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ABSTRACT 

 

COMPARISON OF SPATIAL AUTOREGRESSIVE (SAR)  

AND GEOGRAPHICALLY WEIGHTED REGRESSION (GWR)  

BASED ON SIMULATION STUDY 

 

by 

 

Hilda Venelia 

 

Spatial regression is an analysis that evaluates the relationship between one variable 

and several other variables that have spatial effects on several locations.  There are 

two basic spatial concepts, namely spatial dependency and spatial heterogeneity.  

There are supervised learning techniques for regression that model spatial 

dependency, one of them is Spatial Autoregressive (SAR).   In contrast to SAR, 

Geographically Weighted Regression (GWR) is a spatial regression method 

commonly used in data containing spatial heterogeneity.   This study will compare 

which method is better between SAR and GWR for modeling spatial data if the data 

contains both spatial aspects, namely spatial dependency and spatial heterogeneity 

using simulation study.  The simulation results of this study, based on bias, MSE 

and AIC of each model, it has been obtained that the SAR method is better than the 

GWR method for modeling data containing these two spatial aspects (spatial 

dependency and heterogeneity).  
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I. INTRODUCTION 

 

 

1.1 Background and Problem 

 

Regression analysis is one of the statistical methods that can be used to find out the 

relationship between variables. Regression analysis depends on several 

assumptions that must be satisfied. The independence of error terms is a major 

assumption that is hardly met when data come from contiguous observations.  When 

this assumption is violated, the inference on the coefficient becomes invalid in the 

conventional regression, i.e., Ordinary Least Square (OLS), due to inflated standard 

error.  In addition, the heterogenous residual also allows the resulting model to be 

unable to explain the entire data.  Problems like this usually arise when the data 

used is data that contains geographic elements, where the observation in one region 

can affect the observation in another adjacent region or the observation between 

adjacent regions has a correlation.  Conditions that are influenced by spatial aspects 

or geographical conditions of a research area allow for spatial dependencies and 

spatial heterogeneity.  So, with problems like this, it is no longer effective to use 

classical regression analysis. For this reason, one method that can be used on data 

containing spatial aspects is spatial regression analysis.   

 

Spatial regression is an analysis that evaluates the relationship between one variable 

and several other variables that have spatial effects on several locations.  Spatial 

regression is able to overcome the spatial aspect of the data by considering the 

contiguity of observations in the model.  There are two basic spatial concepts, 

namely spatial dependency and spatial heterogeneity.  Spatial dependency appears 

based on Tobler's first law that “everything is related to everything else, but near 

things are more related than distant things” and spatial heterogeneity is a spatial 

effect that shows the diversity between locations.  There are supervised learning 
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techniques for regression that model spatial dependency, one of them is Spatial 

Autoregressive (SAR) [1].  SAR is one of spatial regression method with area 

approaches that combines a linear regression model with spatial lag on dependent 

variables using cross-section data and first introduced by Anselin [2].  Some studies 

have applied SAR models in various fields of science, such as [3–5].  For example, 

in the research of Hoef, et al. which uses the SAR model for inference statistics on 

ecological data [6].  Li and Zhou's research that aimed to look at factors affecting 

urban water quality in China using SAR models [7].  Koley and Bera’s research 

that considered the testing for spatial dependence in SAR model with an 

endogenous regressor [8]. 

 

Another method of spatial regression analysis with a point approach is 

Geographically Weighted Regression (GWR) which was developed by Brunsdon, 

et al. [9].  In contrast to SAR, GWR is a spatial regression method commonly used 

in data containing spatial heterogeneity.  Brunsdon, et al. also mentioned that GWR 

is a method by considering location elements as weights in estimating parameters 

so that each location has different regression parameters.  Advantages GWR is the 

basis of the GWR framework which uses a classical regression framework and 

incorporates spatial relationships into the regression framework [10].  GWR 

analysis has also been widely used in various fields, such as in [11–15].  For 

example, Yacim and Boshoff’s research that examined the influence of four spatial 

weighting functions and bandwidths on GWR using data on 3,232 house sales in 

Cape Town [16].  The research of Li, et al. that innovated geographically and 

temporally weighted co-location to the analysis of spatiotemporal crime patterns in 

greater Manchester using Monte Carlo simulation [17].  Then, the research of 

Wang, et al. that used GWR for simulating the spatial heterogeneity of housing 

prices in Wuhan, China [18]. 

 

In its application, the SAR method is able to model data containing spatial 

dependencies, while the GWR method is able to model data containing spatial 

heterogeneity.  Both methods are good regression analysis methods for modeling 

spatial data with their respective problems. Therefore, in this study, the SAR and 
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GWR method will be compared for modeling spatial data when the data contains 

both spatial aspects, namely spatial dependency and spatial heterogeneity. 

 

1.2 Research Objectives 

 

The purpose of this research is to compare empirically the performance of SAR and 

GWR in spatial regression analysis when data containing spatial dependency and 

heterogeneity based on bias, Mean Square Error (MSE) and Akaike’s Information 

Criterion (AIC). 

 

1.3 Benefits of Research 

 

The benefit of this study is to provide new references to readers about which model 

is better between SAR and GWR to overcome data containing spatial dependency 

and spatial heterogeneity based on the results of simulation study. 

 



 

 

 

 

II. LITERATURE REVIEW 

 

 

2.1 Linear Regression 

 

Regression analysis is one of the statistical techniques commonly used to 

investigate the influence of independent variables (predictors) on dependent 

variables (responses).  In general, the regression model for 𝑛 observations with 

independent variable 𝑝 can be written as follows [10]: 

𝑦𝑖 = 𝛽0 + ∑ 𝛽𝑘𝑥𝑖𝑘

𝑝

𝑘=1

+ 𝜀𝑖                                             (1) 

with, 

𝑦𝑖 : observation value of dependent variable on 𝑖-th observation, 

𝑥𝑖𝑘 : observation value of independent variable on 𝑖-th observation, 

𝛽0 : intercept of regression model, 

𝛽𝑘 : regression coefficient of 𝑘-th independent variable, 

𝜀𝑖 : error of 𝑖-th observation, 

where 𝑖 = 1,2, … , 𝑛 and assumed 𝜀𝑖~𝐼𝐼𝐷𝑁(0, 𝜎2), namely independent identically 

normal distributed of error. 

 

Equation (1) it can be denoted in the form of the following matrices [19]: 

𝐲 = 𝐗𝛃 + 𝛆 

where, 

𝐲 = [

𝑦1

𝑦2

⋮
𝑦𝑛

] , 𝐗 = [

1 𝑥11

1 𝑥21

𝑥12 … 𝑥1𝑝

𝑥22 … 𝑥2𝑝

⋮ ⋮
1 𝑥𝑛1

⋮ ⋱ ⋮
𝑥𝑛2 … 𝑥𝑛𝑝

] , 𝛃 = [

𝛽0

𝛽1

⋮

𝛽𝑝

] , 𝛆 = [

𝜀1

𝜀2

⋮

𝜀𝑛

]. 
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The parameter estimation of 𝛽 can be done using OLS method, by minimizing the 

sum of square of error so that obtained  𝛃̂ that is an unbiased estimator for 𝛃 [20] 

𝛃̂ = (𝐗𝐓𝐗)−𝟏𝐗𝐓𝐲                                                      (2) 

which 𝐗 is full column rank. 

 

To find whether the model would be a good fit for the given data set, the coefficient 

of determination or 𝑅2 is used and the formula is as follows: 

𝑅2 = 1 −
𝑆𝑆𝐸

𝑆𝑆𝑇
= 1 −

∑ (𝑦𝑖 − 𝑦̂)2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦̅)2𝑛
𝑖=1

 

where 𝑅2 explains the proportion of the variance in the dependent variable that is 

predicted from the independent variables. 

 

2.2 Spatial Regression 

 

Spatial regression is an analysis that evaluates the relationship between one variable 

and several other variables that have spatial effects on several locations.  The 

general model of spatial regression is stated in the following equation [2]: 

𝐲 = ρ𝐖1𝐲 + 𝐗𝛃 + 𝐮 

𝐮 = λ𝐖2𝐮 + 𝛆 

𝛆~𝑁(𝟎, 𝜎2𝐈) 

with,  

𝐲 : dependent variable matrix (𝑛 × 1), 

𝐗 : independent variable matrix (𝑛 × (𝑘 + 1)), 

𝜷 : coefficient vector of parameter regression ((𝑘 + 1) × 1), 

𝜌 : coefficient parameter lag spatial of dependent variable, 

𝜆 : coefficient parameter lag spatial in error|𝜆| < 1, 

𝒖, 𝜺 : error vector (𝑛 × 1), 

𝑾 : spatial weighting matrix (𝑛 × 𝑛), 

where 𝑛 is the number of observation or location and 𝑘 is the number of independent 

variables. 
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2.3 Spatial Weighting Matrix 

 

Spatial weighting matrix (𝐖) can be obtained based on distance information from 

the proximity of neighbor or in other words the distance between one region and 

another region.  The common form of spatial weighting matrix (𝐖) is as follows 

[21]: 

𝐖 = [

𝑤11 𝑤12

𝑤21 𝑤22

⋮
𝑤𝑛1

⋮
𝑤𝑛2

… 𝑤1𝑛

… 𝑤2𝑛

⋱
…

⋮
𝑤𝑛𝑛

]. 

 

The elements of 𝐖 above are 𝑤𝑖𝑗 with 𝑖 is the row on element 𝐖 and 𝑗 is the column 

on element 𝐖.  Element 𝐖 above consists of two values, namely zero or one, where 

the value 𝑤𝑖𝑗 = 1 for the region adjacent to the location of observation and 𝑤𝑖𝑗 = 0 

for the region not adjacent to the location of observation. 

 

There are several methods to determine the spatial weighting matrix. One of them 

is the Queen Contiguity method. The calculation of the weighting matrix using the 

Queen Contiguity method is illustrated in the following figure [22]. 

 

     

 1 2 3  

 4 5 6  

 7 8 9  

     

Figure 1.  Queen Contiguity method illustration. 

 

In Figure 1, nine regions are illustrated as observations. An element of the matrix 

is defined as 1 if the common side and common vertex are adjacent to the area of 

interest.  The other regions are defined as elements of the matrix with a value of 0. 

For example, for region number 5 obtained 𝑤51 = 𝑤52 = 𝑤53 = 𝑤54 = 𝑤56 =

𝑤57 = 𝑤58 = 𝑤59 = 1 and the others are 0.  Whereas, for region number 9 obtained 

𝑤95 = 𝑤96 = 𝑤98 = 1 and the others are 0.  Then, 𝐖 order 9 × 9 has the following 

form. 
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𝐖 =

[
 
 
 
 
 
 
 
 
0 1 0
1 0 1
0 1 0

1 1 0
1 1 1
0 1 1

0 0 0
0 0 0
0 0 1

1 1 0
1 1 1
0 1 1

0 1 0
1 0 1
0 1 0

1 1 0
1 1 1
0 1 1

0 0 0
0 0 0
0 0 0

1 1 0
1 1 1
0 1 1

0 1 0
1 0 1
0 1 0]

 
 
 
 
 
 
 
 

 

 

2.4 Spatial Data Aspects 

 

Modeling on spatial data can be grouped based on the type of spatial data used, 

namely spatial point and spatial area.  In analyzing spatial data, there are two basic 

spatial concepts, namely spatial dependency that looks at the dependence between 

observations and spatial heterogeneity that looks at diversity between observations.  

Spatial analysis is done if the data used meets the spatial aspect, which has a 

correlated error or has spatial heterogeneity. 

 

2.4.1 Spatial Dependency 

 

Spatial dependency tests are conducted to see if observations at one location affect 

observations in other adjacent locations.  Spatial dependency testing is performed 

with Moran's I test with the following hypotheses [22]. 

𝐻0 ∶ 𝐼 = 0 (there is no spatial dependency) 

𝐻1 ∶ 𝐼 ≠ 0 (there is the spatial dependency) 

The statistical test of Moran's I index are derived in the random variable statistics 

of standard normal.  It is based on Central Limit Theorem whereby for the large 𝑛 

and variances is known, then 𝑍𝐼 will distributed with standard normal as follows: 

𝑍𝐼 =
𝐼 − 𝐸(𝐼)

√𝑉𝑎𝑟(𝐼)
                                                      (3) 

with, 

𝐼 : Moran’s I index, 

𝑍𝐼 : the statistical test value of Moran’s I index, 

𝐸(𝐼) : the expected value of Moran’s I index, 
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𝑉𝑎𝑟(𝐼) : the variances of Moran’s I index. 

 

𝐼 =
𝛆̂T𝐖𝛆̂

𝛆̂T𝛆̂
 

𝐼0 = 𝐸(𝐼) =
𝑡𝑟(𝐌𝐖)

𝑛 − 𝑝
 

𝑉𝑎𝑟(𝐼) =
𝑡𝑟(𝐌𝐖𝐌𝐖T) + 𝑡𝑟(𝐌𝐖𝐌𝐖) − (𝑡𝑟(𝐌𝐖))

2

(𝑛 − 𝑝)(𝑛 − 𝑝 − 2)
− [𝐸(𝐼)]2 

where, 

𝐌 = [𝐈 + 𝐗(𝐗T𝐗)−1𝐗T] and the value of index I in between -1 and 1.  

 

The area of rejection is rejected 𝐻0 if |𝑍𝐼| > 𝑍𝛼/2  or 𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 𝛼.  If 𝐼 > 𝐼0  

means the data has a positive autocorrelation and if 𝐼 < 𝐼0 means the data has a 

negative autocorrelation [23]. 

 

2.4.2 Spatial Heterogeneity 

 

Spatial heterogeneity occurs due to differences in characteristics of one region with 

another region.  The location position of an observation allows for a relationship 

with other observations that are close to each other.  Spatial heterogeneity testing is 

conducted with Breusch-Pagan test statistics with the following hypothesis [2]. 

𝐻0 ∶ 𝜎1
2 = 𝜎2

2 = ⋯ = 𝜎𝑛
2 = 𝜎2 

𝐻1 ∶ at least one 𝜎𝑖
2 ≠ 𝜎2 

Statistical test: 

𝐵𝑃 = (
1

2
) 𝒇𝑇𝒁(𝒁𝑇𝒁)−1𝒁𝑇𝒇                                            (4) 

where 𝒇 = (𝑓1, 𝑓2, … , 𝑓𝑛)𝑇 with 𝑓𝑖 = (
𝑒𝑖

2

𝜎2
− 1) and 𝑒𝑖 = 𝑦𝑖 − 𝑦̂𝑖 is least square 

residual for 𝑖-th observation.  𝒁 is a matrix (𝑛 × (𝑝 + 1)) that contains vectors that 

have been standardized for each observation. 

 

The area of rejection is rejected 𝐻0 if 𝐵𝑃 > 𝜒𝑝
2 or if 𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 𝛼 with 𝑝 is the 

number of independent variables. 
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2.5 Spatial Autoregressive (SAR) 

 

Spatial Autoregressive Model (SAR) or Spatial Lag Model (SLM) is a model that 

combines linear regression models with spatial lag on dependent variables using 

cross-section data [2].  Spatial lag arises when the observation value of a dependent 

variable at a location correlates with the observation value of the dependent variable 

in the surrounding location or in other words there is a spatial correlation between 

dependent variables.  In this model there is a function of the dependent variable at 

𝑗 location which is used as an independent variable to predict the value of the 

dependent variable at 𝑖 location.  SAR model is generally written as follows [24]. 

𝐲 = ρ𝐖𝐲 + 𝐗𝛃 + 𝛆                                                     (5) 

𝛆~𝑁(𝟎, 𝜎2𝐈) 

 

2.5.1 Parameter Estimation of SAR Model 

 

Parameter estimation in SAR model can be done through Maximum Likelihood 

Estimation (MLE) method.  The first step is to form the likelihood function of 

Equation (5).  The formation of likelihood function is done with 𝜀 so that is obtained 

as follows: 

𝐲 = ρ𝐖𝐲 + 𝐗𝛃 + 𝛆 

𝛆 = 𝐲 − ρ𝐖𝐲 − 𝐗𝛃 

𝛆 = (𝐈 − ρ𝐖)𝐲 − 𝐗𝛃                                                                                                        (6) 

𝐿(𝜎2; 𝜀) = (
1

2𝜋𝜎2
)

𝑛
2
exp(−

1

2𝜎2
(𝜺𝑇𝜺))                                                                   (7) 

𝐿(𝜌, 𝜷, 𝜎2|𝒚) = (
1

2𝜋𝜎2
)

𝑛
2
(𝐽) exp (−

1

2𝜎2
(𝜺𝑇𝜺))                                                    (8) 

with 𝐽 = |
𝜕𝜺

𝜕𝒚
| = |𝐈 − ρ𝐖| is Jacobian function, which derivative of Equation (6) of 

𝒚.  Then substitute Equation (6) to Equation (8) so that is obtained: 

𝐿(𝜌, 𝜷, 𝜎2|𝒚) = (
1

2𝜋𝜎2
)

𝑛
2
|𝐈 − ρ𝐖| exp (−

1

2𝜎2
(((𝐈 − ρ𝐖)𝐲 − 𝐗𝛃)

𝑇
((𝐈 − ρ𝐖)𝐲 − 𝐗𝛃))) 

ln(𝐿) =
𝑛

2
ln (

1

2𝜋𝜎2
) + ln|𝐈 − ρ𝐖| −

1

2𝜎2
(((𝐈 − ρ𝐖)𝐲 − 𝐗𝛃)

𝑇
((𝐈 − ρ𝐖)𝐲 − 𝐗𝛃)) 
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ln(𝐿) = −
𝑛

2
ln(2𝜋) −

𝑛

2
ln(𝜎2) + ln|𝐈 − ρ𝐖| −

1

2𝜎2
(((𝐈 − ρ𝐖)𝐲 − 𝐗𝛃)

𝑇
((𝐈 − ρ𝐖)𝐲 − 𝐗𝛃)). 

Furthermore, the estimation of parameter 𝛃 obtained by maximizing the natural 

logarithm function, which derivative the equation of 𝛃 so that can be expressed as 

follows. 

𝑑

𝑑𝛃
ln(𝐿) = −2𝐗𝑇(𝐈 − ρ𝐖1)y + 2𝐗𝑇𝐗𝛃̂ = 𝐗𝑇(𝐈 − ρ𝐖1)y − 𝐗𝑇𝐗𝛃̂ = 0 

Therefore, the estimator of parameter SAR model is obtained  

𝛃̂ = (𝐗T𝐗)−1𝐗T(𝐈 − ρ𝐖)𝐲                                             (9) 

or 𝛃̂ = 𝛃̂𝐺 − 𝜌𝛃̂𝐿 with 𝛃̂𝐺 = (𝐗T𝐗)−1𝐗T𝐲 and 𝛃̂𝐿 = (𝐗T𝐗)−1𝐗T𝐖𝐲.  Such that, 

we also find 𝛆̂𝐺 = 𝐲 − 𝐗𝛃̂𝐺  and 𝛆̂𝐿 = 𝐖1𝐲 − 𝐗𝛃̂𝐺. 

 

While the natural logarithm function to estimate 𝜌 is 

ln(𝐿(𝜌)) = −
𝑛

2
ln(2𝜋) −

𝑛

2
ln (

[𝑒0 − 𝜌𝑒𝑑]𝑇[𝑒0 − 𝜌𝑒𝑑]

𝑛
) + ln|𝐈 − ρ𝐖| −

1

2
 

ln(𝐿(𝜌)) = −
𝑛

2
ln(2𝜋) −

𝑛

2
ln{[𝑒0 − 𝜌𝑒𝑑]𝑇[𝑒0 − 𝜌𝑒𝑑]} −

𝑛

2
ln(𝑛) + ln|𝐈 − ρ𝐖| −

1

2
 

so, the parameter estimate 𝜌̂ obtained by optimizing the following equation 

𝑓(𝜌) = 𝐶 −
𝑛

2
ln{[𝑒0 − 𝜌𝑒𝑑]𝑇[𝑒0 − 𝜌𝑒𝑑]} + ln|𝐈 − ρ𝐖| 

where, 

𝐶 = −
𝑛

2
ln(2𝜋) −

𝑛

2
ln(𝑛) −

1

2
, 

𝑒0 = 𝛆̂𝐺  dan 𝑒𝑑 = 𝛆̂𝐿, 

𝜎̂2 =
[𝑒0 − 𝜌𝑒𝑑]𝑇[𝑒0 − 𝜌𝑒𝑑]

𝑛
. 

 

2.6 Geographically Weighted Regression (GWR) 

 

Geographically Weighted Regression (GWR) is a model developed by Brunsdon, 

et al. [9] for continuous dependent variables.  This model is a local regression model 

that produces a local model parameter estimator for each point or location where 

the data is collected such that each location point has different regression 

parameters.  In GWR model, dependent variable is predicted by independent 
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variable whose regression coefficient depends on the location where the data is 

observed.  GWR model can be written as follows [10]: 

𝑦𝑖 = 𝛽0(𝑢𝑖, 𝑣𝑖) + ∑ 𝛽𝑘(𝑢𝑖, 𝑣𝑖)𝑥𝑖𝑘

𝑝

𝑘=1

+ 𝜀𝑖                              (10) 

where, 

𝑦𝑖 : observation value of dependent variable for 𝑖-th location, 

𝑥𝑖𝑘 : observation value of 𝑘-th independent variable for 𝑖-th location, 

𝛽0(𝑢𝑖, 𝑣𝑖) : intercept of GWR model, 

𝛽𝑘(𝑢𝑖, 𝑣𝑖) : regression coefficient of 𝑘-th independent variable for 𝑖-th location, 

(𝑢𝑖, 𝑣𝑖) : coordinate of geographical location namely longitude (long) and 

latitude (lat) for 𝑖-th location, 

𝜀𝑖 : error of 𝑖-th observation and follow an independent normal distribution  

  with zero mean and variance 𝜎2 [25]. 

 

2.6.1 Parameter Estimation of GWR Model 

 

In the estimation of parameters in the GWR model is used the Weighted Least 

Square (WLS) method, which is to provide different weighting at each location 

where the data is observed.  Suppose the weighting for location (𝑢𝑖 , 𝑣𝑖) is 𝑤𝑗(𝑢𝑖, 𝑣𝑖) 

(𝑗 = 1,2, … , 𝑛), then parameter for observation of location (𝑢𝑖, 𝑣𝑖) is estimated by 

adding weighting elements 𝑤𝑗(𝑢𝑖 , 𝑣𝑖) in Equation (10).  Then minimize the sum 

squares of error so that the following equation is obtained. 

∑𝑤𝑗(𝑢𝑖, 𝑣𝑖)𝜀𝑗
2

𝑛

𝑗=1

= ∑𝑤𝑗(𝑢𝑖, 𝑣𝑖)

𝑛

𝑗=1

[𝑦𝑗 − 𝛽0(𝑢𝑖, 𝑣𝑖) − ∑ 𝛽𝑘(𝑢𝑖, 𝑣𝑖)𝑥𝑖𝑘

𝑝

𝑘=1

]

2

 

Therefore, the estimation of parameters with the WLS method is obtained from the 

equation in the following matrix. 

𝛆𝑇𝐖(𝑢𝑖 , 𝑣𝑖)𝛆 = [𝐲 − 𝐗𝛃(𝑢𝑖, 𝑣𝑖)]
𝑇𝐖(𝑢𝑖, 𝑣𝑖)[𝐲 − 𝐗𝛃(𝑢𝑖, 𝑣𝑖)] 

𝛆𝑇𝐖(𝑢𝑖, 𝑣𝑖)𝛆 = 𝐲𝑇𝐖(𝑢𝑖, 𝑣𝑖)𝐲 − 𝐲𝑇𝐖(𝑢𝑖, 𝑣𝑖)𝐗𝛃(𝑢𝑖, 𝑣𝑖) − 𝛃𝑇(𝑢𝑖, 𝑣𝑖)𝐗
𝑇𝐖(𝑢𝑖, 𝑣𝑖)𝐲

+ 𝛃𝑇(𝑢𝑖, 𝑣𝑖)𝐗
𝑇𝐖(𝑢𝑖, 𝑣𝑖)𝐗𝛃(𝑢𝑖, 𝑣𝑖) 

𝛆𝑇𝐖(𝑢𝑖, 𝑣𝑖)𝛆 = 𝐲𝑇𝐖(𝑢𝑖, 𝑣𝑖)𝐲 − 2(𝛃𝑇(𝑢𝑖 , 𝑣𝑖)𝐗
𝑇𝐖(𝑢𝑖 , 𝑣𝑖)𝐲) + 𝛃𝑇(𝑢𝑖 , 𝑣𝑖)𝐗

𝑇𝐖(𝑢𝑖, 𝑣𝑖)𝐗𝛃(𝑢𝑖 , 𝑣𝑖) 

𝛆𝑇𝐖(𝑢𝑖 , 𝑣𝑖)𝛆 = 𝐲𝑇𝐖(𝑢𝑖 , 𝑣𝑖)𝐲 − 2𝛃𝑇(𝑢𝑖 , 𝑣𝑖)𝐗
𝑇𝐖(𝑢𝑖 , 𝑣𝑖)𝐲 + 𝛃𝑇(𝑢𝑖 , 𝑣𝑖)𝐗

𝑇𝐖(𝑢𝑖 , 𝑣𝑖)𝐗𝛃(𝑢𝑖 , 𝑣𝑖) 
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Then it is derived by 𝛃𝑇(𝑢𝑖, 𝑣𝑖) and obtained as follows: 

−2𝐗𝑇𝐖(𝑢𝑖 , 𝑣𝑖)𝐲 + 2𝐗𝑇𝐖(𝑢𝑖, 𝑣𝑖)𝐗𝛃(𝑢𝑖, 𝑣𝑖) = 0 

−2𝐗𝑇𝐖(𝑢𝑖 , 𝑣𝑖)𝐲 = −2𝐗𝑇𝐖(𝑢𝑖 , 𝑣𝑖)𝐗𝛃(𝑢𝑖, 𝑣𝑖) 

𝐗𝑇𝐖(𝑢𝑖 , 𝑣𝑖)𝐗𝛃(𝑢𝑖, 𝑣𝑖) = 𝐗𝑇𝐖(𝑢𝑖, 𝑣𝑖)𝐲 

𝛃(𝑢𝑖 , 𝑣𝑖) = (𝐗𝑇𝐖(𝑢𝑖, 𝑣𝑖)𝐗)−1𝐗𝑇𝐖(𝑢𝑖, 𝑣𝑖)𝐲. 

So that obtained the estimator of parameter in GWR model for each location is [9] 

𝛃̂(𝑢𝑖, 𝑣𝑖) = (𝐗𝑇𝐖(𝑢𝑖, 𝑣𝑖)𝐗)−1𝐗𝑇𝐖(𝑢𝑖, 𝑣𝑖)𝐲,                        (11) 

if there are 𝑛 sample location then this estimation is the estimation of each row from 

parameter local matrix of the entire location and the matrix is as follows: 

𝛃 =

[
 
 
 
𝛽0(𝑢1, 𝑣1) 𝛽1(𝑢1, 𝑣1)

𝛽0(𝑢2, 𝑣2) 𝛽1(𝑢2, 𝑣2)

𝛽2(𝑢1, 𝑣1) … 𝛽𝑝(𝑢1, 𝑣1)

𝛽2(𝑢2, 𝑣2) … 𝛽𝑝(𝑢2, 𝑣2)

⋮ ⋮
𝛽0(𝑢𝑛, 𝑣𝑛) 𝛽1(𝑢𝑛, 𝑣𝑛)

⋮ ⋱ ⋮
𝛽2(𝑢𝑛, 𝑣𝑛) … 𝛽𝑝(𝑢𝑛, 𝑣𝑛)]

 
 
 

. 

The weighting matrix is diagonal matrix that shows a varied weighting of each 

parameter estimate in 𝑖-th location that formulated as follows: 

𝐖(𝑢𝑖 , 𝑣𝑖) = [

𝑤𝑖1 0
0 𝑤𝑖2

⋮
0

⋮
0

… 0
… 0
⋱
…

⋮
𝑤𝑖𝑛

]. 

 

2.6.2 Weighting of GWR Model 

 

In spatial analysis, the estimation of parameters at a point (𝑢𝑖 , 𝑣𝑖) will be more 

influenced by points close to the location (𝑢𝑖, 𝑣𝑖) than by more distant points. 

Spatial weighting selection is used to determine the weighting size of each different 

location.  The role of spatial weighting is very important because the weighting 

value represents the location of observation data with each other.  The location that 

close to the observed location are given large weighting while distant ones are given 

small weighting [23].  There are several functions that can be used to determine the 

weighting size for each different location on the GWR model, including inverse 

distance and kernel function. 

 

Kernel function is used to estimate the parameter of GWR model if the distance 

function (𝑤𝑗) is continuous and monotonically decreasing [26].  Kernel functions 
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that can be used to form the weights are Gaussian, Bisquare and Tricube functions.  

Gaussian function can be written as follows: 

𝑤𝑗(𝑢𝑖, 𝑣𝑖) = exp(−
1

2
(
𝑑𝑖𝑗

𝑏
)

2

) 

where 𝑑𝑖𝑗 is the distance between location (𝑢𝑖, 𝑣𝑖) and (𝑢𝑗 , 𝑣𝑗) and 𝑏 is bandwidth.  

Bandwidth is the radius of a circle where points within that radius are still 

considered influential in forming model parameter of 𝑖-th location.  Very small 

bandwidth will cause very large variance.  That is because if the bandwidth is very 

small then there will be fewer observations that are within radius 𝑏 so that the model 

obtained is under smoothing because the estimation results use few observations.  

Conversely, if the bandwidth gets bigger then it gives rise to a greater bias.  If the 

bandwidth is very large then more and more observations are within radius 𝑏 so that 

the model obtained will be over smoothing because the estimation used many 

observations. The selection of optimum bandwidth becomes very important 

because it will affect the accuracy of the model to the data, namely the variance and 

bias of the model. The method commonly used to determine the optimum 

bandwidth is Cross Validation (CV) which is formulated as follows [10]: 

𝐶𝑉(𝑏) = ∑(𝑦𝑖 − 𝑦̂≠𝑖(𝑏))
2

𝑛

𝑖=1

 

with 𝑦̂≠𝑖(𝑏) is the estimation value of 𝑦𝑖 where the observation in 𝑖-th location is 

not included in the estimation process.  This approach tests the model only with 

samples close to 𝑖-th point, not at 𝑖-th point itself.  An optimal 𝑏 value will be 

obtained on a minimum CV. 

 

2.7 Mean Square Error (MSE) 

 

Definition 2.1 (Mean Square Error) 

Mean square error of point estimate 𝜃 is 

𝑀𝑆𝐸(𝜃) = 𝐸[(𝜃 − 𝜃)2]. 

MSE can be written as the sum of the variance of the estimator and the squared bias 

of the estimator.  If 𝐵(𝜃) represents the bias of the estimator 𝜃, then it can be stated 

as follows [27], 
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𝑀𝑆𝐸(𝜃) = 𝑉𝑎𝑟(𝜃) + [𝐵(𝜃)]
2
.                                    (12) 

Proof of Equation 12 

𝑀𝑆𝐸(𝜃) = 𝐸[(𝜃 − 𝜃)2] 

 = 𝐸[(𝜃 − 𝐸(𝜃) + 𝐸(𝜃) − 𝜃)2] 

 = 𝐸 [(𝜃 − 𝐸(𝜃))
2

+ 2(𝜃 − 𝐸(𝜃)) (𝐸(𝜃) − 𝜃) + (𝐸(𝜃) − 𝜃)
2
] 

 = 𝐸 [(𝜃 − 𝐸(𝜃))
2

] + 𝐸 [2 (𝜃 − 𝐸(𝜃)) (𝐸(𝜃) − 𝜃)] + 𝐸 [(𝐸(𝜃) − 𝜃)
2
] 

 = 𝐸 [(𝜃 − 𝐸(𝜃))
2

] + 2(𝐸(𝜃) − 𝜃)𝐸 [(𝜃 − 𝐸(𝜃))] + 𝐸 [(𝐸(𝜃) − 𝜃)
2
] 

 = 𝐸 [(𝜃 − 𝐸(𝜃))
2

] + 2(𝐸(𝜃) − 𝜃) (𝐸(𝜃) − 𝐸(𝜃)) + 𝐸 [(𝐸(𝜃) − 𝜃)
2
] 

𝑀𝑆𝐸(𝜃) = 𝑉𝑎𝑟(𝜃) + [𝐵(𝜃)]
2
. 

 

2.8 Akaike’s Information Criterion (AIC) 

 

To compare and evaluate the quality of the set models resulted using the two 

methods.   Akaike's Information Criterion (AIC) will be used.  AIC is the criteria 

for goodness of fit model by estimating the model statistically.  AIC criteria are 

usually used when the formation of a regression model aims to obtain factors that 

affect the model not to make a prediction. 

 

The size of the AIC is in line with the deviation value of the model.  The smaller 

deviation value, the smaller error rate produced by the model so that the model 

obtained becomes more precise.  Therefore, the best model is model with the 

smallest AIC.  AIC values can be calculated using the following formulas [28] 

𝐴𝐼𝐶 = 2𝑝 − 2 ln(𝐿̂) 

where, 𝐿̂ is maximum value of the likelihood function and 𝑝 is the number of 

estimated parameters. 

 



 

 

 

 

III. RESEARCH METHOD 

 

 

3.1 Research Time and Place 

 

This research was conducted in the even semester of the academic year 2021/2022 

and took place in the Department of Mathematics, Faculty of Mathematics and 

Natural Sciences, University of Lampung. 

 

3.2 Research Method 

 

In this study, we used R software version 4.1.2 to facilitate the simulation study and 

the Monte Carlo simulation was used to compare SAR and GWR models. The map 

of Indonesia also used as a spatial reference in this simulation study.  Indonesia is 

composed of 34 provinces so that we have 34 spatial units.  The Monte Carlo 

simulation was conducted using 1000 samples.  

 

The scheme of the simulation in this study is as follows [29]: 

1. Generate variable bivariate normal 𝑋1 and 𝑋2 with 𝑛 = 34, 𝜇 = 0 and 𝜎2 = 1. 

2. Generate weights matrix (𝐖) using Queen contiguity. 

3. Generate 𝛆 with normal distribution, 𝜇 = 0 and 𝜎2 = 1. 

4. Generate variable dependent 𝑦 for conditional spatial dependency 

𝐲 = (𝐈 − 𝜌𝐖)−1(𝛽0 + 𝛽1𝐗𝟏 + 𝛽2𝐗𝟐) + (𝐈 − 𝜌𝐖)−1𝛆 

with 𝛽0 = 𝛽1 = 𝛽2 = 1 using 𝜌 = 0.7. 

5. Generate variable dependent 𝑦 for conditional spatial heterogeneity 

𝐲 = (𝛃𝟎 + 𝛃𝟏𝐗𝟏 + 𝛃𝟐𝐗𝟐) + 𝛆 

with 𝛃𝟎 = 𝟏 + 0.1𝐿𝑎𝑡 + 0.1𝐿𝑜𝑛𝑔 

𝛃𝟏 = 𝟏 + 0.2𝐿𝑎𝑡 + 0.2𝐿𝑜𝑛𝑔 
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𝛃𝟐 = 𝟏 + 0.1𝐿𝑎𝑡 + 0.1𝐿𝑜𝑛𝑔. 

6. Generate variable dependent 𝑦 

𝐲 = (𝐈 − 𝜌𝐖)−1(𝛃𝟎 + 𝛃𝟏𝐗𝟏 + 𝛃𝟐𝐗𝟐) + (𝐈 − 𝜌𝐖)−1𝛆 

with 𝛃𝟎 = 𝟏 + 0.1𝐿𝑎𝑡 + 0.1𝐿𝑜𝑛𝑔 

𝛃𝟏 = 𝟏 + 0.2𝐿𝑎𝑡 + 0.2𝐿𝑜𝑛𝑔 

𝛃𝟐 = 𝟏 + 0.1𝐿𝑎𝑡 + 0.1𝐿𝑜𝑛𝑔 

using 𝜌 = 0. 

7. Repeat steps 1 to 6 1000 times. 

8. Calculate the bias, MSE and AIC of each model and visualize it using plot. 

9. Repeat steps 1 to 8 without steps 4 and 5 using 𝜌 = 0.3, 𝜌 = 0.5 and 𝜌 = 0.7. 

10. Evaluate/compare SAR and GWR model based on bias, MSE and AIC. 

 



 

 

 

 

V. CONCLUSION 

 

 

Based on the analytical result that have been presented in the previous chapter, it 

has been proven that 𝛃̂𝑺𝑨𝑹 is unbiased estimator for 𝛃 on SAR model when data 

only contain spatial dependency and 𝛃̂𝑮𝑾𝑹 is unbiased estimator for 𝛃 on GWR 

model when data only contain spatial heterogeneity. 

 

Based on the results of simulation study, when 𝜌 = 0, the bias, variance and MSE 

of 𝛃̂𝑺𝑨𝑹 are always smaller than 𝛃̂𝑮𝑾𝑹.  This is because when 𝜌 = 0, the data does 

not contain spatial dependency so the GWR method would be better in modeling 

data that only contain spatial heterogeneity.  Nevertheless, the bias, variance and 

MSE of 𝛃̂𝑺𝑨𝑹 are always more stable than 𝛃̂𝑮𝑾𝑹 which gets greater when 𝜌 also 

gets greater.  However, when 𝜌 ≠ 0, the bias, variance and MSE of 𝛃̂𝑮𝑾𝑹 are 

always greater than 𝛃̂𝑺𝑨𝑹 although the data also contain spatial heterogeneity.  

Then, based on the model evaluation using AIC of each model, SAR model also 

have smaller AIC than GWR when the data contains spatial dependency and 

heterogeneity.  Therefore, it can be concluded that the existence of spatial 

dependency on the data greatly affects the GWR method while the presence of 

spatial heterogeneity does not significantly affect the SAR method, both on the 

parameter estimator and the goodness of fit.  Thus, to modeling the data that 

contains both spatial aspects (spatial dependency and heterogeneity), the SAR 

method will be better than the GWR method. 
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