MANAJEMEN ENERGI SISTEM GRID UNTUK MEMAKSIMALKAN KEUNTUNGAN DENGAN MENGGUNAKAN METODE *LINEAR-PROGRAMMING*

(Skripsi)

Oleh

SYABI FADHLURROHMAN NPM 2115031004

JURUSAN TEKNIK ELEKTRO
FAKULTAS TEKNIK
UNIVERSITAS LAMPUNG
BANDAR LAMPUNG
2025

ABSTRAK

MANAJEMEN ENERGI SISTEM GRID UNTUK MEMAKSIMALKAN KEUNTUNGAN DENGAN MENGGUNAKAN METODE *LINEAR-PROGRAMMING*

Oleh

SYABI FADHLURROHMAN

Penelitian ini membahas manajemen energi pada sistem prosumer berbasis Pembangkit Listrik Tenaga Surya (PLTS), baterai Lithium-Ion, genset, dan grid PLN dengan pendekatan Linear Programming (LP) untuk memaksimalkan keuntungan ekonomi dan efisiensi energi. Data real produksi PV dan beban dengan resolusi 30 menit selama hampir dua bulan dianalisis menggunakan Matlab dan Gurobi Optimizer, dengan mempertimbangkan parameter teknis seperti kapasitas inverter, efisiensi konversi energi, State of Charge (SOC), dan degradasi sistem baterai. Hasil simulasi menunjukkan bahwa PLTS menghasilkan energi sebesar 254.610 kW, dengan kontribusi baterai 1.231,8 kW dan impor dari grid 238.670 kW, serta mampu menghasilkan keuntungan kumulatif sebesar Rp 201.410.129 per bulan melalui strategi optimalisasi jual-beli energi, pengurangan curtailment, serta pemanfaatan surplus energi secara adaptif. Dengan demikian, penerapan metode LP terbukti efektif dalam meningkatkan kemandirian energi, menekan biaya operasional, memperpanjang umur komponen penyimpanan, serta mendukung pencapaian profitabilitas dan keberlanjutan energi terbarukan pada sistem prosumer di Indonesia.

Kata Kunci: Linear Programming, Manajemen Energi, Pembangkit Listrik Tenaga Surya (PLTS), Baterai Lithium-Ion, Sistem Prosumer, Optimasi Energi Terbarukan

ABSTRACT

GRID SYSTEM ENERGY MANAGEMENT TO MAXIMIZE PROFITS USING LINEAR-PROGRAMMING METHOD

By

SYABI FADHLURROHMAN

.

This research focuses on energy management in a prosumer system integrating Photovoltaic (PV) solar power plants, Lithium-Ion batteries, gensets, and the utility grid, optimized using the Linear Programming (LP) method to maximize economic profit and energy efficiency. Real data of PV generation and load with a 30-minute resolution over nearly two months were analyzed using Matlab and Gurobi Optimizer, considering technical parameters such as inverter capacity, energy conversion efficiency, State of Charge (SOC), and battery degradation. The simulation results show that the PV system generated 254,610 kW, with contributions from the battery of 1,231.8 kW and imports from the grid of 238,670 kW, leading to a cumulative profit of Rp 201,410,129 per month through optimized energy trading, reduced curtailment, and adaptive utilization of surplus energy. Therefore, the implementation of the LP method proves effective in enhancing energy self-sufficiency, reducing operational costs, extending storage system lifetime, and supporting both profitability and renewable energy sustainability in prosumer systems in Indonesia.

Keywords: Linear Programming, Energy Management, Photovoltaic (PV), Lithium-Ion Battery, Prosumer System, Renewable Energy Optimization

MANAJEMEN ENERGI SISTEM GRID UNTUK MEMAKSIMALKAN KEUNTUNGAN DENGAN MENGGUNAKAN METODE *LINEAR-PROGRAMMING*

Oleh SYABI FADHLURROHMAN

Skripsi

Sebagai Salah Satu Syarat untuk Mencapai Gelar SARJANA TEKNIK

Pada

Jurusan Teknik Elektro Fakultas Teknik Universitas Lampung

JURUSAN TEKNIK ELEKTRO
FAKULTAS TEKNIK
UNIVERSITAS LAMPUNG
BANDAR LAMPUNG
2025

Judul Skripsi : MANAJEMEN ENERGI SISTEM GRID

UNTUK MEMAKSIMALKAN KEUNTUNGAN

DENGAN MENGGUNAKAN METODE

LINEAR-PROGRAMMING

Nama Mahasiswa : Syabi Fadhlurrohman

Nomor Pokok Mahasiswa : 2115031004

Jurusan : Teknik Elektro

Fakultas : Teknik

MENYETUJUI

1. Komisi Pembimbing

Osea Zebua, S.T., M. T. NIP. 197006091999031002

MALI

Zulmiftah Huda, S.T., M. Eng. NIP. 198806242019031015

2. Mengetahui

Ketua Jurusan Teknik Elektro

Ketua Program Studi Teknik Elektro

Herlinawati, S.T., M.T.

NIP. 197103141999032001

Sumadi, S.T., M.T

NIP. 197311042000031001

MENGESAHKAN

Tim Penguji

Ketua

: Osea Zebua, S.T., M.T.

Sekretaris

: Zulmiftah Huda, S.T., M.Eng.

Penguji

Bukan Pembimbing: Ir. Herri Gusmedi, S.T., M.T., IPM

Dekan Fakultas Teknik

De Eng. Ir. Helmy Fitriawan, S.T., M.Sc. J NIP. 19750928 200112 1 002

Tanggal Lulus Ujian Skripsi: 13 Oktober 2025

SURAT PERNYATAAN

Dengan ini saya menyatakan bahwa dalam skripsi ini tidak terdapat karya yang pernah dilakukan orang lain dan sepanjang pengetahuan saya tidak terdapat atau diterbitkan oleh orang lain, kecuali secara tertulis diacu dalam naskah ini sebagaimana yang disebutkan dalam daftar pustaka. Selain itu, saya menyatakan pula bahwa skripsi ini dibuat oleh saya sendiri.

Apabila pernyataan saya tidak benar, maka saya bersedia dikenai sanksi akademik sesuai dengan hukum yang berlaku.

Bandar Lampung, 13 Oktober 2025

Syabi Fadhlurrohman NPM. 2015031004

RIWAYAT HIDUP

Penulis dilahirkan di Kota Muara Enim, Kabupaten Muara Enim, Sumatera Selatan pada tanggal 17 April 2003. Penulis merupakan anak kedua dari 5 bersaudara dari pasangan Bapak Sukirno Hartono dan Ibu Iin Marida. Riwayat pendidikan penulis dimulai dari Sekolah Dasar Negeri (SDN) 16 Lawang Kidul pada tahun 2009 hingga tahun 2015, Sekolah Menengah Pertama Negeri

(SMPN) 1 Lawang Kidul pada tahun 2015 hingga tahun 2018, dan Sekolah Menengah Atas Negeri (SMAN) 1 Muara Enim pada tahun 2018 hingga tahun 2021. Penulis menjadi mahasiswa Jurusan Teknik Elektro, Universitas Lampung, pada tahun 2021 melalui jalur SNMPTN. Aktifitas penulis selain kuliah adalah penulis berkesempatan tergabung dalam keanggotaan himpunan mahasiswa teknik Elektro pada tahun 2022. Penulis juga tergabung dalam Lembaga kemahasiswaan Himpunan Mahasiswa Jurusan Teknik Elektro (HIMATRO) sebagai Staff Dapertemen Pendidikan dan Pengembangan Diri pada divisi Minat dan Bakat (Mikat). Pada 01 Agustus – 30 November tahun 2023, Penulis juga berkesempatan tergabung dalam salah satu mahasiswa MBKM dalam magang di PLN-Enjinering Jakarta Barat. Kemudian Pada 01 Juli – 03 Agustus tahun 2024, Penulis melaksanakan kerja praktik di PTBA Tanjung Enim yang tergabung dalam divisi Perawatan dan Perencanaan Listrik dan melanjutkan membuat laporan yang berjudul "ANALISIS *UPGRADE* TRAFO MOTOR, DAN KABEL GUNA PENINGKATAN KAPASITAS TPH PADA JALUR *LOAD OUT* CHF2.".

بِسْمِ اللَّهِ الرَّحْمَنِ الرَّحِيْم

Alhamdulillah Puji Syukur Kehadirat Allah SWT atas Rahmat dan Ridho-Nya

Kupersembahkan karya ini untuk:

Papa dan Mama Tercinta

Sukirno Hartono dan lin Marida

Serta Saudara-Saudariku

Fadly Irwansyah Putra Nouval Fadhil Tebian Nabil Asfa Wicak Sono Noura Atifa Ghasani

Keluarga Besar, Dosen, Sahabat dan Almamater

MOTTO

"Karena sesungguhnya sesudah kesulitan itu ada kemudahan"

(QS. Al-Insyirah 94: 5)

"Allah tidak memberi cobaan melebihi kemampuan hamba-nya."

(QS. Al-Baqarah 2: 286)

"Anda harus memahami bahwa ada lebih dari satu jalan menuju puncak gunung."

-Miyamoto Musashi -

"Fokuskan pikiran dengan apa yang kita ingin tuju, jika fokus terpecah maka Kembali lagi ke kalimat pertama sampai otak menggerakan tubuh kita sendiri."

- Syabi Fadhlurrohman-

"Kamu tidak wajib tepat, namun kamu harus bertanggung jawab dan menyelesaikan semuanya dengan apa yang kamu miliki"

-Anonymous-

SANWACANA

Segala puji syukur penulis panjatkan kehadirat Tuhan Yang Maha Esa sehingga penulis dapat menyelesaikan tugas akhir yang berjudul "MANAJEMEN ENERGI SISTEM GRID UNTUK MEMAKSIMALKAN KEUNTUNGAN DENGAN MENGGUNAKAN METODE LINEAR-PROGRAMMING" sebagai salah satu syarat untuk memperoleh gelar Sarjana Teknik pada Jurusan Teknik Elektro, Fakultas Teknik, Universitas Lampung.

Pada kesempatan ini, penulis ingin mengucapkan terima kasih kepada:

- 1. Ibu Prof. Dr. Ir. Lusmeilia Afriani, D.E.A. IPM., ASEAN.Eng., selaku Rektor Universitas Lampung.
- 2. Bapak Dr. Eng. Ir. Helmy Fitriawan, S.T., M.Sc., selaku Dekan Fakultas Teknik Universitas Lampung.
- 3. Ibu Herlinawati, S.T., M.T., selaku Ketua Jurusan Teknik Elektro Universitas Lampung.
- 4. Bapak Sumadi, S.T., M.T., selaku Ketua Program Studi Teknik Elektro Unversitas Lampung.
- 5. Bapak Osea Zebua, S.T., M.T. selaku dosen pembimbing utama yang telah memberikan bimbingan, arahan, motivasi, dan pandangan hidup kepada penulis di setiap kesempatan dengan baik dan ramah.
- 6. Bapak Zulmiftah Huda, S.T., M.Eng. selaku dosen pembimbing kedua yang telah memberikan bimbingan, arahan, nasihat dan motivasi kepada penulis disetiap kesempatan dengan baik dan ramah.
- 7. Bapak Ir. Herri Gusmedi, S.T., M.T., IPM selaku dosen penguji yang memberikan kritik, masukan, saran serta motivasi dan pandangan kehidupan kepada penulis disetiap kesempatan dengan baik dan ramah.

- 8. Bapak Dr. FX Arinto Setyawan, S.T., M.T., selaku dosen Pembimbing Akademik (PA) yang telah memberikan nasihat, arahan, bimbingan dengan baik dan tulus kepada penulis selama perkuliahan.
- 9. Bapak dan Ibu Dosen Jurusan Teknik Elektro Fakultas Teknik Universitas Lampung yang telah memberikan pengajaran dan pandangan hidup selama perkuliahan.
- 10. Staff administrasi Jurusan Teknik Elektro dan Fakultas Teknik Universitas Lampung yang telah membantu penulis dalam hal administrasi.
- 11. Papa dan Mama yang selalu memberikan do'a terbaik dan kasih sayang yang tak berujung serta usaha dan kerja keras untuk memberikan Pendidikan yang tinggi untuk anak-anaknya ini tanpa pernah takut akan kekurangan rezeki.
- 12. Keempat Saudara ku, kakak ku Fadli, adikku, Nouval, Nabil, Noura, yang selalu membawakan semangat dan keceriaan yang memotivasi penulis untuk terus maju.
- 13. Segenap Keluarga Besar H.Khusni dan Mbah Biran terutama Wak Rina, Ibu Mus, Wak Nia, Ibu Titin, Bunda, Tante Evi, Wak Dadan, Om Beni, Wak Suci , Mbak Tari, Mbak Niken, Kak Bayu, Mbak Tasya, Kak Ragil, Om sis, dan yang tidak bisa disebutkan satu satu terima kasih telah memberikan motivasi, nasehat, pengalaman-pengalaman hidup yang sangat berarti bagi penulis.
- 14. Segenap Keluarga Futsal Himatro: Wicak, Ican, Andre, Hazel, Rizkan, Wayan, Rizky, Jamet. Yang terus memberikan dukungan pikiran, kebahagiaan, semangat dan kehidupan.
- 15. Teman-Teman PRAMUBA: Imam, Rasel, Rasyid, Rizky, dan Alfiza. Yang terus memberikan dukungan tenaga, pikiran dan materi serta terus memberikan semangat baik tentang perkuliahan, kehidupan, dan mengajak untuk melakukan hal yang selalu positif
- 16. Teman-Teman seperbimbingan: Rasel, Wayan, Johan, yang selalu membersamai dalam suka dan duka.
- 17. Teman-teman MBKM: Kak Aldo, Kak Irham, Kak Sandro, Kak Sidik, Jaya, Riehan, yang selalu seru dengan berbagai candaannya selama dirantauan
- 18. Teman-teman seperjuangan: Kak Panji, Kak Nando, Naufal, Kak Micel, Kak Mario.

19. Keluarga Besar Power Rangers.

20. Keluarga Besar HIMATRO UNILA, EXCALTO 2021, dan TTL 22.

21. Keluarga Besar PLNE

22. Keluarga Besar RenTrik PTBA.

23. Semua pihak yang membantu dalam selesainya perkuliahan dan penulisan

skripsi, hanya Allah SWT. yang dapat membalas kabaikan kalian.

24. Kepada seseorang dari Teknik Kimia dengan NPM 2415041029, Terima kasih

telah menemani keseharian dan kesulitan yang ada, dari awal sampai akhir

skripsi ini selesai, mendengerakan keluh kesah, menyarakan kan suatu yang

baik, membuat semangat untuk menyelesaikan skripsi ini.

25. Kepada diri sendiri, Syabi Fadhlurrohman. Terus semangat lampaui batas dan

jangan pernah menyerah terus berusaha sampai bisa bahagiakan orang tua di

dunia dan akhirat. Jadilah versi terbaik dari dirimu dan jangan pernah merasa

putus asa terhadap rezeki orang lain semuanya telah diatur asal diri kita ingin

berusaha semaksimal mungkin. Terimakasih telah bertahan dan berjuang

sejauh ini.

Penulis menyadari masih banyak kekurangan dalam penulisan skripsi ini. Penulis

menerima kritik dan saran yang membangun dari semua pihak demi kemajuan

bersama. Penulis berharap skripsi ini dapat bermanfaat bagi kita semua.

Bandar Lampung, 13 Oktober 2025

Syabi Fadhlurrohman

DAFTAR ISI

ABST	RAK	ii
SANW	VACANA	xi
DAFT	AR ISI	xiv
DAFT	AR TABEL	xvi
DAFT	AR GAMBAR	xvii
I. PEN	IDAHULUAN	18
1.1 I	Latar Belakang Masalah	18
1.2	Гujuan Penelitian	19
1.3 I	Rumusan Masalah	19
1.4 I	Batasan Masalah	19
1.5 I	Hipotesis	20
1.6 1	Manfaat penelitian	20
1.7 \$	Sistematika Penulisan	20
II. TIN	NJAUAN PUSTAKA	22
2.1 I	Penelitian Terdahulu	22
2.2 I	Produksi Sumber Energi	24
2.3 I	PLTS (Pembangkit Listrik Tenaga Surya)	25
2.3.1	Pembangkit Listrik Tenaga Surya Hybrid	25
2.3.2	2 Pembangkit Listrik Tenaga Surya <i>Off-Grid</i>	26
2.3.3	B Pembangkit Listrik Tenaga Surya <i>On-Grid</i>	27
2.4 (Genset	27
2.5 I	nverter	28
2.6 I	Baterai <i>Lithium-Ion</i>	29
2.7 1	Metode Optimasi Linear Programming (LP)	30
III. M	ETODOLOGI PENELITIAN	32
3.1	Waktu dan Tempat	32
3.2	Alat dan Bahan Penelitian	32
3.3	Metodologi Penelitian	33
3.4	Diagram Pelaksanaan Penelitian	34

3.5	Pemodelan Manajemen pada Sistem Grid	35
3.6	Matriks	41
3.7 M	anajemen Energi pada Sistem Distribusi Listrik pada suatu prosumer.	42
IV. AN	ALISIS DAN PEMBAHASAN	43
4.1.	Data Hasil Penelitian	43
4.2.	Hasil Simulasi	48
4.3 Aı	nalisis Keuntungan	62
4.4 Ev	valuasi dan Performa Baterai	63
4.4.1	Pengisian Baterai	63
4.4.2	Pelepasan Baterai	64
4.5 Pe	mbahasan Hasil	64
V. KES	IMPULAN DAN SARAN	66
DAFTA	D DIISTAKA	67

DAFTAR TABEL

Tabel 4. 1 Parame	ter simulasi	•••••	45
-------------------	--------------	-------	----

DAFTAR GAMBAR

Gambar 1 Jenis Produksi Energi	24
Gambar 2 PLTS (Pembangkit listrik Tenaga Surya)	25
Gambar 3 Pembangkit listrik tenaga surya <i>Hybrid</i>	26
Gambar 4 Pembangkit listrik tenaga surya Off-Grid	26
Gambar 5 Pembangkit Listrik Tenaga Surya On-Grid	27
Gambar 6 Genset	28
Gambar 7 Inverter	28
Gambar 8 Baterai <i>Lithium-Ion</i>	29
Gambar 9 Diagram Alir Pelaksanaan Penelitian	35
Gambar 10 Model aliran Rangkaian PV	42
Gambar 11 Model aliran rangkaian PV menggunakan Baterai dan Genset	42
Gambar 12 Daya Panel Surya	48
Gambar 13 Beban Listrik	49
Gambar 14 Daya dari suatu entitas	50
Gambar 15 Pembangkitan daya dari pada panel surya	51
Gambar 16 Kebutuhan Beban dari Prosumer	52
Gambar 17 Daya Perdangan	53
Gambar 19 Daya rugi-rugi	54
Gambar 20 Jumlah daya beban ditambah daya PV	55
Gambar 21 Siklus pengisian batera	
Gambar 22 Daya AC menuju ke Grid	57
Gambar 23 Daya AC dari Grid menuju ke busbar	58
Gambar 24 Daya AC dari bus AC ke PCC	
Gambar 25 Daya AC dari PCC ke bus AC	
Gambar 26 Daya dari genset ke bus AC	61
Gambar 27 Hasil keuntungan kumulatif	62
Gambar 28 Pengisian pada baterai	63
Gambar 29 Pelepasan pada baterai	64

I. PENDAHULUAN

1.1 Latar Belakang Masalah

Energi surya sebuah sumber energi terbarukan yang semakin banyak dimanfaatkan sebagai alternatif pengganti energi fosil. Pembangkitan listrik dari tenaga surya (PLTS) menjadi solusi yang efektif sebagai memberi dukungan terhadap transisi energi bersih dan mengurangi ketergntungan pada bahan bakar berjenis fosil. Namun, dalam implementasinya masih menjadi tantangan utama, terutama dalam aspek optimalisasi pemanfaatan energi dan peningkatan keuntungan finansial.

Manajemen energi sistem PLTS sangat penting untuk memastikan efisiensi operasional serta meningkatkan nilai ekonomi dari energi yang dihasilkan. Salah satu strategi yang dapat diterapkan adalah dengan mengoptimalkan energi listrik setelah diciptakan oleh panel surya (PV) sehingga bukan hanya bergunakan untuk kebutuhan sendiri, tetapi juga dapat dijual ke jaringan listrik atau pihak ketiga. Dengan adanya skema penjualan energi seperti net metering atau feed-in tarif, pemilik PLTS memiliki peluang untuk memperoleh keuntungan finansial dari kelebihan energi yang dihasilkan.[1]

Namun, untuk memaksimalkan keuntungan dari penjualan energi, diperlukan sistem manajemen energi yang cerdas dan efisien. Sistem ini harus mampu mengatur penggunaan energi sesuai dengan kebutuhan, menyimpan energi ketika produksi melebihi konsumsi, serta menjual kelebihan energi pada waktu yang tepat dengan harga terbaik. Oleh karena itu, penelitian ini berfokus pada strategi manajemen energi PV pada PLTS guna memaksimalkan keuntungan dari penjualan energi.

Dengan adanya studi ini selain memberikan kontribusi membantu energi listrik kepada PLN, dan juga berharap perusahaan dapat memberikan kontribusi dalam pengembangan sistem manajemen energi yang lebih optimal untuk PLTS, sehingga tidak hanya meningkatkan efisiensi energi, tetapi juga memberikan manfaat ekonomi yang lebih besar bagi sebuah perusahaan penyedia energi.

1.2 Tujuan Penelitian

Tugas Akhir bertujuan untuk mengembangkan dan menganalisis sistem manajemen energi pada suatu prosumer berbasis optimasi Linear Programming (LP) untuk memaksimalkan keuntungan ekonomi dan meningkatkan pemanfaatan energi listrik bersumber energi dari, Pembangkit Listrik Tenaga Surya (PLTS), baterai penyimpanan energi (SESS), genset, dan jaringan listrik PLN (grid).

1.3 Rumusan Masalah

Dengan semakin banyaknya prosumer yang menjadi penyedia listrik independen, dibutuhkan penelitian. Bagaimana cara manajemen energi untuk memaksimalkan keuntungan dari penjualan energi listrik dengan menggunakan pemrograman linier?

1.4 Batasan Masalah

Adapun Batasan Masalah dari penelitian ini sebagai berikut:

- 1. Penelitian menggunakan *real* data produksi PV dan data beban dengan *timestep* 30 menit selama hampir 2 bulan dari salah satu perusahaan penyedia energi listrik (Prosumer) dari pembangkit listrik dari tenaga surya di Indonesia.
- 2. Tidak membahas ekonomis secara mendetail, seperti Modal awal, biaya instalasi, suku bunga, biaya pinjaman, dll.
- 3. Hanya membahas keuntungan yang didasarkan atas perbedaan biaya beli energi PLN dan biaya penjualan energi Listrik ke PLN
- 4. Harga jual energi listrik dari prosumer telah mengikut sertakan biaya operasi Genset.
- 5. Pengisian dan Pengosongan energi baterai dianggap secara bersamaan.
- 6. Prosumer hanya menyuplai 15% dari jumlah beban pelanggan.

1.5 Hipotesis

Penerapan metode *Linear Programming* dalam manajemen energi sistem grid dapat mengoptimalkan pemanfaatan energi yang dihasilkan oleh PV, sehingga meningkatkan keuntungan dari penjualan energi listrik yang dihasilkan.

1.6 Manfaat Penelitian

Pada penelitian ini mengharapkan ahli memberikan manfaat pemahaman mengenai bagaimana teknik *liniear programing* untuk manajemen energi pada PLTS (Pembangkit Listrik Tenaga Surya) terhadap para perusahaan energi yang ada. Selain itu, diharapkan menjadi pembelajaran dan ilmu yang berguna.

1.7 Sistematika Penulisan

Penulisan tugas akhir ini terpisah ke dalam lima bab dengan sistematika sebagai berikut:

BAB I. PENDAHULUAN

Bab ini berisi tentang motif masalah yang mendasari penelitian ini, tujuan penelitian yang ingin dicapai, ringkasan masalah, batasan masalah, hipotesis keunggulan dari penelitian, serta sistematika alur penulisan.

BAB II. TINJAUAN PUSTAKA

Bab ini membahas teori-teori dan referensi relevan yang digunakan dalam penelitian, termasuk analisis kebutuhan.

BAB III. METODE PENELITIAN

Bab ini menjelaskan durasi dan area penelitian, alat dan bahan yang terpakai, metode penelitian yang diterapkan, serta diagram penelitian yang menunjukkan alur kerja dalam menyelesaikan tugas akhir.

BAB IV. HASIL DAN PEMBAHASAN

Bab ini memaparkan hasil-hasil penelitian dan pembahasan hasil yang telah terlaksanakan.

BAB V. KESIMPULAN DAN SARAN

Bab terakhir ini berisi kesimpulan dan masukan penelitian yang dilakukan berdasarkan dari hasil dan pembahasan, serta memberikan saran untuk penelitian lebih lanjut atau implementasi praktis dari hasil penelitian.

DAFTAR PUSTAKA

LAMPIRAN

II. TINJAUAN PUSTAKA

2.1 Penelitian Terdahulu

(Stefan Englberger, dkk 2019) Jurnal ini membahas analisis teknis-ekonomi dari sistem *Vehicle-to-Building* (V2B) dalam konteks pengisian kendaraan listrik (EV) pada rumah tangga di Jerman untuk mengeksplorasi efek pengisian unidirectional dan bidirectional (V2B) pada keausan baterai, efisiensi sistem penyimpanan energi, dan biaya operasional (OPEX) pada rumah tangga yang menggunakan kendaraan listrik. Metode digunakan kombinasi, yaitu model optimasi linear dengan simulasi yang lebih mendetail untuk menganalisis berbagai skenario pengisian yang berbeda.[2]

(P. Purnachander Rao, dkk 2024) Jurnal ini membahas tentang peningkatan kualitas daya (Power Quality, PQ) dalam sistem distribusi tenaga yang menggunakan sistem energi terdistribusi, seperti panel fotovoltaik (PV). Mengidentifikasi bahwa sistem energi terbarukan, seperti panel PV, dapat menyebabkan masalah kualitas daya, termasuk harmonisa pada tegangan dan arus, yang berdampak negatif terhadap stabilitas dan efisiensi jaringan listrik.[3]

(Youngchae Cho, dkk 2018) Jurnal ini membahas tentang membahas beberapa aspek kunci yang terkait dengan pengiriman ekonomi dalam jaringan listrik berbantuan baterai yang memanfaatkan sistem fotovoltaik surya (PV) menggunakan metode pembatasan yang bertujuan untuk menemukan batas atas dan bawah yang ketat untuk solusi pengiriman ekonomi hari ke depan.[4]

(Ramadoni Syahputra dan Indah Soesanti 2020) Jurnal ini membahas tentang optimalisasi jaringan distribusi listrik melalui pendekatan multi-tujuan dengan menggunakan metode sistem kekebalan buatan, yang merupakan pendekatan baru

dalam konteks konfigurasi ulang jaringan distribusi listrik. Merujuk pada profil tegangan setelah konfigurasi ulang jaringan distribusi secara signifikan lebih baik daripada konfigurasi awal dengan hasil simulasi menunjukkan bahwa konfigurasi optimal tidak hanya meningkatkan profil tegangan tetapi juga mengurangi kehilangan daya.[5]

(Jon Marjuni Kadang dan Jaka Windarta 2021) Jurnal ini membahas mengenai pemanfaatan energi surya fotovoltaik (PV) di Indonesia. Fokus utamanya analisis komprehensif tentang potensi, tantangan, dan strategi untuk mengoptimalkan penggunaan energi matahari di Indonesia, menekankan pentingnya mengatasi faktor sosial dan ekonomi untuk mencapai solusi energi berkelanjutan.[1]

(Dr. Mihir K. Patel 2024) Jurnal ini membahas integrasi sumber energi terbarukan ke dalam infrastruktur pengisian kendaraan listrik (EV) tujuannya untuk meningkatkan pemanfaatan energi, mengurangi biaya operasional, dan meningkatkan keberlanjutan infrastruktur pengisian secara keseluruhan. Dengan hasil yang mengarah pada solusi pengisian EV yang lebih efisien dan berkelanjutan yang selaras dengan upaya global untuk mengurangi emisi gas rumah kaca dan mempromosikan penggunaan energi terbarukan.[6]

(Deny Satyagraha, dkk 2020) Jurnal ini membahas aspek-aspek penting manajemen energi dalam industri ban, dengan fokus pada optimalisasi operasi sisi utilitas menunjukkan meningkatnya kebutuhan akan strategi manajemen energi yang efektif untuk mengurangi meningkatnya permintaan energi. Dengan hasil yang di dapatkan gambaran komprehensif tentang praktik manajemen energi di industri ban, menekankan peran audit energi, pentingnya menerapkan rekomendasi strategis, dan kebutuhan untuk kepatuhan terhadap standar internasional seperti ISO 50001.[7]

(Erik Prasetiya Aji, dkk 2022) Jurnal ini membahas tentang membahas implementasi dan kinerja sistem pembangkit tenaga surya di sebuah bank pedesaan di Indonesia. Pada persentase energi yang diekspor ke PLN berkisar antara 30% - 40% dari energi total yang dibangkitkan PLTS. Besarnya energi dari PLN yang digunakan sebesar 80% -85% dari total beban yang terpasang. Besarnya biaya listrik yang harus dibayarkan selama 6 bulan ketika tidak menggunakan PLTS

sebesar Rp 2.438.897 dan penghematan yang didapatkan dari PLTS sebesar Rp 538.880. Hal ini menunjukkan bahwa dengan memasang PLTS, BPR BKK Mandiraja Cabang Wanayasa Banjarnegara dapat mengurangi biaya energi listrik sebesar 22,1%.[8]

2.2 Produksi Sumber Energi

Prosumer merupakan ekonomi tradisional dengan mengintegrasikan konsumsi dengan aktivitas produksi untuk menciptakan nilai bagi diri mereka sendiri dan orang lain. Salah satu bidang utamanya yaitu dimana prosumer memainkan peran penting adalah industri energi. Integrasi teknologi pembangkit terdistribusi, seperti sistem fotovoltaik surya dan turbin angin, telah memungkinkan konsumen untuk berpartisipasi aktif dalam produksi energi. Para prosumer tidak hanya menghasilkan energi untuk penggunaan mereka sendiri tetapi juga memasok kelebihan daya ke jaringan listrik, sehingga meningkatkan ketahanan dan keberlanjutan sistem energi.[9]

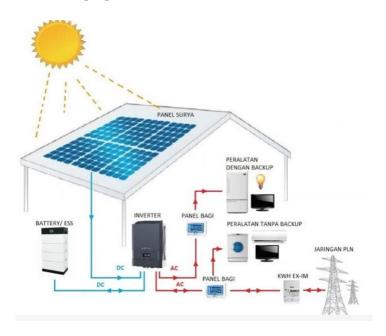
Peraturan Menteri ESDM No. 26 Tahun 2021 mengatur mekanisme ekspor-impor energi listrik dari prosumer ke PLN, termasuk pembatasan ekspor hingga 50% kapasitas terpasang.

Gambar 1 Jenis Produksi Energi

Sumber: pt.vecteezy.com

2.3 PLTS (Pembangkit Listrik Tenaga Surya)

Pembangkit Listrik Tenaga Surya (PLTS) salah satu pengembangan dari penggunaan energi terbarukan yang sangat berpotensi untuk diterapkan di Indonesia yang memiliki potensi radiasi matahari rata — rata 4,8kWh/m2/hari. Pembangkit Listrik Tenaga Surya atau PLTS adalah sebuah sistem yang digunakan untuk mengubah energi cahaya matahari menjadi energi listrik dengan menggunakan prinsip efek *photovoltaic*. *Photovoltaic* sendiri merupakan fenomena fisika yang terjadi pada permukaan sel surya (solar cell) ketika menerima cahaya matahari. Selanjutnya, cahaya yang diterima diubah menjadi energi listrik. Pada hal ini telah terjadi karena adanya energi foton cahaya yang membebaskan elektron — elektron sehingga mengalir dalam sambungan semikonduktor tipe n dan p yang pada akhirnya menimbulkan arus listrik. Sistem energi listrik yang menggunakan PLTS dapat menjadi sumber energi yang ramah lingkungan. Selain itu, sistem PLTS juga sangat diminati karena sinar matahari mudah didapatkan di Indonesia yang merupakan negara tropis di mana matahari menyinari wilayah Indonesia hampir sepanjang tahun.[10]


Gambar 2 PLTS (Pembangkit listrik Tenaga Surya)

Sumber: solarsuryaindotama.co.id

2.3.1 Pembangkit Listrik Tenaga Surya Hybrid

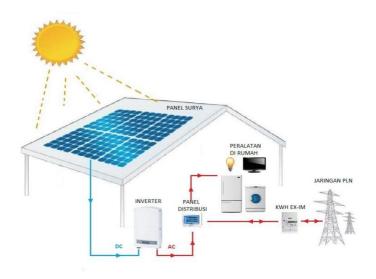
PLTS *hybrid* penggabungan energi surya dengan sumber daya lain seperti baterai atau grid listrik konvensional, menjadi pilihan yang relevan untuk memastikan ketersediaan energi yang stabil, dapat diandalkan, dan berkelanjutan. Kinerja *photovoltaic* (PV) management platform yang mengelola produksi, distribusi, dan

konsumsi energi surya, dapat seketika menjadi kritis dalam menghadapi kompleksitas sistem ini.[11]

Gambar 3 Pembangkit listrik tenaga surya Hybrid

Sumber: jasaplts.com

2.3.2 Pembangkit Listrik Tenaga Surya Off-Grid


Sistem PLTS *off-grid* merupakan sistem PLTS yang tidak terhubung dengan jaringan listrik PLN. Sistem ini disebut juga *System Stand Alone* atau berdiri sendiri karena system hanya mengandalkan energi matahari saja sebagai satu–satunya sumber energi utama dengan menggunakan rangkaian modul surya untuk menghasilkan energi Listrik sesuai dengan kebutuhan.

Gambar 4 Pembangkit listrik tenaga surya Off-Grid

2.3.3 Pembangkit Listrik Tenaga Surya On-Grid

PLTS on grid adalah sistem on grid dimana sistem tersebut menghubungkan output PLTS dengan sumber listrik dari PLN. Listrik telah dihasilkan oleh PLTS dengan Sistem On-grid dapat disalurkan ke PLN dengan harga 100% dari Rp 1.444,70/kWh ketika output PLTS lebih besar dari beban listrik yang digunakan.[12]

Gambar 5 Pembangkit Listrik Tenaga Surya On-Grid

Sumber: jasaplts.com

2.4 Genset

Generator Set (Genset) merupakan suatu sistem pembangkit listrik yang dirancang untuk menghasilkan energi listrik secara optimal melalui konversi energi mekanik menjadi energi listrik. Sistem ini terdiri atas dua komponen utama, yaitu *engine* yang berfungsi sebagai penggerak dan *alternator* yang berperan dalam mengubah energi mekanik menjadi energi listrik. Kualitas dan stabilitas energi listrik yang dihasilkan sangat dipengaruhi oleh kinerja *engine*, di mana kestabilan putaran mesin akan menentukan konsistensi daya listrik yang diproduksi. Semakin konstan putaran mesin, semakin baik pula kualitas dan keandalan energi listrik yang dihasilkan. Selain itu, keberadaan panel kontrol pada genset memiliki peranan penting untuk mengatur, mengawasi, serta memastikan operasi sistem berjalan secara efisien, aman, dan sesuai dengan kebutuhan operasional.[13]

Gambar 6 Genset

Sumber: kaihuagenset.com

2.5 Inverter

Inverter adalah suatu alat yang dapat digunakan untuk mengubah tegangan masukan DC menjadi tegangan keluaran AC. Pada keluaran inverter bisa saja berupa tegangan yang dapat diatur dan tegangan yang tetap. Sumber tegangan masukan inverter dapat menggunakan baterai, tenaga surya, atau sumber tegangan de yang lain. Tegangan keluaran yang biasanya dihasilkan berupa 120 V, 220 V dan 115 V.[14]

Gambar 7 Inverter

Sumber: meicosolar.com

Kapasitas Inverter, Kapasitas inverter ditentukan dengan hasil perhitungan daya maksimal yang dibangkitkan panel surya sehingga dipilih kapasitas inverter yang mampu menyuplai atau melebihi kapasitas daya maksimum yang dihasilkan panel surya. Atau dengan persamaan berikut :

$$P_{inv} \geq P_{Pv out}$$

Untuk mengetahui jumlah inverter yang akan digunakan dapat diketahui dengan persamaan berikut :[15]

$$\textit{Jumlah baterai yang diperlukan} = \frac{\textit{P}_{\textit{pv out}}}{\textit{Kapasitas Inverter yang digunakan}}$$

2.6 Baterai Lithium-Ion

Baterai adalah berupa sel-elektrokimia yang mengubah suatu energi kimia menjadi listrik. Salah satu jenis baterai yang saat ini berkembang adalah *Lithium-Ion Battery* atau baterai *lithium ion*. Baterai lithium-ion salah satu jenis baterai sekunder (rechargeable battery) yang mampu isi ulang dan merupakan baterai yang ramah lingkungan karena tidak mengandung bahan yang berbahaya seperti baterai-baterai yg berkembang lebih dahulu yaitu baterai NI-Cd dan Ni-MH. Pada baterai *Lithium-Ion Battery* memiliki kelebihan dibandingkan baterai sekunder, yaitu memiliki stabilitas penyimpanan energi yang sangat baik (daya mampu tahan sampai 10 tahun atau lebih), energi densitas tinggi, tidak ada memori efek dan berat yang relatif lebih ringan dibandingkan dengan baterai jenis lain. Sehingga dengan berat yang sama energi yang dihasilkan baterai lithium dua kali lipat dari baterai jenis lain.[16]

Gambar 8 Baterai Lithium-Ion

Sumber: solarsuryaindotama.co.id

Pada umumnya, SOC dari sebuah baterai dapat diartikan sebagai rasio perbandingan kapasitas saat ini dengan kapasitas nominalnya Kapasitas nominal

merepresentasikan nilai maksimum pengisian yang dapat disimpan oleh baterai. Dirumuskan sebagai berikut:

$$SOC(t) = \frac{Q(t)}{Q(n)}$$

Pada perhitungan SOH dengna membandingkan nilai kapasitas total saat ini (mAh) dengan membandingkan nilai kapasitas total saat ini (mAh) dengan kapasitas awal baterai / Beginning of life capacity (BOL Capacity) Lithium Iron Phosphate

$$SOH = \frac{Kapasitas\ total}{Kapasitas\ BOL} \times 100\%$$

Pada perhitungan kapasitas pada baterai untuk menghitung kapasitas (Ah) dari baterai dan jumlah baterai yang akan diperlukan, dapat dilakukan perhitungan dengan persamaan berikut : [15]

$$Ah \ yang \ diperlukan = \frac{P_{(wh)}}{V_h} = Ah \ x \ N$$

$$\textit{Jumlah baterai yang diperlukan} = \frac{\textit{Ah yang diperlukan}}{\textit{Kapasitas baterai yang tersedia}}$$

2.7 Metode Optimasi Linear Programming (LP)

Dimyati (2008) terdapat dalam karya tulis-nya menyatakan bahwa pemrograman linier salah satu cara untuk menyelesaikan permasalahan sumber daya yang memiliki suatu batasan diantara beberapa aktivitas yang bersaing dengan cara yang mungkin untuk dilakukan. Program linier adalah salah satu teknik pada riset operasi yang paling terkenal digunakan dan diketahui secara baik, dan juga salah satu metode matematika dalam mengalokasikan sumberdaya yang langka untuk mencapai tujuan yakni memaksimumkan keuntungan atau meminimumkan biaya atau keduanya. [17]

Bentuk standar dapat kita gunakan karenakan alasan bahwa bentuk itu adalah paling intuitif menggambarkan masalah pemrograman linier adalah terbagi dalam tiga bagian [18]:

Funsi linier yang hendak di optimasi.[18]

$$f(x_1, x_2) = c_1, x_1 + c_2, x_2$$

Batasan — Batasan masalah[18]:

$$a_{11}x_1 + a_{12}x_2 = b_1$$

$$a_{21}x_1 + a_{22}x_2 = b_2$$

$$a_{31}x_1 + a_{32}x_2 = b_3$$

Variabel – variable Batasan pertidaksamaan.[18]

$$x_1 \ge 0$$

$$x_2 \ge 0$$

Diringkas dalam bentuk matriks [18]:

$$\max\{c^T x_{\square} | A_x \le b \land x \ge 0\}$$

$$\underbrace{\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}}_{x} = \underbrace{\begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}}_{b}$$

III. METODOLOGI PENELITIAN

3.1 Waktu dan Tempat

Penelitian tugas akhir ini dimulai sejak Maret 2025 dan selesai pada Oktober 2025, bertempat di Gedung Laboratorium Sistem Tenaga Listrik (STL) Jurusan Tenik Elektro, Fakultas Teknik, Universitas Lampung. Adapun Jadwal Penelitian seperti pada

																	Bu	lan															
No.	Agenda			aret			Apri		ril		N	l ei			Jı	ıni			Jı	ıli			Agu	stus		September				Oktober			
		1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
1	Studi Literatur dan Studi Bimbing an																																
2	Pembuat an Proposal																																
3	Seminar Proposal																																
4	Pengump ulan Data																																
5	Pengelol a Data																																
6	Pembuat an Program																																
7	Penyusun an Laporan																																
8	Seminar Hasil																																
9	Ujian Kompreh ensif																																

3.2 Alat dan Bahan Penelitian

Adapun alat dan bahan yang digunakan dalam Penelitian ini antara lain:

Alat:

- Satu unit laptop dengan spesifikasi Prosesor AMD Ryzen 5 4600H hexacore (12 thread) 3GHz-4GHz, memori RAM sebesar 8GB jenis DDR4-3200MHz, dengan Operating System Windows 11 Home 64-bit sebagai media pemodelan dan simulasi.
- 2. Software Gurobi sebagai pengoptimal
- 3. Software Matlab sebagai Algoritma pada *Linier Programming* untuk optimasi
- 4. Software *Microsoft Excel* sebagai penghitungan data dan penyimpanan data
- 5. Data-data Daya PLTS yang terpasang, dan Beban yang ada.

3.3 Metodologi Penelitian

Penelitian tugas akhir ini dilakukan dengan langkah-langkah sebagai berikut:

1. Studi Literatur

Studi literatur dilakukan dengan mengumpulkan dan mempelajari serta mengkaji literatur yang berkaitan dengan penelitian tugas akhir, yaitu Manejemen Energi PV menjadi sebuah keuntungan yang maksimal. Literatur tersebut diambil dari berbagai sumber, seperti jurnal ilmiah dan laporan-laporan penelitian terdahulu.

2. Studi Bimbingan

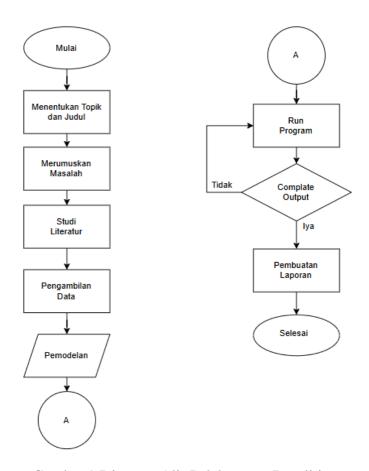
Studi bimbingan dilakukan dengan diskusi untuk menyelesaikan persoalanpersoalan selama penelitian bersama dosen pembimbing. Diskusi dilakukan
secara berkala, mulai dari diskusi mengenai kondisi *eksisting* hingga metode
yang digunakan penulis untuk melakukan Manejemen energi. Dengan adanya
studi bimbingan, penulis banyak mendapatkan pengetahuan serta arahan dalam
pengerjaan penelitian tugas akhir. Untuk mengetahui manajemen energi PLTS
untuk memaksimal keuntungan dengan menggunakan metode program linear,
dilakukan serangkaian perhitungan terhadap data yang diperoleh dari hasil
pengujian yang dilaksanakan selama 58 hari berturut-turut. Pengujian ini
berlangsung dari tanggal 01 Mei 2025 hingga 28 Juni 2025, dengan waktu

pengujian dimulai pada pukul 06.00 WIB dan berakhir pada pukul 06.00 WIB setiap harinya.

3. Pengumpulan dan Pengolahan Data

Pengumpulan data berasal dari survei lapangan untuk melihat kondisi sistem kelistrikan, jumlah daya listrik yang diihasilkan oleh solar panel maupun genset, dan grid kemudian menjadi energi total (E_t) dari energi yang masuk dan energi yang keluar, beban yang terpasang.

4. Simulasi Manajemen energi pada Prosumer untuk memaksimalkan keuntungan.


Simulasi Manajemen energi pada rosumer untuk memaksimalkan keuntungan dilakukan dengan memasukkan ke dalam Simulink MATLAB dan Gurobi Optimizer sebagai menyelesaikan masalah optimasi linear (Linear Programming / LP). Proses simulasi menggunakan data *real-time* yang telah dikumpulkan dengan resolusi waktu harian. Variabel keputusan mencakup seluruh aliran energi antar komponen sistem, sedangkan optimasi linier digunakan untuk menentukan strategi optimal distribusi energi pada setiap waktu.

5. Penulisan Laporan

Perancangan penelitian ini dituangkan kedalam sebuah laporan proposal penelitian. Lalu, hasil penelitian ini dituangkan kedalam sebuah laporan akhir penelitian/ skripsi. Laporan ini merupakan dokumentasi pengerjaan penelitian tugas akhir dan dapat diamanahkan sebagaimana mestinya.

3.4 Diagram Pelaksanaan Penelitian

Pada gambar berikut merupakan tahap-tahap pelaksanaan kegiatan penelitian tugas akhir.

Gambar 9 Diagram Alir Pelaksanaan Penelitian

3.5 Pemodelan Manajemen pada Sistem Grid

Adapun pemodelan Memaksimalkan keuntungan yang didapatkan sebagai berikut:

1. Fungsi objektif pada penelitian ini

 $F(x) = Max(O_c)$

$$F(x) = Max (P_{sell} \times price \times t - P_{buy} \times harga \times t)$$
Dalam linier Programming
$$Max : Z = \pi_{sell} \times x_{25} - \pi_{buy} \times x_{26}$$
Subject : $x_{26} + E_{PV} = x_{25} + E_{load} + x_{29}$

$$x_{25} \leq x_{25}^{max}$$

$$x_{26} \leq x_{26}^{max}$$

$$x_{29} \leq x_{29}^{max}$$

$$x_{25}, x_{26}, x_{29} \geq 0$$

Keterangan : x_{25} : Energi yang dijual ke grid

 x_{26} : Energi yang dibeli ke *grid*

 x_{29} : Energi yang disimpan

2. Variabel keputusan pada penelitian ini adalah:

 $x_1 = E$ sess % Energi dalam baterai pada tiap waktu $x_2 = E_sess_in$ % Energi masuk ke baterai (charging) $x_3 = E$ sess out % Energi keluar dari baterai (discharging) $x_4 = P_ac_genTbb$ % Energi AC dari PV ke Busbar AC $x_5 = P$ ac bbFgen % Energi AC ke busbar AC dari PV $x_6 = P$ ac bbTsess % Energi AC dari busbar ke baterai(AC) $x_7 = P$ ac bbFsess % Energi AC dari baterai ke busbar AC $x_8 = P_ac_sessTbb$ % Energi AC dari baterai ke busbar AC $x_9 = P$ ac sessFbb % Energi AC dari busbar AC ke baterai $x_{10} = P$ acbbTdcbb % Energi dari busbar AC ke busbar DC $x_{11} = P_acbbFdcbb$ % Energi dari busbar DC ke busbar AC $x_{12} = P dcbbTacbb$ % Energi dari busbar DC ke busbar AC $x_{13} = P_dcbbFacbb$ % Energi dari busbar AC ke busbar DC $\chi_{14} = P_dc_genTbb$ % Energi DC dari PV ke busbar DC $x_{15} = P dc bbFgen$ % Energi DC dari PV ke busbar DC $x_{16} = P_dc_bbTsess$ % Energi DC dari busbar DC ke baterai $x_{17} = P dc bbFsess$ % Energi DC dari baterai ke busbar DC $\chi_{18} = P_dc_sessTbb$ % Energi DC dari Baterai ke busbar DC $\chi_{19} = P_dc_sessFbb$ % Energi DC dari busbar ke baterai

$$x_{20} = P_{\text{curtailment}}$$
% Energi PLTS yang hilang atau rugi rugi daya $x_{21} = P_{\text{ac}}$ bbTpcc% Energi AC dari busbar AC ke PCC $x_{22} = P_{\text{ac}}$ bbFpcc% Energi AC dari PCC ke busbar $x_{23} = P_{\text{ac}}$ pccTbb% Energi AC PCC ke busbar AC $x_{24} = P_{\text{ac}}$ pccFbb% Energi AC dari busbar AC ke PCC $x_{25} = P_{\text{ac}}$ pccTgrid% Energi AC dari PCC ke grid $x_{26} = P_{\text{ac}}$ pccFgrid% Energi AC dari grid ke PCC $x_{27} = SOC_{\text{sess}}$ % State of Charge (SOC) dari SESS $x_{28} = EFC_{\text{sess}}$ % Energy Flow Cycle (siklus penggunaan energi) $x_{29} = CRate_{\text{sess}}$ % C-rate (charging rate) dari Baterai

Sehingga dapat vektor variabel keputusan x dituliskan sebagai berikut:

x = [x1; x2; x3; ...; x30]; Dengan urutan sesuai daftar di atas *EnergyFlow Count* SESS (indikator degradasi/operasi

% Energi AC dari genset ke busbar AC

3. Equality constraint pada penelitian ini adalah:

 x_{30} = P ac gensetTbb

Equality Constraint Baterai:
$$x_{16} \times n_{dc-dc_conv} = x_{19}$$
 (1)
$$x_{18} \times n_{dc-dc_conv} = x_{17}$$
 (2)
$$x_{6} \times n_{ac-dc_conv} = x_{9}$$
 (3)
$$x_{8} \times n_{ac-dc_conv} = x_{7}$$
 (4)
$$x_{2} = (x_{9} + x_{19}) \times t$$
 (5)
$$x_{3} = (x_{8} + x_{18}) \times t$$
 (6)
$$x_{27} = \frac{x_{1}}{E_{sess}_{available}}$$
 (7)
$$x_{29} = \frac{60}{t_{sample}} \times \frac{(x_{2} - x_{3})}{E_{sess}_{nom}}$$
 (8)

$$x_{28} = 0.5 \times \frac{(x_2 - x_3)}{E_{sess\ nom}} \tag{9}$$

Untuk t = 1

$$x_1 = E_{sess\,available} \times SOC_{init} + x_2 \times n_{sess_in} - x_3 \times \frac{1}{n_{sess_{out}}} - E_{sess_selfdis}$$
(10)

Untuk t > 1

$$E_{sess}(t-1) = +x_2 \times n_{sess_in} = x_1 + x_3 \times \frac{1}{n_{sess_out}} + E_{sess_selfdis}$$

$$E_{sess_init} = E_{sess_available} + SOC_{init}$$
 (11)

$$E_{sess_end} = E_{sess_available} + SOC_{end}$$
 (12)

PV Plant (PLTS):

$$P = x_{20} + x_4 \times t + x_4 \times t \tag{13}$$

$$x_5 = x_4 \times n_{ac-dc_conv} \tag{14}$$

$$x_{15} = x_{14} \times n_{dc-dc_conv} \tag{15}$$

Jika Energy Sharing, maka:

$$x_{24} + x_{26} = x_{23} + x_{25} (16)$$

$$x_{25} - x_{26} \leq P_{pv_{peak}} \times P_{grid_{curtail_{limit}}}$$

$$x_{24} - x_{23} \le 0$$

Jika tidak Energy Sharing, maka:

$$x_{24} = x_{25} (17)$$

$$x_{23} = x_{26} (18)$$

 $x_{24} - x_{23} \le P_{pv_{peak}} \times P_{grid_curtail_limit}$

$$x_{21} = x_{24} (19)$$

$$x_{23} = x_{22} (20)$$

Persamaan Keseimbangan Busbar (AC&DC):

$$0 = x_{11} + x_{22} - x_{10} - x_{21} - P_{Load} + x_5 + (x_7 - x_6) + x_{30} \times t$$
 (21)

$$0 = x_{13} + x_{12} + x_{15} + (x_{17} - x_{16}) (22)$$

$$x_{10} \times n_{acdc_busbar} = x_{13} \tag{23}$$

$$x_{12} \times n_{acdc_busbar} = x_{11} \tag{24}$$

4. *Inquality Constraint* pada penelitian ini adalah:

Inquality Constraint Energi Baterai:

$$0 \le x_1 \le E_{sess}^{nom}$$

$$0 \le x_2 \le \frac{c_{sess}^{nom} \times c_{nate_{in}}}{\Delta t}$$

$$0 \le x_3 \le \frac{c_{sess}^{nom} \times c_{nate_{out}}}{\Delta t}$$

Inquality Constraint Daya AC:

$$0 \le x_4 \le P_{busbar}^{max}$$

$$0 \le x_5 \le P_{busbar}^{max}$$

$$0 \le x_6 \le P_{busbar}^{max}$$

$$0 \le x_7 \le P_{busbar}^{max}$$

$$0 \le x_8 \le P_{busbar}^{max}$$

$$0 \le x_9 \le P_{busbar}^{max}$$

$$0 \le x_{10} \le 3 \times P_{busbar}^{max}$$

$$0 \le x_{11} \le 3 \times P_{busbar}^{max}$$

$$0 \le x_{21} \le P_{pcc}^{max}$$

$$0 \leq x_{22} \leq P_{pcc}^{max}$$

$$0 \leq x_{23} \leq P_{pcc}^{max}$$

$$0 \le x_{24} \le P_{pcc}^{max}$$

$$0 \le x_{25} \le \sum P_{pcc}^{max}$$

$$0 \le x_{26} \le \sum P_{pcc}^{max}$$

Inquality Constraint Daya DC:

$$0 \le x_{12} \le 3 \times P_{busbar}^{max}$$

$$0 \le x_{13} \le 3 \times P_{busbar}^{max}$$

$$0 \le x_{14} \le P_{busbar}^{max}$$

$$0 \le x_{15} \le P_{busbar}^{max}$$

$$0 \le x_{16} \le P_{busbar}^{max}$$

$$0 \le x_{17} \le P_{busbar}^{max}$$

$$0 \le x_{18} \le P_{busbar}^{max}$$

$$0 \le x_{19} \le P_{busbar}^{max}$$

5. Curtailment constraints pada penelitian ini adalah:

$$0 \le x_{20} \le \infty$$

6. SOC pada penelitian ini adalah:

$$SOC_{min} \le x_{27} \le SOC_{max}$$

$$-C_{out} \leq x_{29} \leq C_{in}$$

$$0 \le x_{28} \le \infty$$

Keterangan:

 $E_{sess_{in}}$: Energi Baterai

Cnom: Kapasitas nominal baterai SESS (kWh)

 $C\ Rate_{in}^{Sess}$: Rasio maksimum pengisian (C-rate) baterai SESS

 Δt : Waktu tiap interval simulasi (jam)

 $P_{ac_bbFsess}$: Power (AC) dari busbar ke SESS

 P_{busbar}^{max} : Daya maksimum pada busbar

 P_{max} : Daya maksimum (kW)

 C_{nom} : Kapasitas energi nominal baterai

CRate: rasio kecepatan pengisian atau pengosongan baterai

 SOC_{min} : batas bawah dari tingkat pengisian baterai

 SOC_{max} : batas atas dari tingkat pengisian baterai

3.6 **Matriks**

Sebelum membuat program maka dibuat matriksnya terlebih dahulu untuk pemetaan fungsi objektif dan batasan-batasannya:

$$\begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_{25} \\ x_{26} \\ x_{29} \end{bmatrix} = [Ep - Eload]$$

$$\begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} x_{16} \\ xx_{19} \end{bmatrix} = [n_{dc-dc_conv}]$$

$$\begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} x_{17} \\ x_{18} \end{bmatrix} = [n_{dc-dc_conv}]$$

$$\begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} x_{6} \\ x_{9} \end{bmatrix} = [n_{dc-dc_conv}]$$

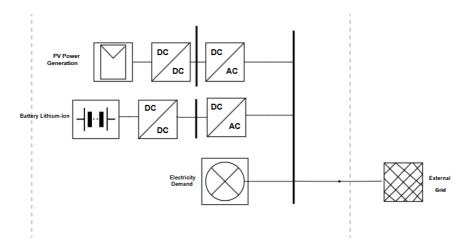
$$\begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} x_{7} \\ x_{8} \end{bmatrix} = [n_{dc-dc_conv}]$$

$$\begin{bmatrix} 1 & t \end{bmatrix} \begin{bmatrix} x_{7} \\ x_{8} \end{bmatrix} = [n_{dc-dc_conv}]$$

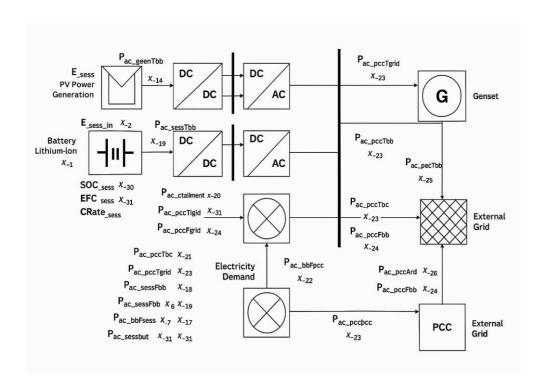
$$\begin{bmatrix} 1 & t \end{bmatrix} \begin{bmatrix} x_{2} \\ x_{9} \\ x_{19} \end{bmatrix} = [0]$$

$$\begin{bmatrix} 1 & t \end{bmatrix} \begin{bmatrix} x_{3} \\ x_{8} \\ x_{19} \end{bmatrix} = [0]$$

$$\begin{bmatrix} 1 & E_{sess_{available}} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{27} \end{bmatrix} = [0]$$


$$\begin{bmatrix} x_{4} \end{bmatrix} = \begin{bmatrix} x_{4} \end{bmatrix} = \begin{bmatrix} x_{4} \end{bmatrix}$$

$$\begin{bmatrix} 1 & t \end{bmatrix} \begin{bmatrix} x_4 \\ x_{20} \end{bmatrix} = \begin{bmatrix} n_{dc-dc_conv} \end{bmatrix}$$


$$[n_{dc-dc_conv}][x_{14}] = [P_{_dc_genFbb}]$$

$$\begin{bmatrix} -1 & 1 & -1 & 1 \end{bmatrix} \begin{bmatrix} x_{23} \\ x_{24} \\ x_{25} \\ x_{26} \end{bmatrix} = \begin{bmatrix} 0 \end{bmatrix}$$

3.7 Manajemen Energi pada Sistem Distribusi Listrik pada suatu prosumer

Gambar 10 Model aliran Rangkaian PV

Gambar 11 Model aliran rangkaian PV menggunakan Baterai dan Genset

V. KESIMPULAN DAN SARAN

Adapun Kesimpulan dari penelitian tugas akhir ini, sebagai berikut:

- 1. Penerapan metode Liniear Programming dapat menentukan manajemen energi pada sistem grid untuk memaksimalkan keuntungan.
- 2. Berdasarkan hasil analisis dan simulasi yang dilakukan selama waktu 2 bulan, penggunaan energi surya melalui sistem PLTS, Baterai dan genset sebesar 519.334,260 kWh mampu secara signifikan menurunkan ketergantungan terhadap suplai energi dari grid dengan memakai hanya 238.670 kWh sehingga dapat manjadikan pendapatan prosumer sebesar Rp.402.700.000 selama 2 bulan.
- 3. Penelitian ini menunjukkan bahwa penerapan metode optimasi *Linear Programming* terbukti efektif mampu mengatur aliran energi dari PLTS dan sistem penyimpanan energi atau baterai. Dengan Energi yang dihasilkan sebesar 1.231,8 kW dapat didistribusikan dengan secara lebih optimal sebesar 13,029 kWh untuk memenuhi kebutuhan internal maupun diekspor, sehingga menjaga performa SOH pada baterai tetap terjaga.

Adapun Saran dari penelitian tugas akhir ini, sebagai berikut:

- 1. Penambahan Variabel *Real-Time*: Disarankan untuk mengintegrasikan faktor variabel waktu nyata seperti harga listrik berbasis waktu (*time-of-use*) serta prediksi cuaca berbasis kecerdasan buatan guna meningkatkan ketepatan keputusan pengelolaan energi.
- 2. Integrasi Teknologi Cerdas: Sistem ini dapat dikombinasikan dengan teknologi *smart grid* dan *Internet of Things (IoT)* agar dapat memantau serta merespons perubahan beban dan pembangkitan secara langsung dan otomatis.

DAFTAR PUSTAKA

- [1] J. M. Kadang and J. Windarta, "Optimasi Sosial-Ekonomi pada Pemanfaatan PLTS PV untuk Energi Berkelanjutan di Indonesia," *J. Energi Baru dan Terbarukan*, vol. 2, no. 2, pp. 74–83, 2021, doi: 10.14710/jebt.2021.11113.
- [2] S. Englberger, H. Hesse, D. Kucevic, and A. Jossen, "A techno-economic analysis of vehicle-to-building: Battery degradation and efficiency analysis in the context of coordinated electric vehicle charging," *Energies*, vol. 12, no. 5, 2019, doi: 10.3390/en12050955.
- [3] P. Purnachander Rao, "A Solar PV-Fed Hybrid Active Power Filter Based on I-Luo Converter for Power Quality Enhancement in Distributed Generation Systems," *J. Electr. Syst.*, vol. 20, no. 9s, pp. 2560–2571, 2024, doi: 10.52783/jes.4930.
- [4] Y. Cho, T. Ishizaki, M. Koike, and J. Imura, "A Bounding Method for Day-Ahead Economic Dispatch with a Dynamic Uncertainty Set of PV Power Output," *SICE J. Control. Meas. Syst. Integr.*, vol. 11, no. 3, pp. 256–262, 2018, doi: 10.9746/jcmsi.11.256.
- [5] R. Syahputra and I. Soesanti, "Optimisasi Multi-objektif pada Rekonfigurasi Jaringan Distribusi Tenaga Listrik dengan Integrasi Pembangkit Terdistribusi Menggunakan Metode Sistem Kekebalan Buatan," *J. Tek. Elektro*, vol. 12, no. 2, pp. 57–71, 2020, doi: 10.15294/jte.v12i2.26353.
- [6] Dr. Mihir K. Patel, "Energy Management Strategies of Grid Connected Renewable Source for EV Charging Station," *Int. J. Sci. Res. Sci. Eng. Technol.*, vol. 11, no. 2, pp. 473–482, 2024, doi: 10.32628/ijsrset2411270.
- [7] D. Satyagraha, S. Abduh, and I. Kasim, "Manajemen Energi di Industri: Optimasi Sisi Utiliti pada Industri Ban," *Jetri J. Ilm. Tek. Elektro*, vol. 17, no. 2, pp. 191–204, 2020, doi: 10.25105/jetri.v17i2.5362.
- [8] E. P. Aji, P. Wibowo, and J. Windarta, "Kinerja Pembangkit Listrik Tenaga Surya (PLTS) dengan Sistem On Grid di BPR BKK Mandiraja Cabang Wanayasa Kabupaten Banjarnegara," *J. Energi Baru dan Terbarukan*, vol. 3, no. 1, pp. 15–27, 2022, doi: 10.14710/jebt.2022.13158.
- [9] M. Ertz, X. Cao, and J. M. Barragán Maravilla, "The Prosumer," *Encyclopedia*, vol. 4, no. 3, pp. 1263–1278, 2024, doi:

- 10.3390/encyclopedia4030082.
- [10] H. B. Nurjaman and T. Purnama, "Solar Power Plant (PLTS) as a Household Renewable Energy Solution," *J. Edukasi Elektro*, vol. 6, no. 2, pp. 136–142, 2022, [Online]. Available: https://journal.uny.ac.id/index.php/jee/article/view/51617
- [11] K. Aprilianto and U. Y. Oktiawati, "Analisis Kinerja Sistem Photovoltaic Management Platform pada Implementasi Sistem PLTS Hybrid Berbasis Internet of Things Area R&D Syngenta Cikampek," *J. List. Instrumentasi, dan Elektron. Terap.*, vol. 5, no. 2, p. 75, 2024, doi: 10.22146/juliet.v5i2.93486.
- [12] V. P. Mohite and M. C. Butale, "Parametric Study of Grid Connected PV System with Battery for Single Family House," *Int. Res. J. Eng. Technol.*, vol. 6, no. 8, pp. 66–70, 2019, [Online]. Available: https://www.irjet.net/archives/V6/i8/IRJET-V6I811.pdf
- [13] I. B. Ketut Sugirianta, I. Giriantari, and I. N. Satya Kumara, "Analisa Keekonomian Tarif Penjualan Listrik Pembangkit Listrik Tenaga Surya 1 MWp Bangli Dengan Metode Life Cycle Cost," *Maj. Ilm. Teknol. Elektro*, vol. 15, no. 2, pp. 121–126, 2016, doi: 10.24843/mite.1502.18.
- [14] F. Faroda, "Analisis Inverter Pada Pembangkit Listrik Kapagen Dengan Menggunakan Grounding," *J. Surya Energy*, vol. 3, no. 1, p. 228, 2018, doi: 10.32502/jse.v3i1.1254.
- [15] G. H. Sihotang, "Perencanaan Pembangkit Listrik Tenaga Surya Rooftop Di Hotel Kini Pontianak," *J. Tek. Elektro Univ. Tanjungpura*, vol. 1, no. 1, p. 1, 2019.
- [16] F. A. Perdana, "Baterai Lithium," *INKUIRI J. Pendidik. IPA*, vol. 9, no. 2, p. 113, 2021, doi: 10.20961/inkuiri.v9i2.50082.
- [17] H. Tannady, "Optimasi Produksi Meubel Menggunakan Model Pemrograman Linear," *Bus. Manag. J.*, vol. 10, no. 1, pp. 1–9, 2017, doi: 10.30813/bmj.v10i1.636.
- [18] Munirah M and Subanar, "Kajian terhadap Beberapa Metode Optimasi (Survey of Optimization Methods)," *JUITAJurnal Inform.*, vol. V, pp. 45–50, 2017.