DAFTAR GAMBAR

<table>
<thead>
<tr>
<th>Gambar</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Kerangka pemikiran</td>
<td>6</td>
</tr>
<tr>
<td>2. Kangkung air (Ipomea aquatica Forsk.)</td>
<td>11</td>
</tr>
<tr>
<td>3. Ikan Lele Dumbo (Clarias gariepinus)</td>
<td>13</td>
</tr>
<tr>
<td>4. Desain kolam akuaponik</td>
<td>21</td>
</tr>
<tr>
<td>5. Desain wadah pemeliharaan tanaman</td>
<td>22</td>
</tr>
<tr>
<td>6. Konsentrasi Total Organic Carbon (TOC) pada kolam A (tanpa perlakuan) ulangan 1, 2, dan 3</td>
<td>31</td>
</tr>
<tr>
<td>7. Konsentrasi Total Organic Carbon (TOC) pada saluran Inlet. Perlakuan B (10 batang kangkung per rumpun), perlakuan C (20 batang kangkung per rumpun), dan pelakuan D (30 batang kangkung per rumpun)</td>
<td>32</td>
</tr>
<tr>
<td>8. Konsentrasi Total Organic Carbon (TOC) pada saluran Outlet. Perlakuan B (10 batang kangkung per rumpun), perlakuan C (20 batang kangkung per rumpun), dan pelakuan D (30 batang kangkung per rumpun)</td>
<td>33</td>
</tr>
<tr>
<td>9. Rerata pengurangan konsentrasi Total Organic Carbon (TOC) setiap perlakuan</td>
<td>34</td>
</tr>
<tr>
<td>10. Korelasi antara konsentrasi Total Organic Carbon (TOC) dan kelimpahan fitoplankton pada sistem budidaya akuaponik</td>
<td>36</td>
</tr>
<tr>
<td>11. Korelasi antara konsentrasi Total Organic Carbon (TOC) dan keragaman fitoplankton pada sistem budidaya akuaponik</td>
<td>37</td>
</tr>
</tbody>
</table>