IMPLEMENTASI MODEL BAYESIAN STRUCTURAL TIME SERIES TERHADAP PREDIKSI NILAI EKSPOR IMPOR MIGAS DAN NON- MIGAS

Claudya, Annisa R.S (2024) IMPLEMENTASI MODEL BAYESIAN STRUCTURAL TIME SERIES TERHADAP PREDIKSI NILAI EKSPOR IMPOR MIGAS DAN NON- MIGAS. FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM, UNIVERSITAS LAMPUNG.

[img]
Preview
File PDF
1. ABSTRAK - Claudya Annisa.pdf

Download (29Kb) | Preview
[img] File PDF
2. SKRIPSI FULL - Claudya Annisa.pdf
Restricted to Hanya staf

Download (3080Kb) | Minta salinan
[img]
Preview
File PDF
3. SKRIPSI TANPA BAB PEMBAHASAN - Claudya Annisa.pdf

Download (2022Kb) | Preview

Abstrak (Berisi Bastraknya saja, Judul dan Nama Tidak Boleh di Masukan)

Model Bayesian Structural Time Series (BSTS) adalah salah satu model yang dapat digunakan untuk peramalan dengan mempertimbangkan variabel independen. Pada model BSTS , algoritma Markov Chain Monte Carlo (MCMC) digunakan untuk mensimulasikan distribusi posterior yang menghaluskan hasil peramalan lebih akurat dengan menggabungkan hasil dari sejumlah besar model potensial melalui rata-rata model Bayesian. Penelitian ini bertujuan untuk mengevaluasi penggunaan model BSTS dalam peramalan data Ekspor Impor Migas dan Non-Migas di Indonesia dari Januari 2009 hingga Desember 2023. Penelitian ini memfokuskan pada identifikasi model BSTS terbaik berdasarkan nilai R-squared, dengan menggunakan komponen tren, musiman, dan regresi serta mengidentifikasi variabel-variabel yang signifikan memengaruhi nilai Ekspor Impor Migas dan Non-Migas menggunakan nilai posterior inclusion probability. Hasil analisis menunjukkan bahwa model BSTS terbaik mencakup komponen state tren linear lokal dan musiman, tren linear semi lokal dan musiman, serta level lokal dan musiman dengan jumlah musim yang tepat dan iterasi MCMC yang optimal. Kata kunci: model Bayesian Structural Time Series, Markov Chain Monte Carlo, Prior Spike dan Slab Bayesian Structural Time Series (BSTS) model is one of the models that can be used for forecasting while considering independent variables. In BSTS model, Markov Chain Monte Carlo (MCMC) algorithm is employed to simulate the posterior distribution, which smoothens the forecasted results more accurately by combining results from numerous potential models through Bayesian model averaging. This study aims to evaluate the utilization of the BSTS model in forecasting the data of Oil and Non-Oil Exports and Imports in Indonesia from January 2009 to December 2023. The research focuses on identifying the best BSTS model based on the R-squared value, utilizing components such as trends, seasonality, and regression, and identifying significant variables that affect Oil and Non-Oil Exports and Imports using the posterior inclusion probability. The analysis results indicate that the best BSTS model includes local linear trend and seasonal state components, semi-local linear trend and seasonal components, as well as local level and seasonal components with the appropriate number of seasons and optimal MCMC iterations. Keywords: Bayesian Structural Time Series Model, Markov Chain Monte Carlo, Prior Spike dan Slab.

Jenis Karya Akhir: Skripsi
Subyek: 500 ilmu pengetahuan alam dan matematika > 510 Matematika
Program Studi: FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM (FMIPA) > Prodi S1 Matematika
Pengguna Deposit: UPT . Siswanti
Date Deposited: 19 May 2025 03:29
Terakhir diubah: 19 May 2025 03:29
URI: http://digilib.unila.ac.id/id/eprint/87234

Actions (login required)

Lihat Karya Akhir Lihat Karya Akhir