M. FIKRI ALYASA ZAM , ZAMI (2025) PERBANDINGAN PERFORMA JAMES-STEIN ESTIMATOR, RIDGE REGRESSION ESTIMATOR, DAN MODIFIED KIBRIA-LUKMAN ESTIMATOR DALAM MENGATASI MULTIKOLINEARITAS PADA REGRESI POISSON: SIMULASI STUDI. FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM , UNIVESITAS LAMPUNG .
|
File PDF
ABSTRAK.pdf Download (1536Kb) | Preview |
|
![]() |
File PDF
SKRIPSI FULL.pdf Restricted to Hanya staf Download (2450Kb) | Minta salinan |
|
|
File PDF
SKRIPSI TANPA BAB PEMBAHASAN.pdf Download (2451Kb) | Preview |
Abstrak (Berisi Bastraknya saja, Judul dan Nama Tidak Boleh di Masukan)
Poisson regression is a statistical method used to analyze data with a response in the form of a count variable. This regression uses the Maximum Likelihood Estimation (MLE) method to estimate model parameters. The purpose of this study is to compare the performance of the Poisson James-Stein Estimator (PJSE), Poisson Ridge Regression Estimator (PRRE), and Poisson Modified Kibria- Lukman Estimator (PMKLE) methods in dealing with multicollinearity using simulated data with n = 20, 40, 60 and 80 in poisson model (p=6) with
Jenis Karya Akhir: | Skripsi |
---|---|
Subyek: | 500 ilmu pengetahuan alam dan matematika 500 ilmu pengetahuan alam dan matematika > 510 Matematika |
Program Studi: | FAKULTAS MIPA > Prodi Matematika |
Pengguna Deposit: | 2308168512 . Digilib |
Date Deposited: | 16 Apr 2025 10:37 |
Terakhir diubah: | 16 Apr 2025 10:37 |
URI: | http://digilib.unila.ac.id/id/eprint/86116 |
Actions (login required)
![]() |
Lihat Karya Akhir |