ABSTRACT

THE INFLUENCE OF SINTERING TEMPERATURE ON THE STRUCTURE OF Na₂O FROM Na₂CO₃ PRODUCED BY COCONUT SHELL COMBUSTION

BY

VERA PRAWESTIANA

This research was carried out to study the influence of sintering temperature on the structure of Na₂O from Na₂CO₃. Na₂CO₃ obtained by flowing CO₂ gas of coconut shell combustion into NaOH solution to absorption and consentration of NaOH, with the consentration 9 and 10 M. The product was cleaned by using 70% alcohol, then filtered out and subsequently oven dried at 110 °C for 10 hours. The results obtained indicate that the amount of Na₂CO₃ produced depend on the concentration of NaOH solution with the highest yield obtained using 10 M NaOH solution. The Na₂CO₃ powder was characterized using FTIR to determine the functional groups formed. The Na₂CO₃ was sintered at 800, 825 and 850 °C for 3 hours to study the influence of sintering temperature on formation and structure of Na₂O. Na₂O powder was ground and then characterized using SEM-EDS, XRD and DSC-TGA. FTIR results show all samples have the same functional groups associated with standard, include C=O and CO_3^{2-} with additional functional groups of -OH, C-H dan C-S, likely the resulted from water and some natural impurities of coconut shell. The results of SEM indicated that the sample sintered at 850 °C was small grain sizes distributed homogenously. The results of XRD samples after sintering at 800 and 825 °C show presence Na₂CO₃ and Na₂O while after sintering at 850 °C the phase indentified was Na₂O. Thermal analysis by DSC-TGA indicates that convertion Na₂CO₃ to Na₂O depends on the concentration of NaOH solution used, with the highest yield obtained using consentration of 9 M.

Key words: *Na*₂*O*, *Na*₂*CO*₃, *CO*₂ gas, coconut shell, sintering temperature, function^{*n*} groups, microstructure, phase, termal.