ABSTACT

SYINTHESIS AND CHARACTERIZATION OF MAGNETIC MATERIALS BARIUM HEXAFERITTE (BaFe₁₂O₁₉) USING BASIC MATERIALS BARIUM CARBONATE AND IRON SAND FROM THE SOUTHERN COASTAL AREA OF PANDEGLANG-BANTEN

 $\mathbf{B}\mathbf{v}$

M ARIF MUHAJIR

Synthesis and characterization of magnetic materials barium hexaferitte (BaFe₁₂O₁₉) using basic material barium carbonate (BaCO₃) and natural iron sand from the southern coastal area of Pandeglang-Banten was done by powder technology methods. Characterization using SEM-EDX results show ferrite purity of natural iron sand extraction at 92.15%. Synthesized magnetic materials with composition BaCO₃ and Fe₂O₃ by calculations based on stoichiometry and smooth used ball milling for 10 hours. Results by thermal analysis DTA showed the presence of a magnetic phase change in temperature 900,1000,1100 dan 1200°C. XRD characterization result sample X-900 dominated by *hematite* phase (Fe₂O₃), sample X-1000 dominated by *dibarium monoferitte* phase (Ba₂FeO₄), sample X-100 dominated by *barium hexaferitte* phase (BaFe₁₂O₁₉) and sample X-1200 dominated by *pseudobrookite* phase (Fe₂TiO₅). Hysteresis curves of magnetic materials using VSM techniques shows the magnetic properties of the sample material X-1200 magnetic saturation (*Ms*) of 23.60 emu/g, remanensi magnetic (*Mr*) of 5.6066 emu/g and coercivity (*Hc*) of 204 Gauss.

Keywords: natural iron sand, barium hexaferitte, EDX, DTA, XRD, VSM.