
Abstract

Maximal Edges of Trees with Locating-Chromatic Number Three

By Triani

Let c be a proper k-coloring of a connected graph G. Let $\Pi=\left\{C_{1}, C_{2}, \ldots, C_{k}\right\}$ be a induced partition of $V(G)$ by c, where C_{i} is the partition class having all vertices with color i. The color code $c_{\Pi}(v)$ of vertex v is the ordered k-tuple $\left(d\left(v, C_{1}\right), d\left(v, C_{2}\right), \ldots, d\left(v, C_{k}\right)\right)$, where $d\left(v, C_{i}\right)=\min \left\{d(v, x) \mid x \in C_{i}\right\}$, for $1 \leq i \leq k$. If all vertices of G have distinct color codes, then c is called a locating-coloring of G. The locating-chromatic number of G, denoted by $\chi_{L}(G)$. A tree has locatingchromatic number three if only if T is either a path P_{3} or P_{4}, a double star $S_{1,2}$ or $S_{2,2}$ or a subtree containing that isomorphic of either G_{1} or G_{2}. By attaching a path of arbitrary lenght to each vertex in a tree that has locating-chromatic number three, then it formed trees with locating-chromatic number four.

Key-words : Locating-chromatic number, graph, tree.

