ABSTRACT

Maximal Edges of Trees with Locating-Chromatic Number Three

By

Triani

Let *c* be a proper *k*-coloring of a connected graph *G*. Let $\prod = \{C_1, C_2, ..., C_k\}$ be a induced partition of *V*(*G*) by *c*, where C_i is the partition class having all vertices with color *i*. The color code $c_{\prod}(v)$ of vertex *v* is the ordered *k*-tuple $(d(v, C_1), d(v, C_2), ..., d(v, C_k))$, where $d(v, C_i) = \min \{d(v, x) | x \in C_i\}$, for $1 \le i \le k$. If all vertices of *G* have distinct color codes, then *c* is called a locating-coloring of *G*. The locating-chromatic number of *G*, denoted by $\chi_L(G)$. A tree has locating-chromatic number three if only if *T* is either a path P_3 or P_4 , a double star $S_{1,2}$ or $S_{2,2}$ or a subtree containing that isomorphic of either G_1 or G_2 . By attaching a path of arbitrary lenght to each vertex in a tree that has locating-chromatic number three, then it formed trees with locating-chromatic number four.

Key-words : Locating-chromatic number, graph, tree.