strength and compressive strength, and possessing superior specific properties not possessed by other construction materials.

In this research the design 4 floors apartment using wood material was calculated the elements of the structure such as plate, joist, beam, column, and joint by considering the effect of static equivalent earthquake load on the structural elements in the planned region.

By using SAP2000 and Microsoft Excel as tools, the following research results are obtained: plate thickness = 2 cm; joist = 10/15 cm; beam x-direction = 10/25 cm; beam y-direction = 10/15 cm; column (1-4)th floors = 20/20 cm; beam-column joint using 4 bolts, diameter 19 mm; beam extension connection using 4 bolts, diameter 19 mm; and column extension connection using 4 bolts, diameter 15,9 mm.

Keywords: Apartment, wood material, SAP2000, Microsoft Excel, structural elements

PERENCANAAN STRUKTUR APARTEMEN 4 LANTAI DENGAN MENGGUNAKAN MATERIAL KAYU

Oleh

Devi Ramona Sagala

Skripsi

Sebagai Salah Satu Syarat untuk Mencapai Gelar **SARJANA TEKNIK**

pada

Jurusan Teknik Sipil Fakultas Teknik Universitas Lampung

FAKULTAS TEKNIK UNIVERSITAS LAMPUNG BANDAR LAMPUNG 2018 Judul Skripsi

: PERENCANAAN STRUKTUR APARTEMEN

4 LANTAI DENGAN MENGGUNAKAN

MATERIAL KAYU

Nama Mahasiswa

: Devi Ramona Sagala

Nomor Pokok Mahasiswa: 1315011031

Program Studi

: Teknik Sipil

Fakultas

: Teknik

MENYETUJUI

1. Komisi Pembimbing

4

Bayzoni, S.T., M.T. NIP 19730514 200003 1 001 Ir. Andi Kusnadi, M.T.

NIP 19680509 199402 1 001

2. Ketua Jurusan Teknik Sipil

Gatot Eko Susilo, S.T., M.Sc., Ph.D. NIP 19700915 199503 1 006

MENGESAHKAN

1. Tim Penguji

Ketua

: Bayzoni, S.T., M.T.

4

Sekretaris

: Ir. Andi Kusnadi, M.T.

(Jul

Penguji

Bukan Pembimbing : Dr. Eng. Ratna Widyawati, S.T., M.T.

fre

ekan Fakultas Teknik

Prof. Dr. Suharno, M.Sc. NIP 19620717 198703 1 002

Tanggal Lulus Ujian Skripsi: 02 Juli 2018

LEMBAR PERNYATAAN

Dengan ini menyatakan dengan sebenarnya bahwa:

- 1. Skripsi dengan judul Perencanaan Struktur Apartemen 4 Lantai dengan Menggunakan Material Kayu adalah karya saya sendiri dan saya tidak melakukan penjiplakan atau pengutipan atas karya penulis lain dengan cara yang tidak sesuai tata etika ilmiah yang berlaku dalam masyarakat akademik atau yang disebut plagiarisme.
- Hak intelektual atas karya ilmiah ini diserahkan sepenuhnya kepada Universitas Lampung.

Atas pernyataan ini, apabila di kemudian hari ternyata ditemukan adanya ketidakbenaran, saya bersedia menanggung akibat dan sanksi yang diberikan kepada saya dan saya sanggup dituntut sesuai hukum yang berlaku.

Bandar Lampung,

2018

Pembuat Pernyataan

Devi Ramona Sagala

RIWAYAT HIDUP

Penulis dilahirkan di Sidikalang pada tanggal 17 April 1995, sebagai anak Pertama dari 7 (tujuh) bersaudara pasangan Alm. Bapak Armulin Sagala dan Ibu Sonaga Gokma Sihotang.

Pendidikan Sekolah Dasar (SD) diselesaikan di SD Negeri

101901 Lubuk Pakam, Deli Serdang pada tahun 2007, Sekolah Menengah Pertama (SMP) diselesaikan pada tahun 2009 di SMP Negeri 1 Lubuk Pakam dan Sekolah Menengah Atas (SMA) diselesaikan di SMA Negeri 1 Lubuk Pakam pada tahun 2013. Penulis terdaftar sebagai mahasiswa Jurusan Teknik Sipil Fakultas Teknik Universitas Lampung pada tahun 2013 melalui jalur Seleksi Bersama Masuk Perguruan Tinggi Negeri (SBMPTN) Tes Tertulis.

Penulis telah melakukan Kerja Praktek (KP) pada Proyek Pembangunan Apartemen Pondok Indah Residen di Jakarta Selatan selama 3 bulan. Penulis juga telah mengikuti Kuliah Kerja Nyata (KKN) di Kampung Surabaya Baru, Kecamatan Bandar Surabaya, Kabupaten Lampung Tengah selama 40 hari pada periode Januari-Februari 2017.

Penulis mengambil skripsi dengan judul Perencanaan Struktur Apartemen 4 Lantai dengan Menggunakan Material Kayu. Selama menjadi mahasiswa penulis aktif dalam Himpunan Mahasiswa Teknik Sipil (HIMATEKS) sebagai anggota Bidang Dapertemen Advokasi pada periode tahun 2014-2015 dan sebagai anggota FKMK-FT (Forum Komunikasi Mahasiswa Kristen Fakultas Teknik) pada periode tahun 2013-2016.

PERSEMBAHAN

Puji Syukur kupanjatkan kepada Allah Bapa, Putera, dan Roh kudus yang telah memberikan berkat dan anugerah-Nya kepadaku.

Sebagai perwujudan rasa kasih sayang, cinta, dan hormatku secara tulus, Aku mempersembahkan karya ini kepada: Mamaku tercinta Sonaga Gokma Sihotang, adik-adikku yang kukasihi, keluarga besar yang telah memberikan dukungan dan doa, serta harapan demi keberhasilanku kini dan kelak.

Terimakasih kuucapkan pada Mama yang rajin nelpon dan nanyain perkembangan skripsiku. Mama yang selalu mendukungku. Tiap kali ditelpon nanyain skripsi batinku selalu tertampar, tercabik-cabik, hatiku bagai terluka lalu dikasih perasan jeruk nipis, rasanya perih dan setelahnya langsung semangat berkobar-kobar mengerjakan skripsi.

Terimakasih juga pada Angela Chikita dan Angelina Dhini yang udah jadi partner Pejuang skripsiku. Teman Suka duka dalam menjalani penatnya skripsi ini. Kalian partner penyemangatku dan banyak bantu-bantu. Saat aku bingung skripsi kalianlah teman buat tanya-tanya.

Terimakasih juga pada Andreas Radja yang jadi partner skripsi dengan sukarela yang mau bantu-bantu dalam revisi. Makasih juga doa, dukungan, dan semangat yang sudah diberikan.

Terimakasih juga pada Theresia, Parsaulian, Andre Jonathan, Oldebes Temy, dan juga Tipo yang jadi partner kuliah, partner main, partner yang ada dan bantu-bantu kalau aku lagi susah dan butuh bantuan. Good People kalian teman rasa keluarga di Lampung.

Terimakasih pada teman-teman tercinta Teknik Sipil Universitas Lampung Angkatan 2013 yang banyak membantu selama aku ada di Universitas Lampung ini. Sukses buat kita semua kedepannya.

MOTTO

Lihat, Aku telah melukiskan engkau di telapak tanganKu; tembok-tembokmu tetap di ruang mataKu. (Yesaya 49:16)

Iman adalah dasar dari segala sesuatu yang kita harapkan dan bukti dari segala sesuatu yang tidak kita lihat. (Ibrani 11:1)

la membuat segala sesuatu indah pada waktunya, bahkan la memberikan kekekalan dalam hati mereka. Tetapi manusia tidak dapat menyelami pekerjaan yang dilakukan Allah dari awal sampai akhir. (Pengkhotbah 3:11)

Hai pemalas, pergilah kepada semut, perhatikanlah lakunya dan jadilah bijak: biarpun tidak ada pemimpinnya, pengaturnya atau penguasanya, ia menyediakan rotinya di musim panas, dan mengumpulkan makanannya pada waktu panen. Hai pemalas, berapa lama lagi engkau berbaring? Bilakah engkau akan bangun dari tidurmu? (Amsal 6:6-9)

SANWACANA

Puji syukur penulis panjatkan ke hadirat Tuhan Yang Maha Esa atas berkat dan karunia-Nya penulis dapat menyelesaikan skripsi dengan judul Perencanaan Struktur Apartemen 4 Lantai dengan Menggunakan Material Kayu. Skripsi ini disusun dalam rangka memenuhi salah satu syarat untuk memperoleh gelar Sarjana Teknik (S.T.) pada Fakultas Teknik Universitas Lampung.

Atas terselesaikannya skripsi ini penulis mengucapkan terima kasih kepada:

- Bapak Prof. Dr. Suharno, M.Sc., selaku Dekan Fakultas Teknik Universitas Lampung.
- 2. Bapak Gatot Eko Susilo, S.T., M.Sc., Ph.D., selaku Ketua Jurusan Teknik Sipil Fakultas Teknik Universitas Lampung.
- Bapak Bayzoni, S.T., M.T., selaku Dosen Pembimbing 1 skripsi penulis yang selalu memberikan bimbingan, saran, nasehat dan semangat dalam proses pengerjaan skripsi.
- 4. Bapak Ir. Andi Kusnadi, M.T., selaku Dosen Pembimbing 2 skripsi penulis yang selalu memberikan bimbingan, saran, nasehat dan semangat dalam proses pengerjaan skripsi.
- Ibu Dr. Eng. Ratna Widyawati, S.T., M.T., selaku Dosen Penguji skripsi penulis yang telah memberikan saran dan kritik dalam proses penyempurnaan skripsi.

6. Bapak Ir. Nur Arifaini, M.S., selaku dosen Pembimbing Akademik untuk waktu konsultasi dan nasehatnya.

7. Seluruh Bapak dan Ibu Dosen Jurusan Teknik Sipil Universitas Lampung atas ilmu dan pembelajaran yang telah diberikan selama masa perkuliahan.

8. Keluarga di rumah terutama Mama dan adik-adik untuk semangat dan dukungan yang diberikan.

9. Teman-teman dekatku Good People, keluarga baruku, rekan seperjuanganku, Teknik Sipil Universitas Lampung Angkatan 2013, seluruh kakak-kakak, dan adik-adik Teknik Sipil yang telah mendukung dalam penyelesaian skripsi ini.

Penulis menyadari bahwa skripsi ini masih memiliki banyak kekurangan dan keterbatasan. Oleh karena itu, saran dan kritik yang membangun sangat diharapkan. Akhir kata semoga skripsi ini dapat bermanfaat bagi pembaca dan semoga Tuhan memberkati kita semua.

Bandar Lampung, 2018

Penulis

Devi Ramona Sagala

DAFTAR ISI

		Halar	nan
KA	ΤA	PENGANTAR	i
DA	FT.	AR ISI	ii
DA	FT.	AR TABEL	iv
DA	FT.	AR GAMBAR	v
I.	PE	NDAHULUAN	
	A.	Latar Belakang	1
	B.	Rumusan Masalah	2
	C.	Tujuan Penelitian	3
	D.	Batasan Masalah	3
	E.	Manfaat Penelitian	4
II.	TI	NJAUAN PUSTAKA	
	A.	Apartemen	5
		1. Definisi Apartemen	5
		2. Klarifikasi dan Jenis Apartemen	7
	B.	Kayu	9
		1. Umum	9
		2. Jenis Kayu dan Berat Jenis Kayu	10
	C.	Perencanaan Batang Tekan	11
	D.	Perencanaan Batang Lentur	18
		1. Persamaan Desain Lentur-Lentur	19
		2. Komponen Struktur Lentur-Geser	23
	E.	Pembebanan Struktur	32

		1. Kombinasi Pembebanan Struktur	34
		2. Jenis-Jenis Pembebanan	35
	F.	Sambungan Kayu	48
III	. MI	ETODOLOGI PENELITIAN	
	A.	Pendekatan penelitian	58
	B.	Data Penelitian	58
	C.	Prosedur Penelitian	61
	D.	Kerangka Penelitian	62
IV.	PE	EMBAHASAN	
	A.	Umum	63
	B.	Data Material Kayu	63
	C.	Data Perencanaan	64
	D.	Perhitungan	64
		1. Menghitung Beban Atap	64
		2. Perhitungan Pelat Lantai	67
		3. Perhitungan <i>Joist</i>	78
		4. Perhitungan Balok	81
		5. Perhitungan Kuat Tekan Kolom	83
		6. Sambungan Baut (Balok-Kolom)	86

DAFTAR PUSTAKA

Lampiran A Perhitungan Gempa Statik Ekivalen

Lampiran B Hasil Analisis SAP2000

Lampiran C Perhitungan

Lampiran D Surat Menyurat

DAFTAR TABEL

Tabel Halamar	l
Tabel 2.1. Jenis Kayu dan Berat Jenis Kayu yang Diperdagangkan di	
Indonesia	
Tabel 2.2. Faktor Koreksi Nilai Desain Acuan	
Tabel 2.3. Nilai Desain Acuan	
Tabel 2.4. C _M Digunakan pada Kondisi Kadar Air > 19%	
Tabel 2.5. Faktor Temperatur C_T	
Tabel 2.6. Faktor Tusukan C _i	
Tabel 2.7. Faktor Konversi Format K _F	
Tabel 2.8. Faktor Ketahanan T	
Tabel 2.9. Faktor Kefek Waktu	
Tabel 2.10. Koefisien Panjang Tekuk (Ke)	
Tabel 2.11. Panjang Efektif, e, untuk komponen struktur lentur, mm	
Tabel 2.12. Faktor Penggunaan Rebah	
Tabel 2.13. Beben Hidup Terdistribusi Merata Minimum	
Tabel 2.14. Berat Sendiri Bahan Bangunan dan Komponen Gedung 37	
Tabel 2.15. Faktor Keutamaan dan Kategori Resiko Bangunan	
Tabel 2.16. KDS Parameter Respon Percepatan Periode Pendek	
Tabel 2.17. KDS Parameter Respon Percepatan Periode 1 Detik	

Tabel 2.18. Klasifikasi Kelas Situs	41
Tabel 2.19. Faktor R, o, dan Cd Untuk Sistem Penahan Gaya Seismik	42
Tabel 2.20. Nilai Parameter Periode Pendekatan Ct dan X	44
Tabel 2.21. Penentuan Nilai K	45
Tabel 2.22. Faktor Amplifikasi Fa Percepatan Respons Spektrum Faktor	46
Tabel 2.23. Faktor Amplifikasi Fv Percepatan Respons Spektrum Faktor	46
Tabel 2.24. Faktor koreksi nilai desain acuan sambungan	51
Tabel 2.25. Faktor temperatur C _t	51
Tabel 2.26. Moda kelelhan satu irisan	52
Tabel 2.27. Moda kelelehan dua irisan	53
Tabel 2.28. Faktor layan basah C _M	54
Tabel 2.29. Faktor aksi kelompok C _g	55
Tabel 2.30. Nilai kuat tumpu kayu Fe	57
Tabel 4.1 Tabel Cross	70
Tabel 4.2 Moda Kelelehan dua irisan	87

DAFTAR GAMBAR

Gambar Hala	aman
2.1 Kolom masif sederhana	17
2.2 Geser di tumpuan	25
2.3 Ujung Komponen struktur lentur-ditakik di muka depan	27
2.4 Tinggi efektif, de, dan tumpuan bersudut terhadap serat pada sambungan	29
2.5 Balok yang diletakan secara tidur	29
2.6 Takikan pada Tumpuan Ujung	31
2.7 Bentuk Lendutan pada Balok dengan Tumpuan Sederhana	32
2.8 Design response spectrum	48
2.9 Geometri sambungan baut	56
3.1 Denah Lantai Dasar	59
3.2 Denah Lantai 2, 3 dan 4	59
3.3 Tampak Depan	60
3.4 Tampak Samping	60
4.1 Rangka Atap	64
4.2 Dimensi Pelat Lantai	67
4.3 Model Struktur beban merata	68
4.4 Model Struktur tumpuan jepit-jepit	69
4.5 Model Struktur tumpuan sendi-jepit	69
4.6 Frebody batang A-B.	70
4.7 Frebody batang B-C	71
4.8 Frebody batang C-D	72
4.9 Frebody batang D-E	73

4.10 Frebody batang E-F	74
4.11 Pembebanan <i>Joist</i>	77
4.12 Simple Beam Joist	78
4.13 Luas pelat lantai	80
4.14 Kolom	83
4.15 Sambungan balok-kolom tampak depan	86

DAFTAR NOTASI

U = Kekuatan perlu

D = Beban mati

L = Beban hidup

Lr = Beban hidup atap

E = Beban gempa

Fu = Gaya terfaktor

F = Kuat tahanan acuan (MPa)

Fb = Kuat lentur bahan (MPa)

Ft = Kuat tarik bahan (MPa)

Fc// = Kuat tekan sejajar serat bahan (MPa)

Fv = Kuat geser bahan (MPa)

Fc = Kuat tekan tegak lurus serat bahan (MPa)

E = Modulus elastisitas (MPa)

Emin = Modulus elastisitas minimal (MPa)

 C_d = Faktor durasi beban

 C_t = Faktor temperatur

 K_F = Faktor konversi format

= Faktor ketahanan

 C_m = Faktor layan basah

 C_F = Faktor ukuran

 C_i = Faktor tusukan

= Faktor efek waktu

 C_L = Faktor stabilitas balok

 C_{fu} = Faktor penggunaan rebah

 C_r = Faktor komponen struktur berulang

Mu = Momen lentur terfaktor (KNm)

M' = Tahanan lentur terkoreksi (KNm)

Sx = Modulus penampang lentur

Fb' = Kuat lentur terkoreksi (Mpa)

b = Lebar penampang (cm)

d = Tinggi penampang (cm)

Vu = Gaya geser terfaktor (KN)

V' = Tahanan geser terkoreksi (KN)

Fv' = Kuat geser sejajar serat terkoreksi (MPa)

maks = Lendutan maksimum (mm)

total = Lendutan terfaktor (mm)

Pu = Gaya tekan terfaktor (KN)

P' = Kapasitas tekan terkoreksi (KN)

Fc' = Kuat tekan sejajar serat terkoreksi (MPa)

Ag = Luas penampang bruto (mm²)

Tu = Gaya tarik terfaktor (KN)

T' = Tahanan tarik terkoreksi (KN)

Ft' = Kuat tarik sejajar serat terkoreksi

An = Luas penampang netto (mm^2)

Zu = Tahanan lateral pada sambungan

Zu' = Tahanan lateral terkoreksi pada sambungan

 C_G = Faktor aksi kelompok

 C_{eg} = Faktor serat ujung

M = Momen (Kgm)

V = Lintang (Kg)

I = Momen inersia (mm⁴)

I. PENDAHULUAN

A. Latar Belakang

Semakin pesatnya perkembangan jumlah penduduk di Indonesia mengakibatkan meningkatnya pembangunan perumahan ataupun apartemen untuk memenuhi kebutuhan tempat tinggal masyarakat Indonesia.

Di Indonesia sendiri semakin sedikit lahan kosong yang tersedia yang akhirnya mengakibatkan semakin banyaknya dibangun apartemen-apartemen guna memenuhi kebutuhan tempat tinggal namun menggunakan lahan yang sempit dibanding membangun rumah satu keluarga di beberapa lahan yang luas. Pembangunan apartemen ini sangat efektif sebagai solusi menyempitnya lahan kosong di Indonesia.

Perencanaan struktur adalah unsur terpenting dalam pembangunan agar menghasilkan suatu struktur yang kuat, nyaman, ekonomis, tahan dan aman selama masa layannya. Ada beberapa hal yang harus sangat diperhatikan dalam perencanaan struktur antara lain adalah penetapan beban-beban struktur, pemilihan susunan dan ukuran dari elemen struktur sehingga beban yang bekerja dapat dipikul secara aman dan gaya yang mengakibatkan perpindahan sebaiknya masih dalam batas yang diisyaratkan agar konstruksi

dapat dihindarkan dari kerusakan struktur.

Perencanaan struktur juga harus memastikan bahwa bagian-bagian sistem struktur sanggup mengizinkan atau menanggung gaya gravitasi dan beban bangunan, kemudian menyokong dan menyalurkan gaya garvitasi dan beban tersebut ke tanah dengan aman.

Pemilihan jenis material yang akan digunakan merupakan salah satu tahapan terpenting dalam merencanakan struktur bangunan. Jenis material yang umum digunakan dalam dunia konstruksi adalah baja, beton bertulang dan kayu.

Kayu sampai saat ini masih banyak digunakan sebagai bahan konstruksi bangunan untuk rumah tinggal, gedung perkantoran, *furniture* (perabot rumah tangga), jembatan, bantalan kereta api dan lain-lain. Material kayu akan selalu dibutuhkan manusia karena sifat keunggulan utama yang dimiliki yaitu kayu merupakan kekayaan alam *(natural resources)* yang tidak akan pernah habis (dapat diperbaharui). Selain itu kayu juga mudah dalam pemrosesan, pengerjaan, lebih tahan terhadap gempa, memiliki kuat tarik dan kuat tekan yang tinggi, serta memiliki sifat—sifat spesifik lebih unggul yang tidak dimiliki oleh bahan konstruksi lain.

B. Rumusan Masalah

Berdasarkan latar belakang yang ada, maka dalam penelitian ini masalah yang dirumuskan adalah bagaimana cara merencanakan struktur apartemen 4 lantai dengan menggunakan material kayu pada balok, kolom dan lantainya.

C. Tujuan Penelitian

Adapun tujuan dalam penelitian ini adalah untuk merencanakan struktur apartemen 4 lantai dengan menggunakan material kayu.

D. Batasan Masalah

Adapun ruang lingkup dalam penelitian ini, antara lain:

- Perhitungan menggunakan SNI 7973:2013 (Spesifikasi Desain Untuk Konstruksi Kayu).
- 2. Apartemen dibangun di daerah Bandar Lampung dengan memperhitungkan beban gempa terhadap struktur apartemen.
- Kolom lantai dasar diasumsikan tumpuan sendi dan tidak memperhitungkan pondasi.
- 4. Pembebanan menggunakan SNI 1727 : 2013 (Beban Minimum untuk Perencanaan Bangunan Gedung dan Struktur Lain).
- Perhitungan analisis struktur menggunakan bantuan program SAP 2000
 Ver. 19.
- 6. Tidak menganalisis struktur atap, karena konstruksi atap bentangnya lebar maka atap direncanakan dengan konstruksi baja ringan (diluar topik pembahasan struktur kayu).
- 7. Komponen struktur yang dihitung adalah balok, kolom dan pelat yang terbuat dari material kayu mahoni.
- 8. Menghitung dan merencanakan sambungan.

E. Manfaat Penelitian

Adapun manfaat dari penelitian ini adalah untuk memperoleh perhitungan kemampuan dan ketahanan struktur pelat, balok dan kolom dalam menahan beban ultimit yang direncanakan dengan konstruksi kayu.

BAB II. TINJAUAN PUSTAKA

A. Apartemen

1. Definisi Apartemen

Apartemen adalah suatu gedung untuk tempat tinggal yang terdiri dari beberapa unit atau puluhan unit, dimana setiap unit biasanya memiliki ruang tamu, kamar tidur, kamar mandi/wc, dapur, dll.

Menurut Endy Marlina (2008), apartemen adalah bangunan yang membuat beberapa grup hunian, yang berupa rumah *flat* atau petak bertingkat yang diwujudkan untuk mengatasi masalah perumahan akibat kepadatan tingkat hunian dari keterbatasan lahan dengan harga yang terjangkau di perkotaan.

Menurut Neufert (1980), apartemen adalah bangunan hunian yang dipisahkan secara horizontal dan vertikal, agar tersedia hunian yang berdiri sendiri dan mencakup bangunan bertingkat rendah atau bertingkat tinggi, dilengkapi dengan fasilitas-fasilitas yang sesuai dengan standar yang telah ditentukan.

Ciri-ciri umum bangunan apartemen:

- Memiliki jumlah lantai lebih dari satu
- Terdiri atas beberapa unit hunian dalam satu lantai
- Setiap unit hunian terdiri atas minimal 3 macam ruang yaitu ruang tidur,
 dapur dan kamar mandi
- Setiap penghuni akan saling berbagi fasilitas yang ada pada apartemen
- Sirkulasi vertikal berupa tangga atau *lift*, sedangkan sirkulasi horizontalnya berupa koridor
- Setiap unit mendapatkan jendela yang menghadap ke luar bangunan
- Pada apartemen mewah, terdapat penambahan ruang-ruang seperti ruang kerja, ruang tamu, *foyer*, ruang khusus pembantu, ruang rias, dll.

Dalam satu apartemen ada beberapa rumah atau unit yang ditinggali oleh keluarga yang berbeda. Di zaman *modern* saat ini, tinggal di apartemen menjadi gaya hidup dan kebutuhan masyarakat masa kini. Banyak kalangan yang menggemari apartemen karena lokasi apartemen yang strategis. Apartemen biasanya dibangun dekat dengan kawasan *mall*, perkantoran, bisnis, industri, sekolah, pusat perbelanjaan, pusat hiburan serta juga dekat dengan akses tol maupun kendaraan umum.

Semakin menipis lahan hunian pada pusat kota, ditambah pertumbuhan angka penduduk yang tinggi menjadi masalah dalam menyediakan kebutuhan hunian yang mengakibatkan harga lahan untuk hunian tapak menjadi sangat mahal. Apartemen menjadi solusi kebutuhan hunian dalam bentuk vertikal sehingga mampu memenuhi kebutuhan hunian bagi warga kota di jaman sekarang ini.

2. Klasifikasi dan Jenis Apartemen

Berikut adalah klasifikasi apartemen berdasarkan kategori jenis dan besar bangunan (Akmal, 2007) apartemen terdiri atas :

1. High-rise Apartment

Bangunan apartemen yang terdiri atas lebih dari sepuluh lantai yang dilengkapi parkir bawah tanah, sistem keamanan dan servis penuh. Struktur apartemen lebih kompleks.

2. Mid-Rise Apartment

Bangunan apartemen yang terdiri dari 7-10 lantai.

3. Low-Rise Apartment

Apartemen dengan ketinggian kurang dari 7 lantai dan penggunaan tangga sebagai sirkulasi transportasi vertikal.

4. Walked-Up Apartment

Apartemen yang terdiri dari 3 sampai 6 lantai, terkadang juga memiliki *lift*. Apartemen ini lebih disukai oleh keluarga besar dan biasanya 1 gedung apartemen hanya terdiri dari 2-3 unit apartemen.

5. Garden Apartment

Bangunan apartemen 2-4 lantai. Apartemen ini memiliki halaman dan taman di sekitar bangunan yang memuat suasana di area apartemen tersebut tampak lebih sejuk, lebih segar juga lebih indah.

Menurut Endy Marline (2008), klasifikasi apartemen menurut jumlah kamarnya adalah sebagai berikut :

1. Tipe Studio (18 m² - 45 m²)

Tipe ini mengutamakan efisiensi penggunaan ruang-ruang. Hanya tersedia ruangan tanpa sekat.

2. Tipe dua ruang tidur $(45 \text{ m}^2 - 90 \text{ m}^2)$

Apartemen ini berkapasitas 3-4 orang, misalnya keluarga dengan satu atau dua anak. Pada tipe ini biasanya ruang keluarga dan ruang makan dipisah.

3. Tipe tiga ruang tidur $(54 \text{ m}^2 - 108 \text{ m}^2)$

Apartemen ini berkapasitas 4-5 orang, misalnya keluarga besar dengan tiga anak atau lebih.

Klasifikasi apartemen berdasarkan pelayanannya (Chiara, 1986), apartemen dibagi menjadi empat, yaitu:

1. Apartemen *Fully Service*

Apartemen yang menyediakan layanan standar hotel bagi penghuninya, seperti *laundry*, *catering*, kebersihan, dan sebagainya.

2. Apartemen Fully Furnished

Apartemen yang menyediakan furniture dalam unit apartemen.

3. Apartemen Fully Furnished and Fully Service

Apartemen jenis ini lebih lengkap dan lebih mahal karna gabungan dari apartemen *Fully Furnished and Fully Service*.

4. Apartemen Building Only

Apartemen yang hanya menyediakan ruangannya saja.

B. Kayu

1. Umum

Kayu merupakan material alam yang dapat diperbaharui secara terus-menerus, dengan mengelola hutan dengan baik. Kayu didapat dari batang pohon. Material struktur kayu umumnya memiliki berat jenis yang ringan dan proses pengerjaannya dilakukan dengan alat sederhana. Kayu adalah bahan alam yang dapat terurai secara sempurna sehingga tidak ada istilah limbah pada kayu yang dapat mencemari lingkungan.

Kayu sering digunakan dalam dunia teknik sipil sebagai bahan bangunan dikarenakan kayu memiliki keuntungan yaitu: kekuatan tinggi dan berat yang rendah, daya penahan tinggi terhadap pengaruh kimia dan listrik, mudah dikerjakan, relatif murah, mudah diganti, dan mudah didapat selama persediaan kayu masih ada.

Namun kayu juga memiliki beberapa kekurangan, yaitu: sifat kurang homogen, adanya cacat-cacat alam, dapat memuai dan menyusut, kayu mudah diserang oleh serangga pemakan kayu seperti rayap atau serangga lainnya, dll.

2. Jenis Kayu dan berat jenis kayu

Iklim, cuaca dan tanah di Indonesia sangat mendukung untuk tumbuh suburnya berbagai jenis tanaman yang menyediakan banyak varian kayu kuat dan bagus.

Tabel 2.1. Jenis Kayu dan berat jenis kayu yang diperdagangkan di Indonesia

No	Nama perdagangan	Nama botanis	Berat Jenis Kayu
1	Akasia	Acacia mangium	0.52 (0.47-0.58)
2	Bungur	Lagerstroemia speciosa	0.69 (0.58-0.81)
3	damar	Agathis alba	0.48 (0.43-0.54)
4	Durian	Durio zibethinus	0.57 (0.42-0.69)
5	Jabon	Anthocephalus cadamba	0.42 (0.29-0.56)
6	Jati	Tectona grandis	0.67 (0.62-0.75)
7	Karet	Hevea brasiliensis	0.59 (0.47-0.73)
8	Kayu afrika	Maesopsis eminii	0.41 (0.34-0.48)
9	Kayu manis	Cinnamomum purrectum	0.63 (0.40-0.86)
10	Laban	Vitex pubescens	0.81 (0.72-0.87)
11	Mahoni	Swietenia macrophylla	0.61 (0.53-0.67)
12	Nyamplung	Calophyllum inophyllum	0.69 (0.56-0.79)
13	Matoa	Pometia pinnata	0.77 (0.50-0.99)
14	Meranti	Shorea sp	0.63 (0.47-0.83)
15	Mindi	Melia excelsa	0.53 (0.48-0.57)
16	Pasang	Quercus lineata	0.96 (0.90-1.10)
17	Balobo	Diplodiscus sp	0.73 (0.67-0.73)
18	Puspa	Schima wallichii	0.62 (0.45-0.72)
19	Rasmala	Altingia excelsa	0.81 (0.61-0.90)
20	Sainten	Catanopsis argentea	0.73 (0.55-0.85)
21	Sengon	Paraserianthes falcataria	0.33 (0.24-0.49)
22	Sengon buto	Enterolobium cyclocarpum	0.49 (0.39-0.57)
23	Senokeling	Dalbergia latifolia	0.83 (0.77-0.86)
24	Senokembang	Pterocarpus indicus	0.65 (0.49-0.84)
25	Sukun	Artocarpus altilis	0.33 (0.24-0.54)
26	Sungkai	Peronema canescens	0.63 (0.52-0.73)
27	Suren	Toona sureni	0.39 (0.27-0.67)
28	Tusam	Pinus merkusii	0.55 (0.40-0.75)
29	Waru	Hibiscus tiliaceus	0.54 (0.36-0.64)
30	Waru gunung	Hibiscus macrophyllus	0.40 (0.36-0.56)

(Sumber: Spesifikasi desain untuk konstruksi kayu SNI 7973-2013)

C. Perencanaan Batang Tekan

Untuk merencarakan kuat tekan sejajar serat, gaya atau tegangan tekan sejajar serat aktual tidak boleh melebihi nilai desain tekan terkoreksi.

Dalam merencanakan batang tekan searah serat kayu ada beberapa faktor-faktor yang harus diperhatikan, yaitu :

Faktor koreksi nilai desain

Tabel 2.2. Faktor Koreksi Nilai Desain Acuan

	Hanya DTI		DTI dan DFBK						Hanya DFBK					
	Faktor Durasi Bebean	Faktor Layan Basah	Faktor Temperatur	Faktor Stabilitas Balok	Faktor Ukuran	Faktor Penggunaan rebah	Faktor Tusukan	Faktor Komponen struktur Berulang	Faktor Stabilitas Kolom	Faktor Kekakuan Tekuk	Faktor Luas Tumpu	Faktor Konveksi Format	Faktor Ketahanan	Faktor Efek Waktu
$F_b' = F_b \qquad x$	C_D	C_{M}	C_{t}	C_{L}	C_{F}	C_{fu}	C_1	C_{r}	-	-	-	2,54	0,85	
$F_t' = F_t$ x	C_D	C_{M}	C_{t}	-	C_{F}	-	C_1	-	-	-	-	2,70	0,80	
$F_v = F_v \qquad x$	C_D	C_{M}	C_{t}	-	-	-	C_l	-	-	-	-	2,88	0,75	
Fc = Fc x	-	C_{M}	\mathbf{C}_{t}	-	-	-	C_{l}	-	-	-	C_b	1,67	0,90	-
$F_c'=F_c$ x	C_D	C_{M}	\mathbf{C}_{t}	-	C_{F}	-	C_1	-	C_{P}	-	-	2,40	0,90	
E' = E x	-	C_{M}	\mathbf{C}_{t}	-	-	-	C_l	-	-	-	-	-	-	-
E _{min} '=E _{min} x	-	C_{M}	C_{t}	-	-	-	C_l	-	-	C T	-	1,76	0,85	-

(Sumber: Spesifikasi desain untuk konstruksi kayu SNI 7973-2013)

Nilai desain acuan

Tabel 2.3. Nilai Desain Acuan

Kode Mutu		Nilai D	Modulus Elastis Acuan (MPa)				
Wittu	F _b	F _t	F _c	$F_{\rm v}$	F _c	Е	Emin
E25	26.0	22.9	18.0	3.06	6.11	25000	12500
E24	24.4	21.5	17.4	2.87	5.74	24000	12000
E23	23.2	20.5	16.	2.73	5.46	23000	11500
E22	22.0	19.4	16.2	2.59	5.19	22000	11000
E21	21.3	18.8	15.6	2.50	5.00	21000	10500
E20	19.7	17.4	15.0	2.31	4.63	20000	10000
E19	18.5	16.3	14.5	2.18	4.35	19000	9500
E18	17.3	15.3	13.8	2.04	4.07	18000	9000
E17	16.5	14.6	13.2	1.94	3.89	17000	8500
E16	15.0	13.2	12.6	1.76	3.52	16000	8000
E15	13.8	12.2	12.0	1.62	3.24	15000	7500
E14	12.6	11.1	11.1	1.48	2.96	14000	7000
E13	11.8	10.4	10.4	1.39	2.78	13000	6500
E12	10.6	9.4	9.4	1.25	2.50	12000	6000
E11	9.1	8.0	8.0	1.06	2.13	11000	5500
E10	7.9	6.9	6.9	0.93	1.85	10000	5000
E9	7.1	6.3	6.3	0.83	1.67	9000	4500
E8	5.5	4.9	4.9	0.65	1.30	8000	4000
E7	4.3	3.8	3.8	0.51	1.02	7000	3500
E6	3.1	2.8	2.8	0.37	0.74	6000	3000
E5	2.0	1.7	1.7	0.23	0.46	5000	2500

(Sumber: Spesifikasi desain untuk konstruksi kayu SNI 7973-2013)

Faktor Layan Basah (C_m)

Nilai desain acuan kayu yang ditetapkan di sini berlaku pada kayu yang akan digunakan pada kondisi layan kering seperti pada struktur tertutup, di mana kadar air tidak melebihi 19%, bagaimanapun kadar air pada saat dilaksanakan. Untuk kayu yang digunakan pada kondisi di mana kadar air kayu melebihi 19%, untuk

periode waktu lama, nilai desain harus dikalikan dengan faktor layan basah, C_M

Tabel 2.4. C_M digunakan pada kondisi kadar air > 19%

F _b	F _t	F_{v}	F_c	F _c	E dan E _{min}
0,85*	1.0	0.97	0.67	0,8**	0,9

(Sumber: Spesifikasi desain untuk konstruksi kayu SNI 7973-2013)

Faktor temperatur (Ct)

Nilai desain acuan harus dikalikan dengan faktor temperatur, Ct, untuk komponen struktural yang akan mengalami pengeksposan tetap pada temperatur tinggi sampai 65°C (lihat Lampiran C SNI 7973-2013).

Tabel 2.5. Faktor Temperatur C_t

Nilai Desain	Kondisi Kadar Air Layan ¹	C_{t}					
Acuan		T 38°C	38°C <t 52°c<="" td=""><td>52°C<t 65°c<="" td=""></t></td></t>	52°C <t 65°c<="" td=""></t>			
F _t , E, E _{min}	Basah atau Kering	1,0	0,9	0,9			
$F_b, F_v, F_c,$	Kering	1,0	0,8	0,7			
dan F _c	Basah	1,0	0,7	0,5			

(Sumber: Spesifikasi desain untuk konstruksi kayu SNI 7973-2013)

Faktor Ukuran, C_F

Nilai desain lentur, tarik, dan tekan sejajar serat acuan untuk kayu dimensi yang tebalnya 50,8 mm sampai 101,6 mm yang dipilah secara visual harus dikalikan dengan faktor koreksi yang ditetapkan yaitu 1,0.

^{*}Fb < 8 MPa, CM = 1,0

^{**}Fc < 5.2 MPa, CM = 1.0

Apabila tinggi komponen struktur lentur kayu gergajian yang tebalnya 127 mm atau lebih besar melebihi 305 mm dan dipilah secara visual, maka nilai desain lentur acuan, Fb, di dalam Tabel 2.3. Nilai desain acuan sesuai halaman 12 harus dikalikan dengan faktor ukuran berikut:

$$C_F = (350/d)^{1/9}$$
 1,0

Untuk balok dengan penampang lingkaran dan dengan diameter lebih besar dari pada 343 mm, atau untuk balok persegi 305 mm atau lebih besar yang dibebani di bidang diagonal, faktor ukuran harus ditentukan sesuai 4.3.6.2 – SNI 7973 2013 berdasarkan balok persegi yang dibebani ekuivalen secara konvensional yang mempunyai luas penampang sama.

Faktor Tusukan C_i

Nilai desain acuan harus dikalikan dengan faktor tusukan, Ci berikut, apabila kayu dimensi dipotong sejajar serat pada tinggi maksimum 10,16 mm, panjang maksimum 9,53 mm, dan densitas tusukan sampai 11840/m². Faktor tusukan harus ditentukan dengan pengujian atau dengan perhitungan menggunakan penampang tereduksi untuk pola tusukan yang melebihi batas-batas tersebut.

Tabel 2.6. Faktor Tusukan C_i

Nilai Desain	C _i
E, E _{min}	0,95
F_b, F_t, F_c, F_v	0,80
F_{c}	1,00

(Sumber: Spesifikasi desain untuk konstruksi kayu SNI 7973-2013)

Faktor Konversi Format K_F

Untuk DFBK, nilai desain acuan harus dikalikan dengan faktor konversi format, K_F, yang ditetapkan di dalam Tabel 2.7. Faktor konversi format, K_F, tidak berlaku untuk desain yang menggunakan metode DTI.

Tabel 2 .7. Faktor Konversi Format K_F

Aplikasi	Properti	Kf
Komponen Struktur	F_b F_t F_v, F_{rt}, F_s F_c F_c E_{min}	2,45 2,70 2,88 2,40 1,67 1,76
Semua Sambungan	(semua nilai desain)	3,32

(Sumber: Spesifikasi desain untuk konstruksi kayu SNI 7973-2013)

Faktor Ketahanan _T

Untuk DFBK, nilai desain acuan harus dikalikan dengan faktor ketahanan (), yang ditetapkan di dalam Tabel 2.8. Faktor ketahanan, , tidak berlaku untuk desain yang menggunakan metode DTI.

Tabel 2.8. Faktor Ketahanan _T

Aplikasi	Properti	Simbol	Nilai
Komponen struktur	$F_b \\ F_t \\ F_v, F_{rt}, F_s \\ F_c, F_c \\ E_{min}$	b t v c s	0,85 0,80 0,75 0,90 0,85
Sambungan	(semua)	Z	0,65

(Sumber: Spesifikasi desain untuk konstruksi kayu SNI 7973-2013)

Faktor Efek Waktu

Untuk DFBK, nilai desain acuan harus dikalikan dengan faktor efek waktu (), yang ditetapkan di lampiran N.3.3 pada SNI 7973-2013 atau pada tabel 2.9.

Faktor efek waktu, , perlu diperhatikan, dan tidak berlaku untuk desain yang menggunakan DTI.

Tabel 2.9. Faktor Efek Waktu

Kombinasi beban-beban	
1,4(D+F)	0,6
$1,2(D+F) + 1,6(H) + 0,5(L_r \text{ atau } R)$	0,6
$1,2(D+F) + 1,6(L+H) + 0,5(L_r \text{ atau } R)$	0,7 apabila L adalah gudang
	0,8 apabila L adalah hunian
	1,25 apabila L adalah impak
$1,2D + 1,6(L_r \text{ atau } R) \text{ atau } (L \text{ atau } 0,8W)$	0,8
$1,2D + 1,6W + L + 0,5(L_r \text{ atau } R)$	1,0
1,2D + 1,0E + L	1,0
0.9D + 1.6W + 1.6H	1,0
0,9D + 1,0E + 1,6H	1,0
	1

(Sumber: Spesifikasi desain untuk konstruksi kayu SNI 7973-2013)

Faktor Stabilitas Kolom C_p


- ullet Untuk struktur tekan yang ditahan perpindahan lateral di seluruh panjangnya disemua arah, maka Cp=1,0
- Panjang efektif kolom (le), untuk kolom solid harus ditentukan sesuai prinsipprinsip mekanika teknik, $e = (K_e)$.

Ragam Tekuk Nilai 0,5 0,7 1,0 2,0 1,0 2,0 **K**_eteoritis Nilai Ke desain yang disarankan apabila 0,65 0,80 2,10 1,2 1,0 2,4 kondisi ideal merupakam pendekatan Tidak dapat berotasi, tidak dapat bertranslasi Kode Dapat berotasi, tidak dapat bertranslasi kondisi Tidak dapat berotasi, dapat bertranslasi ujung Dapat berotasi, dapat bertranslasi

Tabel 2.10. Koefisien Panjang Tekuk (Ke)

(Sumber: Spesifikasi desain untuk konstruksi kayu SNI 7973-2013)

- Rasio kelangsingan le/d diambil yang "terbesar" di antara le₁/d₁ dan le₂/d₂
- Rasio kelangsingan tidak boleh melebihi 50.

Gambar 2.1. Kolom masif sederhana

$$C_{p} = \frac{1 + (F_{cE}/F_{c}^{*})}{2c} - \sqrt{\left[\frac{1 + (F_{cE}/F_{c}^{*})}{2c}\right] - \frac{FcE/F_{c}^{*}}{c}}$$

Dimana:

 F_c^* = nilai desain tekan acuan sejajar serat dikalikan dengan semua faktor koreksi kecuali C_P

$$F_{cE} = \frac{0.822 E_{min}}{(\ell r / 4)^2}$$

C = 0,8 untuk kayu gergajian

c = 0,85 untuk pancang dan tiang kayu bundar

c = 0,9 untuk glulam struktural atau kayu komposit struktural

D. Perencanaan Batang Lentur

Batang lentur adalah batang struktur yang fungsinya untuk menahan baban transversal atau beban yang tegak lurus sumbu batang.

Hal yang perlu diperhatikan dalam merencanakan batang lentur:

- Momen atau tegangan lentur aktual tidak boleh melebihi nilai desain lentur terkoreksi
- Batang lentur direncanakan untuk dapat mendukung:
- a. Gaya Momen lentur

Mu M'

Dimana : Mu = momen lentur terfaktor

M' = Tahanan lentur terkoreksi

b. Gaya geser

Vu V'

Dimana : Vu = Gaya geser terfaktor

V' = Tahanan geser terkoreksi

1. Persamaan Desain Lentur-Lentur

Tegangan lentur aktual akibat momen lentur, M, dihitung sebagai berikut:

$$fb = \frac{Mc}{I} = \frac{M}{S}$$

Untuk komponen struktur lentur persegi panjang dengan lebar b, dan tinggi d,

persamaan diatas menjadi: $fb = \frac{M}{S} = \frac{6M}{bd^2}$

Untuk komponen struktur persegi panjang solid dengan sumbu netral tegak lurus tinggi penampang:

$$I = \frac{bd^4}{12}$$
 = momen inersia, mm⁴

$$S = \frac{1}{c} = \frac{bd^2}{6} = \text{modulus penampang, mm}^3$$

Stabilitas Komponen Struktur Lentur (4.4.1-SNI 7973-2013)

- 1. Komponen struktur lentur kayu gergajian harus didesain sesuai dengan perhitungan stabilitas lateral di persyaratan faktor stabilitas balok, C_L atau harus memenuhi persyaratan tumpuan lateral di 4.4.1.2 dan 4.4.1.3 pada SNI 7973-2013.
- 2. Sebagai alternatif dari poin 1, balok kayu gergajian berpenampang persegi panjang yang digunakan sebagai balok, gording, *joist*, atau komponen struktur lentur lainnya, harus didesain sesuai dengan persyaratan berikut

agar terdapat kekangan terhadap rotasi atau peralihan lateral. Apabila rasio tinggi per lebar, d/b, yang didasarkan pada dimensi nominal adalah:

- (a) d/b < 2; tumpuan lateral tidak diperlukan.
- (b) 2 < d/b < 4; kedua ujung harus ditahan pada posisinya, dengan menggunakan kayu solid tinggi penuh, atau dengan memaku atau membaut ke komponen struktur lain, atau dengan cara-cara lain yang dapat diterima.
- (c) 4 < d/b < 5; tepi tekan dari komponen struktur lentur harus ditahan di seluruh panjangnya untuk mencegah terjadinya peralihan lateral, misalnya dengan penutup lantai, dan di ujung-ujung di titik-titik tumpu harus ditahan posisinya untuk mencegah rotasi dan/atau peralihan lateral.
- (d) 5 < d/b < 6; penahan berupa blok solid tinggi penuh atau batang pengaku diagonal harus dipasang pada interval tidak lebih dari 2438 mm, tepi tekan komponen struktur tersebut harus ditahan dengan penutup lantai, dan di ujung-ujung di titik-titik tumpu harus ditahan posisinya untuk mencegah rotasi dan/atau peralihan lateral.
- (e) 6 < d/b < 7; kedua tepi komponen struktur harus ditahan di seluruh panjangnya dan di ujung-ujung di titik-titik tumpu harus ditahan posisinya untuk mencegah rotasi dan/atau peralihan lateral.
- 3. Apabila suatu komponen struktur mengalami lentur dan tekan aksial, maka rasio tinggi dan lebar tidak boleh lebih dari 5 banding 1 apabila satu tepi ditahan secara kaku pada posisinya. Apabila pada semua kombinasi beban

tepi komponen struktur yang tidak ditahan mengalami tarik, maka rasio tinggi dan lebar tidak boleh melebihi 6 banding 1.

Faktor Stabilitas Balok C_L

Berikut adalah beberapa persyaratan faktor stabilitas balok, C_L

- Apabila tinggi komponen struktur lentur tidak melebihi lebarnya, d b, tumpuan lateral tidak diperlukan dan $C_L=1,0$.
- Apabila komponen struktur lentur kayu gergajian persegi panjang ditumpu lateral dengan mengikuti ketentuan 4.4.1, maka $C_L = 1,0$.
- Apabila tepi tekan komponen struktur lentur ditumpu di seluruh panjangnya untuk mencegah peralihan lateral, dan ujung-ujung tumpu mempunyai tumpuan lateral untuk mencegah rotasi, maka $C_L=1,0$.
- Apabila tinggi komponen struktur lentur melebihi lebarnya, d > b, maka tumpuan lateral harus diberikan di titik-titik tumpu untuk mencegah rotasi dan/atau peralihan lateral di titik-titik tersebut. Apabila tumpuan lateral tersebut diberikan di titik-titik tumpu, tetapi tidak ada tumpuan lateral tambahan di sepanjang komponen struktur tersebut, maka panjang tak tertumpu, u, adalah jarak antara titik-titik tumpu ujung tersebut, atau panjang kantilever. Apabila suatu komponen struktur lentur diberi tumpuan lateral untuk mencegah rotasi dan/atau peralihan lateral di titik-titik antara dan di kedua ujung, maka panjang tak tertumpu, u, adalah jarak antara titik-titik tumpuan lateral antara tersebut.
- Panjang bentang efektif, e, untuk komponen struktur bentang tunggal atau

kantilever harus ditentukan sesuai Tabel 2.11.

Tabel 2.11. Panjang Efektif, e, untuk komponen struktur lentur, mm

Kantilever ¹	apabila u/d<7	apabila u/d >7
Beban terbagi rata	e = 1,33 u $e = 0,90$ u + 30	
Beban terpusat di ujung bebas	e = 1,87 u	e = 1,44 u + 3d
Balok Bentang Tunggal ^{1,2}	apabila u/d <7	apabila u/d > 7
Beban terbagi rata	e = 2,06 u	e = 1,63 u + 3d
Beban terpusat di pusat tanpa tumpuan lateral antara	e = 1,80 u	e = 1,37 u + 3d
Beban terpusat di pusat dengan tumpuan lateral di pusat	e	= 1,11 u
Dua beban terpusat sama di titik-titik 1/3 dengan tumpuan lateral di titik-titik 1/3	e = 1,68 u	
Tiga beban terpusat sama di titik- titik 1/4 dengan tumpuan lateral di titik-titik 1/4	e = 1,54 u	
Empat beban terpusat sama di titik- titik 1/5 dengan tumpuan lateral di titik-titik 1/5	e = 1,68 u	
Lima beban terpusat sama di titik- titik 1/6 dengan tumpuan lateral di titik-titik 1/6	e = 1,73 u	
Enam beban terpusat sama di titik- titik 1/7 dengan tumpuan lateral di titik-titik 1/7	e = 1,78 u	
Tujuh atau lebih beban terpusat sama, berjarak sama, dengan tumpuan lateral di titik-titik beban		
Momen ujung sama	e = 1,84 u	

(Sumber: Spesifikasi desain untuk konstruksi kayu SNI 7973-2013)

e = 2,06 u apabila u/d < 7

 $e = 1,63 \quad u + 3d \text{ apabila } 7 < u/d < 14,3$

e = 1,84 u apabila u/d > 14,3

¹Untuk balok bentang tunggal atau kantilever dengan kondisi beban tidak tercantum di dalam Tabel 3.3:

²Penggunaan bentang panjang didasarkan atas nilai dari tabel atau analisis teknik.

- Rasio kelangsingan, R_B, untuk komponen struktur lentur harus dihitung sebagai

berikut:
$$R_B = \sqrt{\frac{\text{ted}}{b^2}}$$

- Rasio kelangsingan untuk komponen struktur lentur, R_B, tidak boleh melebihi 50.
- Faktor stabilitas balok harus dihitung sebagai berikut:

$$C_{L} = \frac{1 + (F_{bE}/F_{b}^{'})}{1.9} - \sqrt{\left[\frac{1 + (F_{bE}/F_{b}^{'})}{1.9}\right] - \frac{F_{bE}/F_{b}^{'}}{0.95}}$$

Dengan keterangan:

 $F_b^{'}$ = nilai desain lentu acuan dikalikan dengan semua faktor koreksi kecuali C_{fu} , C_V , dan C_L .

$$F_{bE} = \frac{1,20E_{min}'}{R_P^2}$$

2. Komponen Struktur Lentur – Geser

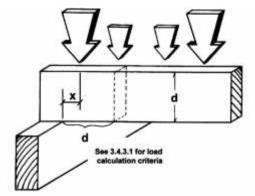
Kekuatan Geser Sejajar Serat (Geser Horizontal)

Tegangan geser aktual sejajar serat atau gaya geser di setiap penampang komponen struktur lentur tidak boleh melebihi nilai desain geser terkoreksi. Pengecekan kekuatan geser tegak lurus serat komponen struktur lentur kayu tidak disyaratkan. Prosedur desain geser yang ditetapkan di sini untuk menghitung f_v di atau dekat titik-titik tumpuan vertikal hanya berlaku pada komponen struktur lentur solid seperti kayu gergajian, Glulam struktural, kayu komposit struktural, atau balok kayu laminasi mekanis. Desain geser di

tumpuan untuk komponen tersusun yang mempunyai sambungan pemikul beban di atau dekat titik-titik tumpuan, seperti di antara batang-batang pada rangka batang harus didasarkan atas hasil uji atau cara-cara lain.

Persamaan Desain Geser

Tegangan geser aktual sejajar serat yang terjadi pada komponen struktur lentur kayu gergajian, glulam struktural, kayu komposit struktural, atau tiang dan pancang kayu harus dihitung sebagai berikut:


$$f_V = \frac{VQ}{lb}$$

Untuk komponen struktur lentur persegi panjang dengan lebar, b, dan tinggi, d, persamaan di atas menjadi:

$$f_V = \frac{3V}{2db}$$

Desain Geser

- 1. Di dalam menghitung gaya geser, V, di komponen struktur lentur
 - a. Untuk balok yang ditumpu dengan cara tumpu penuh di satu permukaan dan beban bekerja di permukaan lainnya, beban terbagi rata di dalam jarak dari tumpuan sama dengan tinggi komponen struktur lentur, d, dapat diabaikan. Untuk balok yang ditumpu dengan tumpu penuh di satu permukaan dan beban bekerja di permukaan lainnya, beban terpusat di dalam jarak, d, dari tumpuan dapat dikalikan dengan x/d dengan x adalah jarak dari muka tumpuan balok ke beban tersebut.

Gambar 2.2. Geser di tumpuan

- b. Beban bergerak tunggal terbesar harus diletakkan pada jarak dari tumpuan sama dengan tinggi komponen struktur lentur, dengan bebanbeban lain tetap berhubungan normal dan mengabaikan semua beban di dalam jarak dari tumpuan sama dengan tinggi komponen struktur lentur. Kondisi ini harus dicek di setiap tumpuan.
- c. Dengan dua atau lebih beban bergerak yang hampir sama besarnya, beban-beban tersebut harus diletakkan di posisi yang menghasilkan gaya geser, V, terbesar, dengan mengabaikan semua beban di dalam jarak dari tumpuan sama dengan tinggi komponen struktur lentur.
- Untuk komponen struktur le ntur bertakik, gaya geser, V, harus didasarkan atas prinsip-prinsip mekanika teknik (kecuali yang dinyatakan di dalam poin 1 diatas).
 - (a) Untuk komponen struktur lentur dengan penampang persegi panjang dan bertakik di muka tarik (lihat 3.2.3 SNI 7973-2013), geser desain rencana, Vr', harus dihitung sebagai berikut:

$$V_r' = \left[\frac{2}{3}F_v'bd_n\right] \left[\frac{d_n}{d}\right]^2$$

dengan:

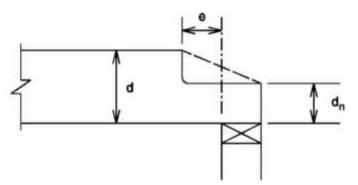
d = tinggi komponen struktur tanpa takik, mm

dn = tinggi komponen struktur sisa di bagian bertakik, mm

Fv' = nilai desain geser sejajar serat terkoreksi, MPa

(b) Untuk komponen struktur lentur dengan penampang lingkaran dan bertakik di muka tarik (lihat 3.2.3 SNI 7973-2013), geser desain terkoreksi, Vr', harus dihitung sebagai berikut:

$$V_r' = \left[\frac{2}{3}F_v'A_n\right]\left[\frac{d_n}{d}\right]^2$$


dengan: An = luas penampang komponen struktur bertakik, mm².

- (c) Untuk komponen struktur lentur bertakik di muka tarik dengan penampang bukan lingkaran dan bukan persegi panjang (lihat 3.2.3 SNI 7973-2013), geser desain terkoreksi, Vr', harus didasarkan atas analisis teknik konvensional dengan memperhitungkan konsentrasi tegangan di takikan.
- (d) Perubahan gradual pada penampang dibandingkan dengan takik siku, mengurangi tegangan geser aktual sejajar serat mendekati yang dihitung dengan komponen struktur lentur tanpa takikan dengan tinggi dn.
- (e) Apabila suatu komponen struktur lentur ditakik di muka tekan di ujung seperti terlihat dalam Gambar 2.3, geser desain terkoreksi, Vr', harus dihitung sebagai berikut:

$$V_r = \frac{2}{3} F_v b \left[d - \left(\frac{d - d_n}{d_n} \right) e \right]$$

dengan:

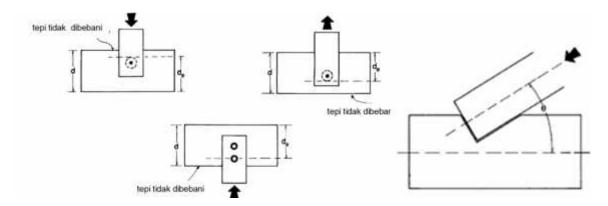
- $e=jarak\ takikan\ ke\ dalam\ dari\ tepi\ dalam\ tumpuan\ dan\ harus\ lebih\ kecil$ atau sama dengan tinggi sisa di takikan, $e< d_n.$ Apabila $e> d_n,$ maka dn harus digunakan di dalam menghitung f_v dengan menggunakan Persamaan 3.4-2.sesuai SNI 7973-2013
- $d_n = tinggi \ komponen \ struktur \ sisa \ di takikan \ yang \ memenuhi \ ketentuan$ $(3.2.3 \ SNI \ 7973-2013) \ . \ Apabila \ ujung \ balok \ dipotong \ miring, \ seperti$ $ditunjukkan \ dengan \ garis \ putus \ dalam \ Gambar \ 3D, \ d_n \ diukur \ dari \ tepi$ $dalam \ tumpuan.$

Gambar 2.3. Ujung komponen struktur lentur ditakik di muka depan

3. Apabila sambungan di komponen struktur lentur dikencangkan dengan konektor cincin belah, konektor pelat geser, baut, atau sekrup kunci (termasuk balok yang ditumpu oleh jenis pengencang tersebut atau kasus-kasus yang ditunjukkan dalam Gambar 2.4), maka gaya geser, V, harus ditentukan dengan prinsip-prinsip mekanika teknik (kecuali yang ditetapkan di poin 1 desain geser).

(a) Apabila sambungan kurang dari lima kali tinggi, 5d, komponen struktur dari ujungnya, maka geser desain terkoreksi, V_r', harus dihitung sebagai berikut:

$$V_r' = \left[\frac{2}{3}F_v'bd_e\right]\left[\frac{d_e}{d}\right]^2$$


Dengan:

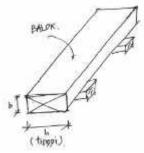
untuk sambungan cincin belah atau pelat geser: de = tinggi komponen struktur, dikurangi jarak dari tepi komponen struktur yang tidak dibebani ke tepi terdekat sambungan cincin belah atau pelat geser (lihat Gambar 2.4), mm untuk sambungan sekrup kunci:

- de = tinggi komponen struktur, dikurangi jarak dari tepi komponen struktur yang tidak dibebani tersebut ke pusat baut atau sekrup kunci terdekat (lihat Gambar 2.4), mm.
- (b) Apabila sambungan sekurangnya lima kali tinggi, 5d, komponen struktur dari ujungnya, maka geser desain terkoreksi, Vr', harus dihitung sebagai berikut:

$$V_r' = \frac{2}{3} F_v' b d_e$$

(c) Apabila penggantung tersembunyi digunakan, geser desain terkoreksi, V_r', harus dihitung berdasarkan atas ketentuan pada 3.4.3.2 untuk komponen struktur lentur bertakik.

Gambar 2.4. Tinggi efektif, d_{e,} dan tumpuan bersudut terhadap serat pada sambungan


Faktor penggunaan rebah C_{FU}

Apabila balok diletakan secara tidur (dimensi lebar lebih besar dari pada dimensi tebal/tinggi) sehingga menderita tegangan lentur pada sumbu lemahnya, maka tahanan lentur acuan dapat dikalikan dengan faktor koreksi penggunaan rebah ($C_{\rm fu}$).

Tabel 2.12 Faktor Penggunaan Rebah

I show (tinggi)(mm)	Tebal (mm)	
Lebar (tinggi)(mm)	50 dan 75	100
50 dan 75	1,0	-
100	1,1	1,0
125	1,1	1,05
150	1,15	1,05
200	1,15	1,05
250 dan lebih besar	1,2	1,1

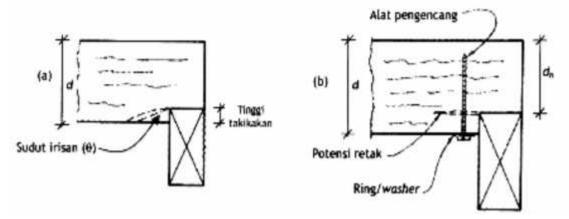
(Sumber: Spesifikasi desain untuk konstruksi kayu SNI 7973-2013)

Gambar 2.5. Balok yang diletakkan secara tidur

Faktor Komponen Struktur Berulang C_R

Nilai desain lentur acuan, Fb, di dalam Tabel 4A, 4B, 4C, dan 4F untuk kayu dimensi yang tebalnya 50,8 mm sampai 101,6 mm harus dikalikan dengan faktor komponen struktur berulang, Cr = 1,15 apabila komponen struktur tersebut digunakan sebagai *joist*, batang pada rangka batang, gording, dek, balok lantai, atau komponen struktur serupa yang satu sama lain berkontak atau berjarak tidak lebih dari 610 mm as ke as, banyaknya tidak kurang dari tiga, dan dihubungkan satu sama lain dengan lantai, atap, atau elemen-elemen pendistribusi beban lain yang memadai untuk memikul beban desain. (Elemen pendistribusi beban adalah sistem yang didesain atau berdasarkan pengalaman terbukti mampu menyalurkan beban desain ke komponen struktur di dekatnya, berjarak satu sama lain seperti telah disebutkan di atas, tanpa terjadinya kelemahan struktural atau defleksi berlebihan. Elemen penutup lantai dengan penggunaan sambungan lidah dan alur, dan penggunaan paku pada umumnya memenuhi kriteria ini).

Nilai desain lentur di dalam Tabel 4E untuk Dek yang dipilah secara visual telah dikalikan dengan faktor $C_r = 1,15$.


 F_b = nilai desain lentur acuan dikalikan dengan semua faktor koreksi kecuali $C_{fu},\,C_V,\,dan\,C_L$

$$F_{\rm bE} = \frac{1,20 E_{min}}{R_B^2}$$

Takikan pada balok

Takikan pada balok harus dihindari, terutama yang terletak jauh dari tumpuan dan berada pada sisi tarik, dimana :

- -Konsentrasi tegangan yang disebabkan oleh takikan dapat dikurangi dengan menggunakan konfigurasi takikan yang di iris miring
- -Takikan pada ujung balok tidak boleh melebihi ¼ tinggi balok untuk balok masif atau 1/10 tinggi balok untuk balok glulam (Kayu laminasi struktural).

Gambar 2.6 Takikan pada tumpuan ujung; (a) takikan miring, (b) penambahan alat pengencang

Lendutan

Lendutan batang lentur ditentukan oleh banyak faktor, seperti; gaya luar , bentang balok, momen inersia penampang, modulus elastisitas.

Lendutan ijin komponen batang lentur :

- •Pada konstruksi terlindung = L/300
- •Pada konstruksi tidak terlindung = L/400

Untuk balok lentur dengan beban merata sepanjang bentang:

$$Max = \frac{5}{384} \frac{wL^4}{EI}$$

Untuk balok dengan beban terpusat di tengah bentang:

$$Max = \frac{1}{48} \frac{PL^{3}}{EI}$$

Gambar 2.7. Bentuk lendutan pada balok dengan tumpuan sederhana

- Faktor koreksi nilai desain acuan dapat dilihat pada tabel 2.2 halaman 12
- Nilai desain acuan batang lentur bisa dilihat pada tabel 2.3 halaman 13
- Faktor layan basah batang lentur bisa dilihat pada tabel 2.4 halaman 14
- Faktor temperatur pada batang lentur dapat dilihat pada tabel 2.5 halaman 14
- Faktor ukuran CF perhitungannya seperti yang dijelaskan pada halaman 14
- Faktor tusukan batang lentur dapat dilihat pada tabel 2.6 halaman 15
- Faktor konfersi format batang lentur dapat dilihat pada tabel 2.7 halaman 16
- Faktor ketahanan dapat dilihat pada tabel 2.8 halaman 16
- Faktor efek waktu dapat dilihat pada tabel 2.9 halaman 17.

E. Pembebanan Struktur

1. Kombinasi Pembebanan Struktur

Sesuai dengan SNI 1727:2013 pada Pasal 2.3.2 kombinasi beban dan faktor beban adalah sebagai kondisi paling kritis yang harus dipikul oleh elemen struktur. Kombinasi tersebut dijabarkan sebagai berikut:

$$U = 1,4D$$
 (Pers. 2.1)

$$U = 1.2D + 1.6L + 0.5(L_r \text{ atau } R)$$
 (Pers. 2.2)

$$U = 1.2D + 1.6(L_r \text{ atau } R) + (1.0L \text{ atau } 0.5W)$$
 (Pers. 2.3)

$$U = 1,2D + 1,0W + 1,0L + 0,5(L_r \text{ atau } R)$$
 (Pers. 2.4)

$$U = 1,2D + 1,0E + 1,0L$$
 (Pers. 2.5)

$$U = 0.9D + 1.0W$$
 (Pers. 2.6)

$$U = 0.9D + 1.0E$$
 (Pers. 2.7)

Dimana: D = beban mati

L = beban hidup

Lr = beban hidup di atap

H = beban hujan

W = beban angin

E = beban gempa

1. Jenis-Jenis Pembebanan

Beban-beban pada struktur digolongkan menjadi beberapa macam yaitu:

a) Beban Hidup

Beban hidup adalah semua beban yang terjadi akibat penghunian/penggunaan suatu gedung dan termasuk beban-beban pada lantai yang berasal dari barang yang dapat berpindah, mesin-mesin serta peralatan yang merupakan bagian gedung yang tidak terpisahkan dari gedung dan dapat diganti selama masa hidup dari gedung itu, sehingga mengakibatkan perubahan dalam pembebanan lantai.

Tabel 2 13. Beban hidup terdistribusi merata minimum, Lo dan beban hidup terpusat minimum

Hunian atau penggunaan	Merata psf (kN/m²)	Terpusat lb (kN)
Apartemen		
Sistem lantai akses		
Ruang kantor	50 (2,4)	2 000 (8,9)
Ruang computer	100 (4,79)	2 000 (8,9)
Gudang persenjataan dan ruang latihan	15 (7, 18) ^a	
Ruang pertemuan		
Kursi tetap (terikat di lantai)	100 (4,79) ^a	
Lobi	100 (4,79) ^a	
Kursi dapat dipindahkan	100 (4,79) ^a	
Panggung pertemuan	100 (4,79) ^a	
Lantai podium	150 (7,18) ^a	
Balkon dan dek	1,5 kali beban hidup untuk	
	daerah yang dilayani. Tidak	
	perlu melebihi 100 psf (4,79	
	kN/m^2)	
Jalur untuk akses pemeliharaan	40 (1,92)	300 (1,33)
Koridor		
Lantai pertama	100 (4,79)	
Lantai lain	sama seperti pelayanan	
	hunian kecuali	
	disebutkan lain	
Ruang makan dan restoran	100 (4,79) ^a	
Hunian (lihat rumah tinggal)		
Ruang mesin <i>elevator</i> (pada daerah 2 in x 2 in [50 mmx50 mm])		300 (1,33)
Konstruksi pelat lantai <i>finishing</i> ringan (pada area 1 in x 1 in {25 mm x 25mm)		200 (0,89)
Jalur penyelamatan terhadap kebakaran	100 (4,79)	
Hunian satu keluarga saja	40 (1,92)	
Tangga permanen	Lihat pasal 4.5	
Garasi/Parkir	40 (1 00) ahc	
Mobil penumpang saja	40 (1,92) a,b,c	
Truk dan bus		
Susuran tangga, rel pengaman dan batang	g Lihat pasal 4.5	
pegangan	Linat pasar 4.5	
Helipad	60 (2,87) ^{de} tidak boleh direduksi	e,r,g
Rumah sakit:		
Ruang operasi, laboratorium	60 (2,87)	1 000 (4,45)
Ruang pasien	40 (1,92)	1 000 (4,45)

Varidar diatas lantai nartama	90 (2.93)	1,000 (4,45)
Koridor diatas lantai pertama	80 (3,83)	1 000 (4,45)
Hotel (lihat rumah tinggal)		
Perpustakaan		
Ruang baca	60 (2,87)	1 000 (4,45)
Ruang penyimpanan	150 (7,18) ^{a, n}	1 000 (4,45)
Koridor di atas lantai pertama	80 (3,83)	1 000 (4,45)
Pabrik		
Ringan	125 (6,00) ^a	2 000 (8,90)
Berat	250 (11,97) ^a	3 000(13,40)
Gedung perkantoran:		
Ruang arsip dan komputer harus		
dirancang untuk beban		
yang lebih berat berdasarkan pada		
perkiraan hunian		
Lobi dan koridor lantai pertama	100 (4,79)	2 000 (8,90)
Kantor	50 (2,40)	2 000 (8,90)
Koridor di atas lantai pertama	80 (3,83)	2 000 (8,90)
Lembaga hukum		
Blok sel	40 (1,92)	
Koridor	100 (4,79)	
Tempat rekreasi	,,,,,	
Tempat bowling, kolam renang, dan	75 (3,59) ^a	
penggunaan yang sama	, (((, , , ,)	
Bangsal dansa dan Ruang dansa	100 (4,79) ^a	
Gimnasium	100 (4,79) ^a	
Tempat menonton baik terbuka atau	100 (4,79) ^{a,k}	
tertutup	100 (1,75)	
Stadium dan tribun/arena dengan tempat	60 (2,87) ^{a,k}	
duduk tetap (terikat pada lantai)	00 (2,07)	
Rumah tinggal		
Hunian (satu keluarga dan dua keluarga)	10 (0 10)	
Loteng yang tidak dapat didiami	10 (0,48)	
tanpa gudang	00 (0 0 5) m	
Loteng yang tidka dapat didiami	$20(0.96)^{m}$	
dengan gudang	20 (4.44)	
Loteng yang dapat didiami dan	30 (1,44)	
ruang tidur	10 (1 0 0)	
Semua ruang kecuali tangga dan	40 (1,92)	
balkom		
Semua hunian rumah tinggal lainnya		
Ruang pribadi dan koridor yang	40 (1,92)	
melayani mereka		
Ruang publik dan koridor	100 (4,79)	i
		1
Atap	_	
Atap datar, berbubung, dan lengkung	$20(0.96)^{n}$	
Atap digunakan untuk taman atap	100 (4,79)	
Atap yang digunakan untuk tujuan lain	Sama seperti	

	hunian dilayani ^a	
A. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		
Atap yang digunakan untuk hunian		
lainnya		
Awning dan kanopi		
Konstruksi pabrik yang didukung	5 (0,24) tidak boleh direduksi	
oleh struktur rangka kaku Ringan		
Rangka tumpu layar penutup	5 (0,24) tidak boleh direduksi	200 (0,89)
	dan berdasarkan luas tributari	
	dari atap yang ditumpu oleh	
	rangka	
		2 000 (8,9)
Semua konstruksi lainnya	20 (0,96)	2 000 (0,7)
Komponen struktur atap utama, yang		
terhubung langsung dengan pekerjaan		
lantai		300 (1,33)
Titik panel tunggu dari batang bawah		500 (1,33)
ranga atap atau setiap titik sepanjang		
komponen struktur utama yang		
mendukung atap diatas pabrik, gudang,		
dan perbaikan garasi		300(1,33)
Semua komponen struktur atap utama		300(1,33)
lainnya		
Semua permukaan atap degan beban		
pekerja pemeliharaan		
Sekolah		
Ruang kelas	40 (1,92)	1 000 (4,5)
Koridor diatas lantai pertama	80 (3,83)	1 000 (4,5)
Koridor lantai pertama	100 (4,79)	1 000 (4,5)
Bak-bak/scuttles, rusuk untuk atap kaca		200 (0,89)
dan langit-langit yang dapat dakses		200 (0,0)
Pinggir jalan untuk pejalan kaki, jalan	0.7	
lintas kendaraan, dan lahan/jalan untuk	250 (11,97) ^{a,p}	8 000(35,6) ^q
truk-truk		
	100 (1 = 1)	- a - r
Tangga dan jalan keluar	100 (4,79)	300 ^r
Rumah tinggal untuk satu dan dua	40 (1,92)	300 ^r
keluarga saja		
Gudang diatas langit-langit	20 (0,96)	
Gudang penyimpanan barang sebelum		
disalurkan ke pengecer (jika diantisipasi		
menjadi gudang penyimpanan, harus		
dirancang untuk beban lebih berat)		
Ringan	125 (6,00) ^a	
Berat	250 (11,97) ^a	
Toko		
Eceran		

Lantai pertama	100 (4,79)	1000 (4,45)
Lantai diatasnya	75 (3,59)	1000 (4,45)
Grosir, di semua lantai	125 (6,00) ^a	1000(4,45)
Penghalang kendaraan	Lihat pasal 4.5	
Susuran jalan dan panggung yang ditinggikan (selain jalan keluar)	60 (2,87)	
Pekarangan dan teras, jalur pejalan kaki	100 (4,79) ^a	

(Sumber: Beban minimum untuk perancangan bangunan gedung dan struktur lain SNI 1727-2013)

b) Beban Mati

Beban mati adalah berat dari semua bagian dari suatu gedung yang bersifat tetap, termasuk segala unsur tambahan, penyelesaian-penyelesaian, mesin-mesin serta peralatan tetap yang merupakan bagian yang tak terpisahkan dari gedung itu.

Tabel 2.14. Berat sendiri bahan bangunan dan komponen gedung

Bahan Bangunan	Berat
Baja	7850 kg/m^3
Beton	2200 kg/m^3
Beton bertulang	2400 kg/m^3
Kayu (kelas I)	1000 kg/m^3
Pasir (kering udara)	1600 kg/m^3
Komponen Gedung	
Spesi dari semen, per cm tebal	21 kg/m^2
Dinding pasangan bata merah:	
- satu batu	450 kg/m^2
- setengah batu	250 kg/m^2
Penutup atap genting	50 kg/m^2
Langit-langit dan dinding (termasuk rusuk-rusuknya,	
tanpa penggantung langit-langit atau pengaku), terdiri	
dari:	11 kg/m^2
- semen asbes (eternit dan bahan lain sejenis), dengan	11 kg/III
tebal maksimum 4 mm	10 kg/m^2
- kaca, dengan tebal 3-4 mm	TO Kg/III
Penutup lantai dari ubin semen portland, teraso dan	24 kg/m^2
beton, tanpa adukan, per cm tebal	2+ Kg/III

(Sumber: Peraturan Pembebanan Indonesia untuk Gedung, 1983)

c) Beban Gempa

1. Definisi Gempa Bumi

Gempa bumi adalah getaran bumi yang dihasilkan oleh percepatan energi yang dilepaskan, energi ini menyebar ke segala arah dari pusat sumbernya (Lutgens 1982). Gempa bumi dapat disebabkan oleh beberapa hal yaitu jatuhan meteor, aktivitas vulkanik (sering disebut gempa vulkanik), longsoran, runtuhan-timbunan batuan di penambangan-penambangan, ledakan nuklir bawah tanah, pergerakan lempeng tektonik dan lain-lain. (Boen, 1985).

2. Rekayasa gempa

Pengaruh beban gempa terhadap struktur ditentukan berdasarkan analisis dinamik, maka yang diartikan dalam beban gempa itu adalah gaya-gaya yang ada dalam struktur tersebut yang terjadi oleh pergerakan tanah akibat gempa itu sendiri. Peraturan saat merencanakan beban gempa dapat mengguanakan peraturan Tata Cara Perencanaan Ketahanan Gempa untuk Struktur Bangunan Gedung dan Non Gedung dalam SNI 1726 : 2012.

Beban gempa yang akan dibahas meliputi:

a. Faktor Keutamaan dan Kategori Resiko Bangunan

Standar ini dibuat untuk menentukan pengaruh gempa rencana yang harus ditinjau dalam perencanan struktur gedung serta berbagai bagian dan peralatannya secara umum. Akibat pengaruh gempa rencana, struktur gedung secara keseluruhan harus masih berdiri, walaupun sudah berada dalam kondisi di ambang keruntuhan untuk menghindari adanya korban jiwa akibat reruntuhan gedung. Untuk berbagai jenis kategori resiko

bangunan gedung dan non gedung, pengaruh gempa rencana harus dikalikan dengan nilai faktor keutamaan (I).

Tabel 2.15 Faktor Keutamaan dan Kategori Resiko Bangunan

Jenis Pemanfaatan	Kategori	Faktor
	Resiko	Keutamaan
Gedung dan non gedung yang memiliki resiko terhadap	I	1,0
jiwa manusia pada saat kegagalan, termasuk tapi tidak		
dibatasi untuk, antara lain:		
- Fasilitas pertanian, perkebunan dan peternakan		
- Fasilitas sementara		
- Gedung penyimpanan		
- Rumah jaga dan struktur kecil lainnya		
Gedung dan non gedung yang memiliki resiko terhadap	II	1,0
jiwa manusia pada saat kegagalan, termasuk tapi tidak		
dibatasi untuk, antara lain:		
- Fasilitas pertanian, perkebunan dan peternakan		
- Fasilitas sementara		
- Gedung penyimpanan		
- Rumah jaga dan struktur kecil lainnya		
Gedung dan non gedung yang memiliki resiko tinggi	III	1,25
terhadap jiwa manusia pada saat terjadi kegagalan,		
termasuk, tapi tidak dibatasi untuk:		
Bioskop, gedung pertemuan, stadion, penjara		
Codung den non codung vong tidek termocylk delem		
Gedung dan non gedung yang tidak termasuk dalam		
kategori IV yang memili potensi untuk menyebabkan		
dampak ekonomi yang besar dan atau gangguan masal		
terhadap kehidupan masyarakat sehari-hari jika terjadi		
kegagalan tapi tidak dibatasi untuk :		
- Pusat pembangkit listrik biasa		
- Fasilitas penanganan air		
- Fasilitas penanganan	TS 7	1.7
Gedung dan non gedung yang ditunjukan sebagai	IV	1,5
fasilitas penting, termasuk tetapi tidak dibatasi untuk		
bangunan monumental, Gedung sekolah, Rumah sakit		
dan fasilitas kesehatan, Fasilitas pemadam kebakaran,		
tempat perlindungan terhadap gempa bumi		

(Sumber: Standar Nasional Indonesia 1726-2012)

b. Kategori Desain Seismik

Setiap struktur juga memiliki suatu kategori desain seismik. Struktur dengan kategori resiko I, II, atau III dimana parameter S1 0,75 ditetapkan sebagai struktur dengan kategori desain seismik E. Sedangkan struktur berkategori resiko IV dimana S1 0,75 ditetapkan sebagai struktur dengan kategori desain seismik F. Semua struktur lainnya harus ditetapkan kategori desain seismiknya berdasarkan kategori resikonya dan parameter respon spektral percepatan desainnya (SDS dan SD1). Detail kategori desain seismik dapat dilihat pada Tabel 2.16 dan Tabel 2.17.

Tabel 2.16. KDS Parameter Respon Percepatan Periode Pendek

Nilai SDS	Kategori Resiko	
	I atau II atau III	IV
SDS < 0,167	A	A
0,167 SDS < 0,33	В	С
0,33 SDS < 0,50	С	D
0,50 SDS	D	D

Sumber: Standar Nasional Indonesia 1726-2012

Tabel 2.17. KDS Parameter Respon Percepatan Periode 1 detik

Nilai SDS	Kategori Resiko			
	I atau II atau III	IV		
SD1 < 0,167	A	A		
0,167 SD1 < 0,133	В	С		
0,133 SDS < 0,20	С	D		
0,20 SDS	D	D		

Sumber: Standar Nasional Indonesia 1726-2012

c. Klasifikasi Situs Struktur

situs harus diklasifikasikan terlebih dahulu dalam perumusan kriteria desain seismik suatu struktur di permukaan tanah. Profil tanah di situs harus diklasifikasikan sesuai dengan Tabel 2.18 berdasarkan profil tanah lapisan 30 m paling atas. Jenis tanah dikelompokkan menjadi 6 bagian, dengan pembagiannya berdasarkan besaran kecepatan rambat gelombang geser rata-rata (Vs), nilai hasil test penetrasi standar rata-rata (N), dan kuat geser niralir rata-rata Su. Klasifikasi kelas situs dijelaskan pada tabel 2.18 sebagai berikut:

Tabel 2.18. Klasifikasi Kelas Situs

Kelas Situs	Vs (m/detik)	N atau N _{ch}	Su (kPa)		
SA (batuan keras)	>1500	N/A	N/A		
SB (batuan)	750 sampai 150	N/A	N/A		
SC(tanah	350 sampai 750	>50	100		
keras,sangat					
padat dan batuan					
lunak)					
SD (tanah sedang)	175 sampai 350	15 sampai 50	50 sampai 100		
SE (tanah lunak)	< 175 < 15 < 50		< 50		
	Atau setiap profil tanah yang mengandung lebih dari 3m tanah				
	dengan karakteristik sebagaiberikut:				
	1. Indeks plastisitas, PI > 20				
	2. Kadar air, w 40 %				
	3. Kuat geser niralir Su < 25 kPa				
SF	Dibutuhkan investigasi khusus				

(Sumber: Standart Nasional Indonesia 1726-2012)

d. Sistem Struktur

Sistem penahan gaya gempa arah lateral dan vertikal dasar harus memenuhi salah satu dari tipe yang ditunjukkan dalam Tabel 2.19 Pembagian setiap tipe berdasarkan

elemen vertikal yang digunakan untuk menahan gaya gempa lateral. Sistem struktur yang digunakan juga harus sesuai dengan batasan sistem struktur dan batasan ketinggian struktur yang telah ditentukan

Koefisien modifikasi respon (R), faktor kuat lebih sistem (o), dan koefisien amplifikasi defleksi (Cd), digunakan dalam penentuan geser dasar, gaya desain elemen, dan simpangan antar lantai desain.

Tabel 2.19. Faktor R, o, dan Cd Untuk Sistem Penahan Gaya Seismik

Sistem Penahan Gaya Seismik	Koefisien Modifikasi Respon (R)	Faktor Kuat Lebih Sistem	Faktor Pembesa ran Defleksi	Kategori Desain Seismik				
	Respon (R)	(0)	(Cd)	В	С	\mathbf{D}^{d}	$\mathbf{E}^{\mathbf{d}}$	$\mathbf{F}^{\mathbf{d}}$
Sistem dinding penumpu								
Dinding rangka ringan (kayu) dilapisi dengan panel struktur kayu yang ditujukan untuk tahanan geser	61	3	4	ТВ	ТВ	20	20	20
2. Dinding rangka ringan dengan panel geser dari semua material lainnya	2	21	2	ТВ	ТВ	10	TI	TI
Sistem rangka bangunan								
3. Dinding rangka ringan (kayu) dilapisi dengan panel struktur kayu yang ditujukan untuk tahanan geser	7	21	4½	ТВ	ТВ	22	22	22
4. Dinding rangka ringan dengan panel geser dari semua material lainnya	21/2	21/2	21/2	ТВ	ТВ	10	ТВ	ТВ

Sumber: Standart Nasional Indonesia 1726-2012

e. Analisa Statik Ekivalen

Perhitungan analisa statik ekivalen adalah menggantikan beban gempa dengan gaya-gaya statik yang bertujuan menyederhanakan dan memudahkan perhitungan. Metode ini disebut juga Metode Gaya Lateral Ekivalen (Equivalent Lateral Force Method), yang mengasumsikan besarnya gaya gempa berdasarkan hasil perkalian suatu konstanta massa dari elemen tersebut.

Berdasarkan SNI 1726-2012 (Tata cara perencanaan ketahanan gempa untuk struktur bangunan gedung dan non gedung) gaya geser horisontal akibat gempa yang bekerja pada struktur bangunan dalam arah sumbu X (Vx) dan sumbu Y (Vy), ditentukan dari persamaan :

$$V=C$$
 s W, dimana : $V=G$ aya geser dasar

Koefisien respon seismik ditentukan dengan persamaan sebagai berikut:

$$C s = \frac{s d s}{\left(\frac{R}{I}\right)}$$

Nilai Cs yang dihitung tidak perlu melebihi:

$$C s = \frac{s d}{T\left(\frac{R}{I}\right)}$$

Dan Cs harus tidak kurang dari:

$$Cs = 0.044 \text{ Sds}.I \quad 0.01$$

Sedangkan daerah dimana s1 0,6 g maka Cs harus tidak dikurang:

$$C s = \frac{0.55 s d}{\left(\frac{R}{I}\right)}$$

Dimana: Sds = Parameter percepatan respon spektrum desain pendek

Sd1 = Parameter percepatan respon spektrum periode 1detik

I = Faktor keutamaan gedung

R = Faktor modifikasi response

T = Perioda fundamental struktur

Cs = Koefisien response seismic

Periode fundamental pendekatan (T) harus ditentukan dari persamaan berikut:

 $Ta = Ct.h_n^x$

Dimana : Ta = Perioda fudamental pendekatan

Ct = Koefisien (Tabel 2.20)

X = Koefisien (Tabel 2.20)

Hn = Ketinggian struktur

Tabel 2.20. Nilai Parameter Peroide Pendekatan Ct dan X

Tipe Struktur	Ct	X
Rangka baja pemikul momen	0,0724 ^a	0,8
Rangka beton pemikul momen	0,0466 ^a	0,9
Rangka baja dengan brecing eksentris	0,0731 ^a	0,75
Rangka baja dengan brecing terkekang terhadap tekuk	0,0731 ^a	0,75
Semua sistem struktur lainnya	0,0488 ^a	0,75

(Sumber: Standart Nasional Indonesia 1726-2012)

Gaya gempa lateral (Fx) yang timbul di semua tingkat harus ditentukan dari persamaan

berikut: Fx=Cvx V

Untuk menentukan Cvx menggunakan persamaan berikut:

$$C vx = \frac{Wx hx^k}{\sum_{i=1}^n wihi^k}$$

dimana: Cvx = Faktor distribusi vertikal

V = Gaya lateral desain total atau geser dasar struktur

wi dan wx = Bagian seismik efektif total struktur W yang dikenakan pada

tingkat I dan x

hi dan hx = Tinggi dari dasar tingkat I atau x

k = Eksponen yang terikat pada struktur

Tabel 2.21. Penentuan Nilai k

Perioda	K
Kurang dari 0,5 detik	1
2,5 detik atau lebih	2
0,5 detik – 2,5 detik	Interpolasi

(Sumber: standart Nasional Indonesia 1726:2012)

f. Desain Spektra

Desain spektra untuk beban gempa sesuai SNI 1726:2012 dihasilkan melalui pengolahan nilai respons spektra di batuan dasar pada periode 0,2 detik (Ss) dan 1 detik (S1). Nilai ini diperoleh melalui pembacaan peta gempa SNI 1726:2012 untuk 0,2 detik dan 1 detik.

Untuk menghasilkan respons spektra di permukaan, nilai Ss dan S1 lalu dikalikan dengan faktor amplifikasi sehingga dihasilkan nilai respons spektra permukaan S_{MS} dan S_{M1} .

S m s = Fa.Ss

S m 1 = Fv.S1

Dimana = Sms = Parameter response spectrum perioda pendek

Sm1 = Parameter response spectrum perioda 1 detik

Fa = Faktor amplifikasi (Tabel 2.22)

Fv = Faktor amplifikasi (Tabel 2.23)

Tabel 2.22. Faktor Amplifikasi Fa Percepatan Respons Spektrum Faktor

Site Class	Ss < 0,25	Ss = 0,5	Ss = 0,75	Ss = 1	Ss > 1,25
A	0,8	0,8	0,8	0,8	0,8
В	1	1	1	1	1
С	1,2	1,2	1,1	1	1
D	1,6	1,4	1,2	1,1	1
Е	2,5	1,7	1,2	0,9	0,9

(Sumber: Standart Nasional 1726:2012)

Tabel 2.23. Faktor Amplifikasi Fv Percepatan Respons Spektrum Faktor

Site Class	S1< 0,1	S1 = 0,2	S1 = 0,3	S1 = 0,4	S1> 0,5
A	0,8	0,8	0,8	0,8	0,8
В	1	1	1	1	1
С	1,7	1,6	1,5	1,4	1,3
D	2,4	2	1,8	1,6	1,5
Е	3,5	3,2	2,8	2,4	2,4

(Sumber: Standart Nasional 1726:2012)

Nilai S_{MS} dan S_{M1} terlebih dahulu dikalikan dengan 2/3, menghasilkan nilai respons spektra baru dengan sebutan S_{DS} dan S_{D1} .

$$Sd1\frac{2}{3} = S.m.1$$

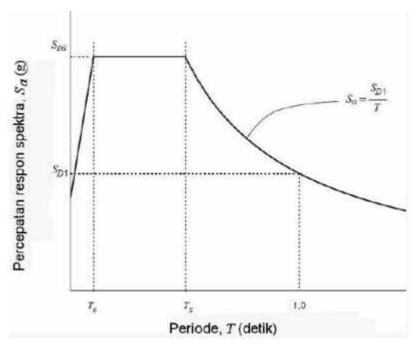
$$Sds\frac{2}{3} = S.m.s$$

Dimana: Sds= Parameter percepatan response spectrum perioda pendek

Sd1= Parameter percepatan response spectrum perioda 1 detik

Untuk menentukan desain spektra harus mengetahui periode *fundamental* struktur bangunan dengan rumus sebagai berikut:

TO =
$$0.2 \frac{s d}{s d s}$$


$$T s = \frac{s d}{s d s}$$

dimana: To = Periode awal

Ts = Periode *Fundamental* Struktur

Setelah mengetahui priode *fundamental* struktur tersebut maka untuk menentukan kurva *response spectrum* desain menggunakan ketentuan:

- 1. Untuk perioda < To, sa = sds $\left(0.4 + 0.6 \frac{T}{T0}\right)$
- 2. Untuk perioda Ts T T0, *response spectrum* percepatan desain Sa sama dengan Sds
- 3. Untuk perioda > Ts, Sa = $\frac{s d}{T}$

Gambar 2.8. Design response spectrum

F. Sambungan kayu

Sambungan kayu sering diperlukan karna alasan geometrik kayu itu sendiri guna memperpanjang batang kayu (overlapping connection) atau menggabungkan beberapa batang kayu pada satu buhul atau satu joint. Secara umum, bagian sambungan kayu merupakan bagian terlemah dari konstruksi kayu. Kegagalan dalam konstruksi kayu sering sekali diakibatkan oleh gagalnya dalam perencanaan sambungan pada material kayu tersebut. Kegagalan sambungan dapat berupa : bengkoknya alat sambung itu sendiri, pecahnya kayu diantara dua alat sambung, atau lendutannya (efek kumulatif dari sasaran alat sambung) sudah melampaui nilai toleransi.

Ciri-ciri alat sambung yang baik :

- Pengurangan luas kayu yag digunakan untuk menempatkan alat sambung relatif kecil atau bahkan nol.
- Memiliki nilai banding antara kuat dukung sambungan dengan kuat ultimit batang yang disambung yang tinggi.
- Menunjukkan perilaku pelelehan sebelum mencapai keruntuhan (daktail)
- Memiliki angka penyebaran panas yang rendah.
- Murah dan mudah dalam pemasangannya.

Jenis-jenis sambungan dan alat sambung:

Sambungan dapat dibedakan menjadi sambungan satu irisan (menyambungkan dua batang kayu), dua irisan (menyambungkan tiga batang kayu).

Berikut adalah jenis-jenis alat sambung yang digunakan, yaitu :

1. Lem

Bila dibandingkan dengan lat sambung yang lain, lem termasuk alat sambung yang bersifat getas. Keruntuhan sambungan dengan alat sambung lem terjadi tanpa adaya peristiwa pelelehan. Alat sambung lem umumnya digunakan pada struktur balok susun, atau produk kayu laminasi (glue lainated timber).

2. Alat sambung mekanik (Mechanical connector)

a. Paku

Alat sambung paku sering dijumpai pada struktur dinding, lantai, dan rangka. Paku bulat merupakan jenis paku yang udah diperoleh meskipun kuat dukungnya relatif lebih rendah bila dibandingkan dengan paku ulir.

50

Umumnya diameter paku berkisar antara 2,75-8 mm dan panjangnya

antara 40-200 mm. Angka kelangsingan paku (nilai banding antara

panjang terhadap diameter) sangat tinggi menyebabkan mudahnya paku

bengkok saat dipukul.

b. Baut

Alat sambung baut umumnya terbuat dari baja lunak dengan kepala

berbentuk hexagonal, square, dome, atau flat. Alat sambung baut

umummnya berdiameter antara ¼" sampai dengan 1¼". Untuk

kemudahan pemasangan, lubang baut diberi kelonggaran 1 mm. Alat

sambung baut biasanya digunakan pada sambungan dua irisan dengan

tebal minimum kayu samping adalah 30 mm dan kayu tengah adalah 40

mm dan dilengkapi cincin penutup.

Perencanaan sambungan baut

Nilai desain lateral acuan (Z) harus dikalikan dengan semua faktor koreksi

yang berlaku untuk nilai desain lateral terkoreksi (Z'). Beban yang bekerja

pada sambungan (Zu) tidak boleh melampaui nilai desain lateral terkoreksi

(Z') untuk sambungan.

 $Z' \leq Zu$

Dimana:

Zu = Tahanan Lateral Perlu Sambungan

Z' = Tahanan Lateral Terkoreksi Sambungan

Perhitungan sambungan memperhatikan faktor-faktor sebagai berikut :

Faktor koreksi nilai desain acuan sambungan

Tabel 2.24. Faktor koreksi nilai desain acuan sambungan

	DTI				DTI d	an D	FBK					DFBK	
	Faktor Durasi Beban ¹	Faktor Layan Basah	Faktor Temperatur	Faktor Aksi Kelompok	Faktor Geometri 3	Faktor Kedalaman Penetrasi	Faktor Serat Ujung ³	Faktor Pelat Logam Samping 3	Faktor Diafragma 3	Faktor Ujung Paku³	Faktor Konversi Format	Faktor Tahanan	Faktor Efek Waktu
											Kμ	Φ	
		Beb	an La	itera	i								
Pasak Z' = Z x (contoh : baut,sekrup kunci, sekrup kay paku, pantek, baut dorong, pin dorong		См	Cŧ	Cg	CΔ	111	Ceg	*	Ç	Ctn	3,32	0,65	λ
Pelat Geser Q' = Q x	Co	CM	Ct	Ce	C∆	C_d	*	+	*		3,32	0,65	λ
Keling Kayu P' = P x	Cp	См	Ct		9.00	*	-	Cst 4	*0		3,32	0,65	λ
Q' = Q x	Co	См	Ct		$C_{\Delta}^{\ 5}$	40		C _{st} ⁴			3,32	0,65	λ
Grid Pantek Z' = Z x	CD	C _M	Ct		Ca	-		-			3,32	0,65	λ
		Bel	oan C	abut									
Paku, Pantek, Sekrup Kunci, W' = W x Sekrup Kayu, dan Pin Dorong	Co	C _M ²	Ct		*	×	Ceg	-	1	См	3,32	0,65	λ

(Sumber: Spesifikasi desain untuk konstruksi kayu SNI 7973-2013)

Faktor temperatur C_t

Nilai desain acuan harus dikalikan faktor temperatur, Ct, untuk sambungan yang akan terekspos temperatur tinggi terus menerus hingga mencapai 65°C.

Tabel 2.25. Faktor temperatur C_t

Pada Kondisi	Ct							
Kelembaban Layan ¹	T ≤ 38°C	38°C < T <u>< 5</u> 2°C	52°C < T ≤ 65°C					
Kering	1	8,0	0,7					
Basah	1	0,7	0,5					

(Sumber: Spesifikasi desain untuk konstruksi kayu SNI 7973-2013)

Nilai ragam kelelehan (Satu irisan)

Tabel 2.26. Moda kelelehan satu irisan

Moda kelelehan	Tahanan lateral (Z)
I_n	$Z = \frac{0.83Dt_m F_{am}}{K_{\theta}}$
I_z	$Z = \frac{0.83Dt_s F_{es}}{K_{\theta}}$
П	$Z = \frac{0.93k_1Dt_zF_{sz}}{K_g}$
III _m	$Z = \frac{1,04k_2Dt_mF_{am}}{(1+2R_e)K_\theta}$
III_z	$Z = \frac{1,04k_3Dt_zF_{em}}{(2+R_e)K_\theta}$
IV	$Z = \left(\frac{1,04D^2}{K_{\theta}}\right) \sqrt{\frac{2F_{em}F_{yb}}{3(1+R_{e})}}$

(Sumber: Spesifikasi desain untuk konstruksi kayu SNI 7973-2013)

Dimana:

$$K1 = \frac{\sqrt{R_e + 2R_e^2(1 + R_t + R_t^2) + R_t^2 R_e^3} - R_e(1 + R_t)}{(1 + R_e)}$$

$$K2 = (-1) + \sqrt{2(1 + R_e) + \frac{2F_{yb}(1 + 2Re)D^2}{3F_{em}t_s^2}}$$

$$K3 = (-1) + \sqrt{\frac{2(1 + R_e)}{R_e} + \frac{2F_{yb}(1 + 2Re)D^2}{3F_{em}t_s^2}}$$

$$R_t = t_m/t_s$$

$$R_e = F_{em} / F_{es}$$

$$K = 1 + (/360^{\circ})$$

Nilai ragam kelelehan (Dua irisan)

Tabel 2.27. Moda kelelehan dua irisan

Moda kelelehan	Tahanan lateral (Z)
I_m	$Z = \frac{0.83Dt_m F_{em}}{K_{\theta}}$
I_z	$Z = \frac{1,66Dt_z F_{ez}}{K_{\theta}}$
III_z	$Z = \frac{2.08k_4Dt_zF_{em}}{(2+R_e)K_\theta}$
IV	$Z = \left(\frac{2.08D^2}{K_\theta}\right) \sqrt{\frac{2F_{em}F_{3b}}{3(1+R_e)}}$

(Sumber: Spesifikasi desain untuk konstruksi kayu SNI 7973-2013)

Dimana:

$${\rm K4} = (-1) + \sqrt{\frac{2(1+R_e)}{R_e} + \frac{F_{yb}(2+Re)D^2}{3F_{em}t_s^2}}$$

 $R_t = t_m \! / t_s$

 $R_e = F_{em} / F_{es}$

 $K = 1 + (/360^{\circ})$

D = Diameter Baut

t = Tebal penampang kayu

Fe = Kuat tumpu kayu (Mpa)

Rt = Rasio lebar kayu

Re = Rasio kuat tumpu

Fyb = kuat lentur baut (umumnya sebesar 320 Mpa)

Faktor layan basah C_{M}

Tabel 2.28. Faktor layan basah C_M

Tine Pengenceng	Kada	CM		
Tipe Pengencang	Saat Fabrikasi	Saat Layan	CM	
В	eban Lateral			
Kanaldas Cinaia Balah dan Balat	≤ 19%	≤ 19%	1,0	
Konektor Cincin Belah dan Pelat Geser ¹	> 19%	≤ 19%	0,8	
	berapapun	> 19%	0,7	
Pasak (contoh : baut, sekrup kunci,	≤ 19%	≤ 19%	1,0	
sekrup kayu, paku, pantek, baut	> 19%	≤ 19%	0,43	
dorong, pin dorong)	berapapun	> 19%	0,7	
Paku Keling Kayu	≤ 19%	≤ 19%	1,0	
Faku Keling Kayu	≤19%	> 19%	0,8	
	Beban Cabut			
Sekrup Kunci & Sekrup Kayu	berapapun	≤ 19%	1,0	
Sekiup Kulici & Sekiup Kayu	berapapun	> 19%	0,7	
	≤ 19%	≤ 19%	1,0	
Paku & Pantek	> 19%	≤ 19%	0,25	
r and a r amon	≤ 19%	> 19%	0,25	
	> 19%	> 19%	1,0	
Paku ulir yang diperkeras	berapapun	berapapun	1,0	

(Sumber: Spesifikasi desain untuk konstruksi kayu SNI 7973-2013)

- Untuk cincin belah atau pelat geser, batas kelembaban digunakan pada kedalaman
 19,05 mm di bawah permukaan kayu
- 2. CM = 0,7 untuk pasak dengan diameter, D, kurang dari 6,35 mm

CM = 1,0 untuk pasak dengan :

- 1) Hanya satu pengencang, atau
- 2) Dua atau lebih pengencang yang ditempatkan pada satu baris paralel serat,
- 3) Pengencang ditempatkan pada dua atau lebih baris paralel serat dengan pelat sambungan pemisah tiap baris.

Faktor aksi kelompok $C_{\rm g}$

Tabel 2.29. Faktor aksi kelompok C_g

A_z/A_m^{-1}	A_z		Ju	Jumlah baut dalam satu baris							
	(in²)	2	3	4	5	6	7	8			
	5	0,98	0,92	0,84	0,75	0,68	0,61	0,55			
	12	0,99	0,96	0,92	0,87	0,81	0,76	0,70			
0,5	20	0,99	0,98	0,95	0,91	0,87	7 0,61	0,78			
	28	1,00	0,98	0,96	0,93	0,90	0,87	0,83			
	40	1,00	0,99	0,97	0,95	0,93	0,90	0,87			
	64	1,00	0,99	0,98	0,97	0,95	7 0,61 0,76 0,83 0,87 0,90 0,93 0,71 0,84 0,89 0,92	0,91			
	5	1,00	0,97	0,91	0,85	0,78	0,71	0,64			
	12	1,00	0,99	0,96	0,93	0,88	0,84	0,79			
a.	20	1,00	0,99	0,98	0,95	0,92	0,89	0,86			
1	28	1,00	0,99	0,98	0,97	0,94	0,92	0,89			
	40	1,00	1,00	0,99	0,98	0,96	0,94	0,92			
	64	1,00	1,00	0,99	0,98	0,97	0,96	0,95			

(Sumber: Spesifikasi desain untuk konstruksi kayu SNI 7973-2013)

Faktor serat ujung C_{eg}

Ketika pengencang tipe-pasak dimasukkan pada serat ujung dari komponen struktur utama, dengan sumbu pengencang sejajar serat kayu, nilai desain lateral acuan, Z, harus dikalikan dengan faktor serat ujung, Ceg = 0,67.

Faktor geometri C_{Δ}

Jika memenuhi syarat jarak optimum (minimum), maka nilai $C_{\Delta}=1,00$, dan jika:

- Jarak Ujung ($C_{opt}=7.D$ atau 4.D), bila $C_{opt}/2 < c < C_{opt}$, maka $C = C/C_{opt}$

Jarak baut dalam satu baris

Jarak tepi

Jarak baut dalam satu baris

Jarak antar baris $(a_{opt}=4.D)$, bila $3.Dv < a < a_{opt}$, maka $C = a/a_{opt}$

Gambar 2.9 Geometri sambungan baut

Jarak baris antar baut

Jarak tepi yang tidak terbebani

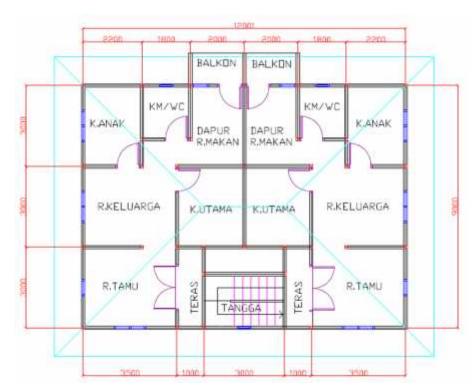
Faktor lainnya yang perlu juga diperhatikan adalah faktor konversi format, faktor ketahanan,nilai kuat tumpu kayu dan faktor efek waktu.

Nilai kuat tumpu kayu Fe

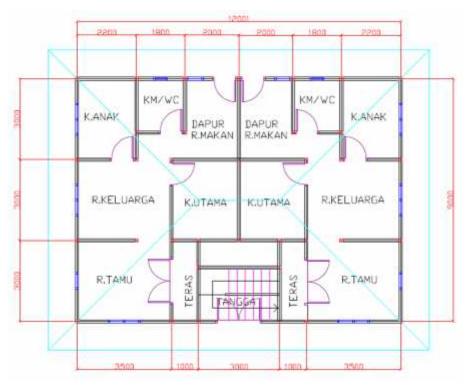
Tabel 2.30. Nilai kuat tumpu kayu Fe

Berat	F.	Fell					F.	1.				
jenis*		Diameter, D (mm)										
G	<6,35	>6,35	6,35	7,94	9,53	11,11	12,70	15,88	19,05	22,22	25,40	
0.73	56	51	47	42	38	35	33	29	27	25	23	
0,72	55	50	46	41	37	34	32	29	26	24	23	
0,71	53	50	45	40	36	34	32	28	26	24	22	
0,70	52	49	44	39	36	33	31	28	25	23	22	
0,69	51	48	43	38	35	32	30	27	25	23	21	
0,68	49	48	42	38	34	32	30	27	24	22	21	
0,67	48	47	41	37	34	31	29	26	24	22	21	
0,66	47	46	40	36	33	30	28	25	23	21	20	
0,65	45	46	39	35	32	30	28	25	23	21	20	
0,64	44	45	38	34	31	29	27	24	22	21	19	
0,63	43	44	38	34	31	28	27	24	22	20	18	
0,62	41	43	37	33	30	28	26	23	21	20	18	
0,61	40	43	36	32	29	27	25	23	21	19	18	
0,60	39	42	35	31	29	26	25	22	20	19	18	
0,59	38	41	34	31	28	26	24	22	20	18	17	
0,58	37	41	33	30	27	25	24	21	19	18	17	
0,57	36	40	32	29	27	25	23	21	19	17	16	
0,56	34	39	32	28	26	24	22	20	18	17	16	
0,55	33	39	31	28	25	23	22	20	18	16	15	
0,54	32	38	30	27	25	23	21	19	17	16	15	
0,53	31	37	29	26	24	22	21	18	17	16	15	
0,52	30	36	28	25	23	22	20	18	16	15	14	
0,51	29	36	28	25	23	21	20	17	16	15	14	
0,50	28	35	27	24	22	20	19	17	16	14	13	
0,49	27	34	26	23	21	20	18	17	15	14	13	
0,48	26	34	25	23	21	19	18	16	15	14	13	
0,47	25	33	25	22	20	19	17	16	14	13	13	
0,46	24	32	24	21	19	18	17	15	14	13	13	
0,45	23	32	23	21	19	17	16	15	13	12	1:	
0,44	22	31	22	20	18	17	16	14	13	12	11	
0,43	21	30	22	19	18	16	15	14	12	12	11	
0,42	20	29	21	19	17	16	15	13	12	11	10	
0,41	19	29	20	18	16	15	14	13	12	11	10	
0,40	19	28	19	17	16	15	14	12	11	10	10	
0,39	18	27	19	17	15	14	13	12	11	10	8	
0,38	17	27	18	16	15	14	13	11	10	10	9	
0,37	16	26	17	16	14	13	12	11	10	9	9	
0,36	15	25	17	15	14	13	12	11	10	9	8	
0,35	14	25	16	14	13	12	11	10	8	8	8	
0,34	14	24	15	14	13	12	11	10	9	8	8	
0,33	13	23	15	13	12	11	10	9	8	8	7	
0,32	12	22	14	13	11	11	10	9	8	8	7	
0,31	12	22	13	12	11	10	10	8	8	7	7	

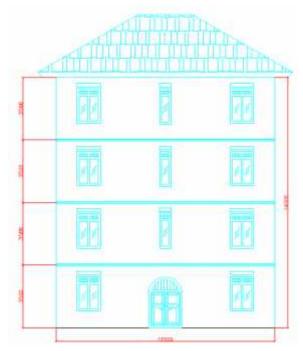
(Sumber: Spesifikasi desain untuk konstruksi kayu SNI 7973-2013)

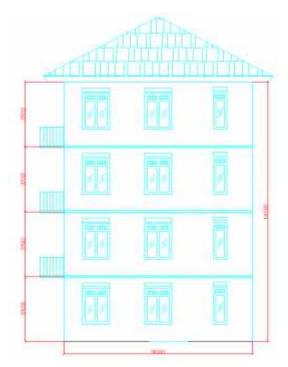

III. METODOLOGI PENELITIAN

A. Pendekatan Penelitian


Pendekatan penelitian yang digunakan adalah pendekatan kuantitatif, karena hasil penelitian yang dilakukan berupa angka atau bilangan yaitu merupakan hasil analisis struktur gedung dengan menggunakan software *Microsoft excel* dan program SAP2000.

B. Data Penelitian

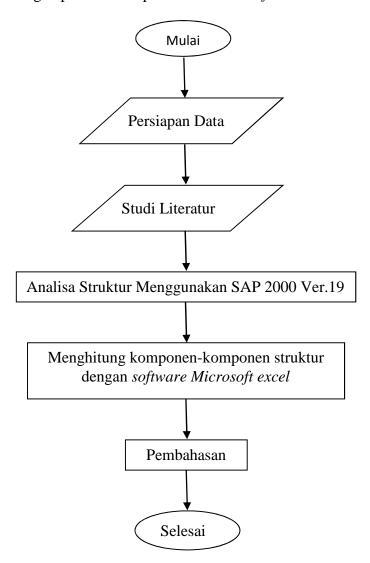

Dalam penelitian ini, akan didesain sebuah struktur bangunan apartemen 4 lantai yang terdiri atas pelat, balok dan kolom konstruksi kayu yang didesain sesuai dengan standar ketentuan: spesifikasi desain untuk konstruksi kayu SNI 7973:2013 dengan menggunakan material dasar adalah kayu mahoni dengan berat jenis 0.6483 kg/m³. Apartemen 4 lantai konstruksi kayu ini direncanakan di daerah kota Bandar Lampung, dimana wilayah kota Bandar Lampung merupakan kota yang perlu diperhitungkan beban gempanya saat perencanaan suatu konstruksi bangunan karna daerah Bandar Lampung juga rawan terhadap gempa.


Gambar 3.1 Denah lantai dasar

Gambar 3.2 Denah lantai 2, 3 dan 4

Gambar 3.3 Tampak depan

Gambar 3.4 Tampak samping


C. Prosedur Penelitian

Berikut prosedur yang digunakan dalam penelitian:

- 1. Mempersiapkan data penelitian
- 2. Melakukan studi literatur
- 3. Perhitungan pembebanan struktur, diantaranya:
 - a. Beban mati
 - b. Beban hidup
 - c. Beban gempa
- 4. Analisis struktur dengan menggunakan SAP2000 Ver.19, perhitungan elemen/komponen struktur berupa pelat, balok, kolom dan sambungan meggunakan software microsoft excel.
- Perancangan struktur bangunan apartemen 4 lantai konstruksi kayu sesuai spesifikasi desain untuk konstruksi kayu SNI 7973:2013

D. Kerangka Penelitian

Adapun kerangka penelitian dapat dilihat melalui flow chart berikut:

V. PENUTUP

A. Kesimpulan

Berdasarkan pengolahan data, maka diperoleh kesimpulan sebagai berikut:

1. Ketebalan pelat = 2 cm

2. *Joist* = 10/15 cm (jarak *joist* ke *joist* maksimum adalah 700 mm.)

3. Balok arah x = 10/25 cm

4. Balok arah y = 10/15 cm

5. Kolom lantai 1-4 = 20/20 cm

6. Sambungan balok ke kolom menggunakan 4 baut dimensi 19 mm

7. Sambungan perpanjangan balok menggunakan 4 baut 19 mm

8. Sambungan perpanjangan kolom menggunakan 4 baut dimensi 15,9 mm

B. Saran

Saran yang dapat diberikan oleh penulis berdasarkan pembahasan dan pengolahan data yang telah dilakukan adalah dengan mencoba data material bahan yang digunakan pada perhitungan dari hasil uji laboratorium sehingga data yang dipereloh menjadi lebih akurat.

DAFTAR PUSTAKA

- Akmal, Imelda. 2007. Menata Apartemen. Jakarta: Gramedia Pustaka Utama.
- Awaludin, A. 2005. *Dasar-Dasar Perencanaan Sambungan Kayu*. Bandung: Biro Penerbit KMTS FT. UGM.
- Badan Standarisasi Nasional. 2002. *Tata Cara Perencanaan Konstruksi Kayu*.

 Jakarta: BSN
- Badan Standarisasi Nasional. 2012. SNI 03-1726-2012 Tata Cara Perencanaan Ketahanan Gempa untuk Struktur Bangunan Gedung dan Non Gedung.

 Bandung: BSN
- Badan Standarisasi Nasional. 2012. SNI 1726:2012 Tata Cara Perencanaan Ketahanan Gempa Untuk Struktur Bangunan Gedung. Bandung: BSN
- Badan Standarisasi Nasional. 2013. SNI 03-1727-2013 Beban Minimum untuk Perancangan Bangunan Gedung dan Struktur lainnya. Jakarta: BSN.
- Badan Standarisasi Nasional. 2013. SNI 7973:2013 Spesifikasi Desain Untuk Konstruksi Kayu. Bandung: BSN
- Boen Teddy. 1995. Earthquake phenomena, two day course on earthquake resistant design of building, bangkok

- Chiara, J. D. 1986. Time *Saver Standards for Building Types*. New York: McGraw-Hill Companies.
- Departemen Pekerjaan Umum. 1983. *Peraturan Pembebanan Indonesia Untuk Bangunan Gedung (PPIUG 1983)*. Bandung : Yayasan Lembaga Penyelidikan Masalah Bangunan.
- Lutgens. 1982. Essentials of Geology. Ohio. A Bell & Howell Company. Columbus
- Marlina, Endy. 2008. *Panduan Perancangan Bangunan Komersial*. Andi Offset. Yogyakarta.
- Neufert, E. (1980). Data Arsitek. London: Granada.
- Stein.M.I. 1967. *Creativity and Culture*. Dalam R.L Moerey & T.A.Razik Exploration in Creativity.New York: Harper
- Sudarmoko. 1996. Struktur Pelat Beton. Yogyakarta: Biro