Pengenalan Tulisan Tangan Alfabet Menggunakan Scale-Invariant Feature Transform (SIFT)

DANIEL ARGADO SIMANJUNTAK , 1417051030 (2019) Pengenalan Tulisan Tangan Alfabet Menggunakan Scale-Invariant Feature Transform (SIFT). FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM, UNIVERSITAS LAMPUNG.

[img]
Preview
Text
ABSTRAK.pdf

Download (264Kb) | Preview
[img] Text
SKRIPSI FULL.pdf
Restricted to Repository staff only

Download (3617Kb)
[img]
Preview
Text
SKRIPSI TANPA BAB PEMBAHASAN.pdf

Download (3618Kb) | Preview

Abstrak

Penelitian ini merupakan salah satu pengembangan penelitian menggunakan metode SIFT yang diterapkan pada tulisan tangan Latin. Penelitian ini menggunakan metode SIFT dalam mengekstraksi fitur karena Descriptor berbasis SIFT mengungguli descriptor local kontemporer lainnya pada bagian tekstur dan struktur, dengan perbedaan hasil yang lebih besar pada bagian tekstur. Data penelitian ini terdiri dari citra pada masing-masing huruf dalam bentuk huruf kecil ataupun besar. Metode klasifikasi menggunakan SVM dan 10-fold cross validation sebagai perbandingan akurasi pada pengenalan karakter tulisan tangan Latin. Hasil penelitian menunjukkan bahwa: (1) Ekstraksi fitur SIFT berhasil diimplementasikan pada pengenalan karakter tulisan tangan Latin. (2) Penggunaan fitur SIFT sudah cukup baik dalam pengenalan karakter tulisan tangan Latin. (3) Akurasi tertinggi didapatkan pada penggunaan Kernel Linear LibSVM dengan nilai mencapai 84.13% dengan train 10-fold CV dan 83.37% dengan train normal. Dari akurasi tersebut dapat dilihat nilai Mean Squared Error, yang dikelompokkan kedalam 2 jenis kesalahan klasifikasi, (1) Bentuk huruf yang mirip dan (2) Jumlah garis yang sama sehingga terjadi misklasifikasi pada data tersebut. Kata Kunci: D-SIFT, SVM, 10-fold Cross Validation, Alfabet Latin, MATLAB. abstract This research is one of the further research developments using the SIFT method which is applied to Latin handwriting. This study uses the SIFT method in extracting features because SIFT-based Descriptors outperform other contemporary local descriptors in the texture and structure sections, with a greater difference in results in the texture section. This research data consists of images in each letter in the form of lower or uppercase letters. Classification method using SVM and 10- fold cross validation as a comparison of accuracy in Latin handwriting character recognition. The results showed that: (1) The extraction of the SIFT feature was successfully implemented in the Latin handwriting character recognition. (2) The use of the SIFT feature is good enough in the introduction of Latin handwriting characters. (3) The highest accuracy is obtained with the use of the LibSVM Linear Kernel with values reaching 84.13% with a 10-fold CV train and 83.37% with a normal train. From this accuracy, it can be seen the Mean Squared Error value, which is grouped into 2 types of misclassification, (1) The shape of the letters are similar and (2) The same number of lines so that misclassification occurs in the data. Keywords: D-SIFT, SVM, 10-fold Cross Validation, Latin Alfabet, MATLAB.

Tipe Karya Ilmiah: Skripsi
Subyek: Q Science (General)
Q Science (General) > QA Mathematics > QA76 Computer software
Program Studi: Fakultas MIPA > Prodi Ilmu Komputer
Depositing User: 188755206 . Digilib
Date Deposited: 27 Dec 2019 08:24
Last Modified: 27 Dec 2019 08:24
URI: http://digilib.unila.ac.id/id/eprint/60535

Actions (login required)

View Item View Item