HUBUNGAN JENIS KELAMIN, USIA DAN INDEKS MASA TUBUH PASIEN DIABETES MELITUS DENGAN GAMBARAN FATTY LIVER DAN NONFATTY LIVER PADA USG ABDOMEN DI RUMAH SAKIT DR. H ABDUL MOELOEK BANDAR LAMPUNG TAHUN 2023

(Skripsi)

Oleh

NISA PERMATA SADILA 2118011096

PROGRAM STUDI PENDIDIKAN DOKTER
FAKULTAS KEDOKTERAN
UNIVERSITAS LAMPUNG
BANDAR LAMPUNG
2025

HUBUNGAN JENIS KELAMIN, USIA DAN INDEKS MASA TUBUH PASIEN DIABETES MELITUS DENGAN GAMBARAN FATTY LIVER DAN NONFATTY LIVER PADA USG ABDOMEN DI RUMAH SAKIT DR. H ABDUL MOELOEK BANDAR LAMPUNG TAHUN 2023

Oleh

NISA PERMATA SADILA 2118011096

Skripsi

Sebagai Salah Satu Syarat untuk Memperoleh Gelar SARJANA KEDOKTERAN

Pada

Jurusan Pendidikan Dokter Fakultas Kedokteran Universitas Lampung

FAKULTAS KEDOKTERAN UNIVERSITAS LAMPUNG BANDAR LAMPUNG 2025 Judul skripsi

: HUBUNGAN JENIS KELAMIN, USIA DAN INDEKS MASA
TUBUH PASIEN DIABETES MELITUS DENGAN GAMBARAN
FATTY LIVER DAN NONFATTY LIVER PADA USG
ABDOMEN DI RUMAH SAKIT DR. H. ABDUL MOELOEK
BANDAR LAMPUNG TAHUN 2023

Nama Mahasiswa

: Nisa Permata Sadila

NPM

: 2118011096

Program Studi

: Pendidikan Dokter

Fakultas

MENYETUJUI,

1. KOMISI PEMBIMBING

Pembimbing II

dr. Muhammad Ricky Ramadhian,

Pembimbing\

M.Sc., Sp.Rad

NIP. 196905152001121004

dr. Waluyo Rudiyanto, M.Kes.,

Sp.KKLP

NIP. 198406102009122004

2. Dekan Faklutas Kedokteran

Dr. dr. Evi Kurniawaty, S. Ked., M.Sc NIP. 197601202003122001

MENGESAHKAN

1. Tim Penguji

Ketua

: dr. Muhammad Ricky Ramadhian,

M.Sc., Sp.Rad

Sekretaris

: dr. Waluyo Rudiyanto, M.Kes., Sp.KKLP

Penguji

Bukan Pembimbing

: Dr. Si. dr. Syazili Mustofa S.Ked., M.Biomed

2. Dekan Fakultas Kedokteran

Dr. dr. Evi Kurniawaty, S. Ked., M.Sc

NIP. 197601202003122001

Tanggal Lulus Ujian Skripsi: 23 Juni 2025

AMPUNG STANDED

Syl

LAMPUN LAMPUN LAMPUN

LAMPUN LAMPUN LAMPUN

LAMPUN LAMPUN LAMPUN

LAMPLING LAMPUNG LAMPUNG

LAMPUNC

LAMPUNG

LAMPUNG

LAMPUNG

LAMPUNC

LEMBAR PERNYATAAN

Dengan ini saya menyatakan bahwa:

- 1. Skripsi dengan judul "HUBUNGAN JENIS KELAMIN, USIA DAN INDEKS MASA TUBUH PASIEN DIABETES MELITUS DENGAN GAMBARAN FATTY LIVER DAN NONFATTY LIVER PADA USG ABDOMEN DI RUMAH SAKIT ABDUL MOELOEK BANDAR LAMPUNG TAHUN 2023"adalah hasil karya saya sendiri dan tidak melakukan penjiplakan atas karya penulis lain dengan cara tidak sesuai tata etika ilmiah yang berlaku dalam akademik atau yang dimaksud dengan plagiarisme.
- Hak intelektual atas karya ilmiah ini diserahkan sepenuhnya kepada Universitas Lampung.

Atas Pernyataan ini , apabila dikemudian hari ternyata ditemukan adanya ketidak benaran, saya bersedia menanggung akibat dan sanksi yang diberikan kepada saya

Bandar Lampung ,23 Juni 2025

Pembuat Pernyataan,

Nisa Permata Sadila

RIWAYAT HIDUP

Nisa Permata Sadila adalah nama penulis skripsi ini. Penulis dilahirkan di Gedong Tataan pada tanggal 12 Desember 2003 sebagai anak ketiga dari tiga bersaudara, dari pasangan Bapak Ansori Asopah dan Ibu Melda Novianta.

Penulis menyelesaikan Pendidikan Taman Kanak-Kanak (TK) di TK Sekar Wangi, Pesawaran. Penulis menempuh Pendidikan Sekolah Dasar di SDN 17 Gedong Tataan, Pesawaran. Penulis menempuh Pendidikan Sekolah Menengah Pertama (SMP) di SMPN 1 Pesawaran, kemudian Sekolah Menengah Atas (SMA) di SMAN 1 Gading Rejo. Penulis kemudian melanjutkan studi sebagai mahasiswa Program Studi Pendidikan Dokter Fakultas Kedokteran Universitas Lampung pada tahun 2021 sampai saat ini melalui jalur Seleksi Bersama Masuk Perguruan Tinggi Negeri (SBMPTN).

Alhamdulillah hingga tahap sekarang penulis dapat menyelesaikan skripsi ini tepat waktu. Berkat petunjuk dan pertolongan Allah SWT dan disertai doa kedua orang tua dalam menjalani aktivitas akademik di Fakultas Kedokteran Universitas Lampung. Alhamdulillah penulis dapat menyelesaikan tugas akhir skripsi yang berjudul "Hubungan Jenis Kelamin, Usia dan Indeks Masa Tubuh Pasien Diabetes Melitus Dengan Gambaran *Fatty Liver* dan *Nonfatty Liver* pada USG Abdomen Di Rumah Sakit Dr. H Abdul Moeloek Bandar Lampung Tahun 2023"

فَإِنَّ مَعَ الْعُسْرِ يُسْرًا ۞ إِنَّ مَعَ الْعُسْرِ يُسْرًا

"Maka sesungguhnya bersama kesulitan ada kemudahan. Sesungguhnya bersama kesulitan ada kemudahan"

(Q.S Al-Insyirah; 5-6)

Karya ini saya persembahkan untuk papi, mami, kanjeng, iyay, saudara besar, teman-teman serta orang terdekat.

SANWACANA

Puji syukur penulis ucapkan kehadirat Allah SWT atas rahmat dan hidayah-Nya skripsi ini dapat diselesaikan. Shalawat serta salam semoga selalu tercurahkan kepada Nabi Muhammad SAW. Berkat anugrah-Nya, penulis mampu menyelesaikan skripsi dengan judul "Hubungan Jenis Kelamin, Usia dan Indeks Masa Tubuh Pasien Diabetes Melitus Dengan Gambaran *Fatty Liver* dan *Nonfatty Liver* pada Usg Abdomen Di Rumah Sakit Dr. H Abdul Moeloek Bandar Lampung Tahun 2023" sebagai syarat untuk memperoleh gelar Sarjana Kedokteran.

Selama penulisan skripsi, penulis mendapat banyak dukungan dalam bentuk masukan, bantuan, kritik, dan saran dari berbagai pihak. Penulis ingin mengucapkan terima kasih kepada:

- 1. Prof. Dr. Ir. Lusmeilia Afriani, D.E.A.IPM., selaku Rektor Universitas Lampung;
- 2. Dr. dr. Evi Kurniawaty, M. Sc., selaku Dekan Fakultas Kedokteran Universitas Lampung;
- 3. dr. Muhammad Ricky Ramadhian, M.Sc., Sp.Rad., selaku Pembimbing I yang sudah bersedia meluangkan banyak waktu di antara kesibukan-kesibukannya untuk memberikan bimbingan, ilmu, saran, kritik, nasihat, dan motivasi kepada penulis dalam proses penyelesaian skripsi ini;
- 4. dr. Waluyo Rudiyanto, M.Kes., Sp.KKLP., selaku Pembimbing II yang sudah bersedia meluangkan banyak waktu di antara kesibukan-kesibukannya untuk memberikan bimbingan, ilmu, saran, kritik, nasihat, dan motivasi kepada penulis dalam proses penyelesaian skripsi ini;

- 5. Dr. Si. dr. Syazili Mustofa S.Ked., M.Biomed., selaku Pembahas yang sudah bersedia meluangkan banyak waktu di antara kesibukan-kesibukannya untuk memberikan bimbingan, ilmu, saran, kritik, nasihat, dan motivasi kepada penulis dalam proses penyelesaian skripsi ini;
- 6. dr. Diana Mayasari, S.Ked., M. K. K., sebagai Pembimbing Akademik yang telah bersedia meluangkan waktu, pikiran, dan tenaga untuk membimbing penulis serta memberikan masukan kepada penulis selama menjalankan studi di Fakultas Kedokteran Universitas Lampung;
- 7. Seluruh dosen dan staff Fakultas Kedokteran Universitas Lampung atas ilmu, waktu, dan bantuan yang telah diberikan selama proses pendidikan;
- 8. Cinta pertama dan panutanku, Ayahanda Ansori Asopah dan pintu surgaku Ibunda Melda Novianta. Penulis menyadari bahwa tiada kata yang mampu sepenuhnya menggambarkan rasa syukur ini. Namun, dengan penuh cinta dan ketulusan, izinkan penulis mengucapkan rasa terima kasih yang sebesarbesarnya kepada kalian. Terima kasih atas doa, dukungan dan cinta yang tiada henti-hentinya kalian berikan kepada penulis, khususnya sepanjang perjalanan penulisan skripsi ini. Terima kasih telah menjadi orang tua yang supportif. Terima kasih telah berjuang bersama penulis, mengorbankan banyak waktu, tenaga dan upaya untuk mendukung penulis meraih impian. Tanpa kehadiran kalian, orang tua yang sangat luar biasa, pencapaian ini tidak mungkin terjuwud, karena kalian merupakan sumber inspirasi dan kekuatan yang tak tergantikan bagi penulis. Semoga Allah SWT senantiasa memberkahi mami dan papi dengan kesehatan, kebahagiaan, keberkahan dan umur panjang;
- Kakak tercinta, Meri Bunga Adelia, Lala Putri Andela dan Hendri Yudhistira.
 Terima kasih atas segala ucapan semangat, kasih sayang luar biasa yang sudah diberikan dan teguran-teguran di setiap harinya untuk segera dalam menyelesaikan skripsi ini;
- 10. keponakanku tersayang, Raza Al-Fatih serta adik-adik sepupuku, Muhammad Faza Aldika dan Safira Tika Khairunnisa yang selalu berhasil menghibur dan menyemangati penulis dengan tawa, canda, dan kehadiran kalian menjadi pelipur lara saat semangat mulai turun. Terima kasih sudah menjadi bagian dari perjalanan ini;

11. Sahabat serta saudara penulis, Mery, Anjas, Bagas dan figo. Terima kasih karna telah hadir dalam perjalanan hidup penulis sejak duduk di bangku SMP, yang telah memberikan semangat, menghibur, mendengarkan keluh kesah dan selalu ada untuk penulis;

12. Sahabatku, Dea, Syifa, Komang dan Azzahra. Terima kasih sudah menjadi sahabat yang sangat baik bahkan seperti saudara penulis. Terima kasih karna selalu menemani, memberi motivasi dan semangat yang luar biasa, selalu jadi garda terdepan saat penulis membutuhkan bantuan serta selalu mendengarkan keluh kesah penulis selama perkuliahan ini;

13. Sahabatku, Alin, Firda dan Wawa. Terima kasih karena selalu memberikan semangat, motivasi dan dukungan kepada penulis selama ini;

14. Seluruh teman angkatanku, PU21N & PI21MIDIN, terima kasih untuk tahuntahun yang sudah kita lewati bersama;

15. Terima kasih kepada diri sendiri, Nisa Permata Sadila, yang telah bertahan dan berjuang sejauh ini dalam menggapai cita-cita dan harapan. Terima kasih atas keteguhan dan kesabaran dalam menghadapi setiap tantangan, serta tekad yang tidak pernah pudar meskipun terkadang menghadapi masa sulit. Perjalanan ini bukanlah hal yang mudah, namun berhasil melewatinya dengan penuh usaha dan doa. Berbahagialah dan beruntunglah selalu dimanapun berada dan dalam hal apaun;

Karena itu penulis mengharapkan sran dan kritik yang bersifat membangun demi perbaikan skripsi ini. Penulis berharap semoga skripsi ini dapat bermanfaat bagi pembacanya.

Bandar Lampung, Juni 2025 Penulis

Nisa Permata Sadila

ABSTRAK

THE RELATIONSHIP OF GENDER, AGE, AND BODY MASS INDEX IN DIABETES MELLITUS PATIENTS WITH FATTY LIVER AND NON-FATTY LIVER FINDINGS ON ABDOMINAL ULTRASOUND AT DR. H. ABDUL MOELOEK HOSPITAL, BANDAR LAMPUNG, IN 2023

by

NISA PERMATA SADILA

Background and Objective: Diabetes mellitus (DM) is a chronic metabolic disorder characterized by hyperglycemia that affects carbohydrate, protein, and fat metabolism. Type 2 diabetes mellitus causes insulin resistance, which increases the release of free fatty acids to the liver, triggering fat accumulation in hepatocytes and the development of fatty liver. This study aims to determine the relationship between gender, age, and body mass index with the incidence of fatty liver in patients with type 2 DM.

Methods: This study used an observational analytic design with a cross-sectional approach conducted at Dr. H. Abdul Moeloek Hospital, Bandar Lampung, from March 8 to April 8, 2025. The sample consisted of 52 type 2 DM patients selected by total sampling technique. Data were analyzed using the chi-square test.

Results: Among the respondents, 57.7% were female and 42.3% male. Based on age, 55.7% were under 60 years old and 44.3% were 60 years or older. Based on BMI, 34.6% of patients were classified as normal, 27% overweight, and 38.4% obese. There was no significant relationship between gender and fatty liver incidence. However, significant associations were found between age and BMI with fatty liver incidence.

Conclusion: Age and BMI are significantly associated with the incidence of fatty liver in patients with type 2 DM, while gender does not show a significant relationship.

Keywords: Diabetes mellitus, fatty liver, gender, age, body mass index.

ABSTRAK

HUBUNGAN JENIS KELAMIN, USIA DAN INDEKS MASA TUBUH
PASIEN DIABETES MELITUS DENGAN GAMBARAN
FATTY LIVER DAN NONFATTY LIVER PADA
USG ABDOMEN DI RUMAH SAKIT
DR. H ABDUL MOELOEK
BANDAR LAMPUNG
TAHUN 2023

Oleh

NISA PERMATA SADILA

Latar Belakang dan Tujuan: Diabetes melitus (DM) merupakan gangguan metabolik kronis yang ditandai oleh hiperglikemia dan memengaruhi metabolisme karbohidrat, protein, dan lemak. Diabetes melitus tipe 2 menyebabkan resistensi insulin yang meningkatkan pelepasan *free fatty acid* ke hati, memicu penumpukan lemak di hepatosit dan berkembangnya *fatty liver*. Penelitian ini bertujuan untuk mengetahui hubungan antara jenis kelamin, usia, dan indeks massa tubuh dengan kejadian *fatty liver* pada pasien DM tipe 2.

Metode: Penelitian ini menggunakan desain analitik observasional dengan pendekatan *cross-sectional* yang dilakukan di RS DR. H. Abdul Moeloek, Bandar Lampung, pada 8 Maret – 8 April 2025. Sampel terdiri dari 52 pasien DM tipe 2 yang diambil menggunakan teknik total sampling. Analisis data dilakukan dengan uji *chi-square*.

Hasil Penelitian: Sebanyak 57,7% responden adalah perempuan, dan 42,3% lakilaki. Berdasarkan usia, 55,7% berusia <60 tahun dan 44,3% ≥60 tahun. Berdasarkan IMT, 34,6% pasien tergolong normal, 27% *overweight*, dan 38,4% obesitas. Tidak ditemukan hubungan signifikan antara jenis kelamin dan kejadian *fatty liver*. Namun, terdapat hubungan signifikan antara usia dan IMT dengan kejadian *fatty liver*.

Simpulan: Usia dan IMT berhubungan signifikan dengan kejadian *fatty liver* pada pasien DM tipe 2, sedangkan jenis kelamin tidak menunjukkan hubungan yang signifikan.

Kata kunci: Diabetes melitus, *fatty liver*, jenis kelamin, usia, indeks masa tubuh.

DAFTAR ISI

	HALAMAN
DAFTAR ISI	i
DAFTAR TABEL	vi
DAFTAR GAMBAR	vii
BAB I PENDAHULUAN	1
1.1 Latar Belakang	1
1.2 Rumusan Masalah	
1.3 Tujuan Penelitian	
1.3.1 Tujuan Umum	
1.3.2 Tujuan Khusus	9
1.4 Manfaat Penelitian	
1.4.1 Manfaat Teoritis	
1.7.2 Walifaat Aplikatii	
BAB II TINJAUAN PUSTAKA	10
2.1 Diabetes Melitus Tipe 2	
2.1.1 Definisi	
2.1.2 Prevalensi Diabetes Melitus 2.1.3 Diagnosis	
2.1.4 Komplikasi	
2.1.5 Patofisiologi NAFLD pada Pasien Diabetes Melitus Tipe 2	
2.1.6 Preventif	
2.2 Jenis Kelamin	19
2.2.1 Perbedaan Hormonal antara Laki-laki dan Perempuan	19
2.2.2 Jenis Kelamin sebagai Faktor Risiko DM dan Fatty Liver	21
2.3 Usia	
2.3.1 Pengaruh Usia terhadap Metabolisme	
2.3.2 Usia sebagai Faktor Risiko DM dan Fatty Liver	24
2.4 Indeks Massa Tubuh	
2.4.1 Definisi	
2.4.2 <i>Overweight</i>	
2.5 Hati	
2.5.1 Histologi dan Anatomi Hati	
_	
2.6 Fatty liver	
2.6.2 Nonalcoholic Fatty Liver Disease	
2.6.3 Gambaran Klinis dan Laboratorium.	

2.6.4 Perjalanan Penyakit dan Prognosis	
2.6.5 Epidemiologi dan Patofisiologi	
2.7 Ultrasonografi Hepar	
2.7.1 Definisi	
2.7.3 Persiapan Pasien	
2.7.4 Teknik Pemeriksaan	
2.7.5 Gambaran Ultrasonografi Hati Normal	
2.8 Faktor Risiko <i>Fatty Liver</i> (IMT, Usia, dan Jenis Kelamin)	
2.9 Kerangka Teori	
2.10 Kerangka Konsep	
-	
2.9 Hipotesis	30
BAB III METODE PENELITIAN	57
3.1 Desain Penelitian	57
3.2 Lokasi dan Waktu Penelitian	
3.2.1 Lokasi Penelitian	
3.2.2 Waktu Penelitian	
3.3 Populasi dan Sampel Penelitian	57 58
3.3.2 Kriteria Eksklusi	
3.4 Identifikasi Variabel dan Definisi Operasional	59
3.4.1 Variabel Independen	59
3.4.2 Variabel Depandeen	59
3.5 Definisi Operasional	59
3.6 Alur Penelitian	61
3.6 Analisis Data	62
3.7 Etika Penelitian	63
BAB IV HASIL DAN PEMBAHASAN	64
4.1 Gambaran Umum Penelitian	
4.2 Hasil Penelitian	
4.2.2 Analisis Bivariat	
4.3 Pembahasan	74
4.3.1 Jenis Kelamin	
4.3.2 Usia	
4.3.3 Indeks Massa Tubuh (IMT)	
7.5.7 <i>i uny uver</i> feom banyak ditemukan pada murvidu dengan jen	13 KCIAIIIII

4.4 Keterbatasan	78
BAB V SIMPULAN DAN SARAN	79
5.1 Simpulan	79
5.2 Saran	80
DAFTAR PUSTAKA	82
LAMPIRAN	90

DAFTAR TABEL

Tabel 1. Diagnosis Diabetes Melitus
Tabel 2.Klasifikasi IMT untuk ASIA Dewasa Menurut WHO27
Tabel 3. Klasifikasi IMT pada Orang Dewasa Menurut WHO27
Tabel 4. Definisi Operasional Variabel Bebas Penelitian 60
Tabel 5. Definisi Operasional Variabel Terikat Penelitian 60
Tabel 6. Distribusi Frekuensi Jenis Kelamin Sampel Penelitian65
Tabel 7. Distribusi Frekuensi Usia Sampel Penelitian 66
Tabel 8. Distribusi Frekuensi Indeks Masa Tubuh Sampel Penelitian67
Tabel 9. Distribusi Frekuensi Gambaran USG Abdomen Pasien Diabetes Melitus
Tipe 2 Sampel Penelitian67
Tabel 10. Distribusi Frekuensi Karakteristik Jenis Kelamin pada Pasien Diabetes
Melitus yang Terdiagnosis Fatty Liver
Tabel 11. Distribusi Frekuensi Karakteristik Usia pada Pasien Diabetes Melitus
yang Terdiagnosis Fatty Liver69
Tabel 12. Distribusi Frekuensi Karakteristik Indeks Masa Tubuh pada Pasien
Diabetes Melitus yang Terdiagnosis Fatty Liver70
Tabel 13. Hubungan Jenis Kelamin dengan Gambaran Hasil USG Abdomen
Pasien Diabetes Melitus Tipe 271
Tabel 14. Hubungan Usia dengan Gambaran Hasil USG Abdomen Pasien
Diabetes Melitus Tipe 2
Tabel 15. Hubungan Indeks Masa Tubuh dengan Gambaran Hasil USG Abdomen
Pasien Diabetes Melitus Tipe 2

DAFTAR GAMBAR

Gambar 1. Anatomi Hati	32
Gambar 2. Perbandingan Makroskopis dan Mikroskopis pada	a Hati Normal dan
Fatty liver	36
Gambar 3. USG Hati Normal	49
Gambar 4. USG Fatty liver	50
Gambar 5. Kerangka Teori	52
Gambar 6. Kerangka Konsep	54
Cambar 7 Alur Penelitian	61

BABI

PENDAHULUAN

1.1 Latar Belakang

Diabetes melitus (DM) merupakan kelainan metabolik dengan etiologi multifaktorial. Penyakit ini ditandai oleh hiperglikemia kronis dan mempengaruhi metabolisme karbohidrat, protein serta lemak. Patofisiologi DM berpusat pada gangguan sekresi insulin dan/atau gangguan kerja insulin. Penyandang DM akan ditemukan dengan berbagai gejala seperti poliuria (banyak berkemih), polidipsia (banyak minum) dan polifagia (banyak makan) dengan penurunan berat badan (Susantiningsih et al., 2017). Tingkat prevalensi diabetes melitus adalah tinggi. Tahun 2022, World Health Organization (WHO) menyatakan bahwa diabetes melitus (DM) termasuk penyakit yang paling banyak diderita oleh orang di seluruh dunia dan berada di urutan keempat dari prioritas penelitian penyakit degeneratif di seluruh negara. World Health Organization (WHO) memperkirakan lebih dari 346 juta orang di seluruh dunia mengidap diabetes. Menurut International Diabetes Federation (IDF), pada tahun 2021, sebanyak 537 juta orang dewasa.1 dari 10 orang di seluruh dunia mengidap diabetes. Diabetes juga menyebabkan 6,7 juta kematian, atau satu dari setiap lima detik. China, India, Pakistan, Amerika Serikat, dan Indonesia berada di peringkat 5 besar negara dengan jumlah populasi penderita diabetes melitus tertinggi di dunia (Kemenkes RI, 2018). American Diabetes Association (ADA) (2020) mengatakan bahwa prevalensi DM di Amerika Serikat adalah 9,3%, meningkat dari 25,8 juta orang pada tahun 2010, di mana 8,1 juta penderita tidak terdiagnosis, dan insidens DM pada tahun 2012 adalah 1,7 persen.

Prevalensi DM di Indonesia pada usia >15 tahun berdasarkan diagnosis dokter meningkat, semula 1,5 pada 2013 menjadi 2,0 pada tahun 2019. Prevalensi DM berdasarkan pemeriksaan darah semula 6,9% pada 2013 menjadi 8,5% pada 2018. Prevalensi DM pada usia >15 tahun berdasarkan diagnosis dokter sebesar 0,99 dengan kelompok umur 65-74 tahun sebesar 4,94%, usia 55-64 tahun 3,88%, usia 45-54 tahun 2,7% usia >75 tahun sebesar 2,25% dan usia 35-44 tahun 0,84%, usia 25-34 tahun 0,008%. Penderita berjenis kelamin perempuan 1,23 dan laki-laki 0,76. Penderita DM tinggal di perkotaaan sebesar 1,38% dan pedesaan 0,82% (Kemenkes RI, 2018). Prevalensi DM di Kota Bandar Lampung pada usia >15 tahun berdasarkan diagnosis dokter sebesar 2,25% merupakan urutan tertinggi kedua di Propinsi Lampung setelah Kota Metro (Kemenkes RI, 2019). Peningkatan prevalensi diabetes melitus (DM) setiap tahunnya di daerah perkotaan disebabkan oleh perubahan gaya hidup masyarakat, termasuk pola makan tidak sehat dan kurangnya aktivitas fisik. Penelitian menunjukkan bahwa gaya hidup modern di perkotaan sangat memengaruhi peningkatan prevalensi diabetes melitus (Taufik dan Andayani, 2023). Selain prevalensi berdasarkan wilayah, data juga menunjukkan bahwa usia dan jenis kelamin turut memengaruhi kejadian DM. Usia lanjut memiliki risiko lebih tinggi mengalami komplikasi metabolik termasuk perlemakan hati, dan prevalensi diabetes melitus juga lebih tinggi pada perempuan dibandingkan laki-laki di beberapa populasi. Faktor-faktor ini menjadi penting dalam memahami variasi klinis diabetes melitus dan risiko lanjutannya.

Mayoritas masyarakat di daerah perkotaan berada pada jarak yang cukup jauh dengan lokasi produksi bahan pangan segar, sehingga dalam memenuhi kebutuhan atas pangan terutama bahan pangan segar umumnya dilakukan dengan cara membeli secara langsung di pasar tradisional, pasar modern, atau di toko/warung sekitar tempat tinggal mereka (Ivan's dan Sari, 2021). Ketimpangan ekonomi juga memengaruhi kemampuan individu untuk menjalankan diet ini, terutama bagi mereka yang memiliki keterbatasan finansial dalam membeli bahan makanan sehat (Mustofa *et al.*, 2024). Kemajuan teknologi dan perkembangan ilmu pengetahuan yang cepat, disertai

dengan pertumbuhan ekonomi yang signifikan, telah memberikan dampak yang luas terhadap berbagai aspek kehidupan, termasuk perubahan gaya hidup masyarakat. Salah satu konsekuensi paling mencolok dari perubahan ini adalah pola makan yang tidak sehat, ditandai dengan konsumsi *junk food* yang berlebihan dan penurunan aktivitas fisik (Alkhair *et al.*, 2023).

Diabetes melitus meningkat dengan pesat akibat faktor gaya hidup/diet) pada usia menengah dan manula, diakibatkan terutama oleh resistensi terhadap kerja insulin di jaringan perifer. Walaupun pada tahap lanjut defisiensi insulin dapat terjadi, namun tidak ditemukan defisiensi absolut insulin. Penyakit ini juga dipengaruhi faktor genetik. Pada pasien-pasien dengan diabetes melitus tipe 2, penyakitnya mempunyai pola familial yang kuat (Manurung, 2018). Indeks untuk diabetes tipe 2 pada kembar monozigot hampir 100%. Risiko berkembangnya diabetes tipe 2 pada saudara kandung mendekati 40% dan 33% untuk anak cucunya. Jika orang tua menderita diabetes tipe 2, rasio diabetes dan nondiabetes pada anak adalah 1:1, dan sekitar 90% pasti membawa (carrier) diabetes tipe 26,7. Untuk kebanyakan individu, diabetes melitus tipe 2 tampaknya berkaitan dengan kegemukan. Selain itu, kecendrungan pengaruh genetik, yang menentukan individu kemungkinan mengidap penyakit ini, cukup kuat. Diperkirakan bahwa terdapat sifat genetik yang belum teridentifikasi yang menyebabkan pangkreas mengeluarkan insulin yang berbeda, atau menyebabkan reseptor insulin atau perantara kedua tidak dapat berespons secara adekuat terhadap insulin (Susantiningsih et al., 2017).

Apabila pankreas tidak menghasilkan jumlah insulin yang cukup atau jika tubuh tidak dapat menggunakan insulin yang diproduksinya secara efektif, itu disebut diabetes melitus. Hal ini menyebabkan hiperglikemia, peningkatan glukosa dalam darah. Diabetes tipe 2 sebelumnya dikenal sebagai diabetes yang timbul di masa dewasa, karena kebanyakan kasus muncul pada usia lebih dari empat puluh tahun. Namun, kejadian diabetes tipe 2 mulai muncul pada usia yang lebih muda. Selain faktor keturunan, faktor lingkungan juga sangat

berpengaruh terhadap timbulnya diabetes. Ada banyak faktor lain yang menyebabkan diabetes (Waspadji, 2017).

Salah satu faktor resiko diabetes melitus adalah obesitas dan *Overweight*, dikarenakan dapat menyebabkan resistensi insulin hepatik melalui aktivasi makrofag M1 proinflamasi pada jaringan adiposa dan pelepasan sitokin proinflamasi seperti interleukin (IL)-6 dan faktor nekrosis tumor (TNF)-α. Sitokin proinflamasi dapat menurunkan respons seluler terhadap insulin dan mengakibatkan resistensi insulin. IL-6 memblokir jalur pensinyalan insulin setidaknya sebagian melalui induksi penekan pensinyalan sitokin-3 (Suwinawati *et al.*, 2020). Selain itu juga, obesitas dan *overweight* merupakan faktor risiko utama dalam perkembangan *fatty liver*. Salah satu metode yang umum digunakan untuk mengukur proporsi lemak tubuh adalah dengan menghitung indeks masa tubuh (IMT), yang diperoleh dari perbandingan berat badan dalam kilogram dengan kuadrat tinggi badan dalam meter. Klasifikasi IMT ini membantu dalam mengidentifikasi apakah seseorang berada dalam kategori *underweight*, normal, *overweight*, atau obesitas (Hossain *et al.*, 2021).

Akibat dari kelebihan berat badan tersebut adalah munculnya *fatty liver* sederhana, sebuah kondisi yang ditandai dengan insiden akumulasi trigliserida di dalam sel-sel hati, yang biasanya disebabkan oleh gangguan metabolisme lemak (Sriwaningsih *et al.*, 2023). Salah satu bentuk paling umum dari perlemakan hati yang tidak terkait dengan konsumsi alkohol adalah *Nonalcoholic Fatty Liver Disease* (NAFLD). NAFLD telah menjadi perhatian global karena kemungkinannya untuk berkembang menjadi penyakit hati kronis yang lebih serius, seperti sirosis dan kanker hati. Di negara-negara maju seperti Amerika Serikat, Eropa, dan Australia, prevalensi NAFLD diperkirakan mencapai 30% dari populasi umum. Pada individu yang mengalami obesitas, prevalensinya dapat mencapai 60%, dengan 20-25% di antaranya mengalami steatohepatitis dan 2-3% mengalami sirosis (Setiawan & Kurniawan, 2021).

Prevalensi NAFLD cenderung meningkat seiring dengan bertambahnya berat badan. Di antara individu dengan *overweight*, prevalensi NAFLD dapat mencapai 58%, sedangkan pada individu obesitas yang tidak menderita diabetes mellitus tipe 2 (DMT2), angka tersebut bisa mencapai 90%. *Nonalcoholic Fatty Liver Disease* lebih umum terjadi pada pria dibandingkan wanita, dan prevalensinya meningkat seiring bertambahnya usia. Di negaranegara berkembang, NAFLD kini dianggap sebagai penyebab utama penyakit hati kronis, dengan sekitar sepertiga dari populasi umum mengalami steatosis, yaitu akumulasi lemak di hati yang dapat terdeteksi melalui pemeriksaan pencitraan seperti USG abdomen. Sebagian besar kasus ini adalah simple steatosis, yang umumnya tidak menunjukkan gejala namun memiliki potensi untuk berkembang menjadi penyakit yang lebih serius (Setiono *et al.*, 2022).

Nonalcoholic Fatty Liver Disease (NAFLD) kemungkinan merupakan penyebab paling umum penyakit hati kronis di banyak negara dan juga dapat memperparah kerusakan hati yang disebabkan oleh agen lain, seperti alkohol, racun industri, dan virus hepatotropik. Kurangnya tes noninvasif yang spesifik dan sensitif untuk Nonalcoholic Fatty Liver Disease membatasi deteksi penyakit yang andal. Seringkali, Nonalcoholic Fatty Liver Disease didiagnosis secara presumptif ketika studi pencitraan menunjukkan steatosis hati atau ketika peningkatan enzim hati dicatat pada individu yang kelebihan berat badan atau obesitas tanpa alasan lain yang dapat diidentifikasi untuk penyakit hati. Nonalcoholic Fatty Liver Disease sangat terkait dengan resistensi insulin dan dislipidemia. Meskipun demikian, perbedaan antara prevalensi Nonalcoholic Fatty Liver Disease yang tampaknya tinggi dalam populasi dan prevalensi penyakit hati yang signifikan secara klinis yang umumnya rendah, serta representasi pasien Nonalcoholic Fatty Liver Disease yang relatif rendah di antara populasi transplantasi hati, telah menimbulkan skeptisisme yang cukup besar tentang pentingnya klinis Nonalcoholic Fatty Liver Disease (Powell et al., 2021). Selain berat badan, usia dan jenis kelamin juga diketahui sebagai determinan penting dalam prevalensi NAFLD. Sejumlah studi menunjukkan bahwa pria memiliki kecenderungan lebih tinggi mengalami fatty liver dibanding perempuan, serta prevalensi meningkat secara signifikan pada kelompok usia paruh baya hingga lansia. Perbedaan ini diduga berkaitan dengan profil hormonal dan perubahan metabolisme terkait usia.

Nonalcoholic Fatty Liver Disease juga memiliki hubungan yang erat dengan sindrom metabolik, di mana sekitar 90% penderita NAFLD memenuhi setidaknya satu kriteria sindrom metabolik, dan sepertiga dari mereka memenuhi tiga atau lebih kriteria. Komponen sindrom metabolik, seperti obesitas abdominal, dislipidemia, hipertensi, dan resistensi insulin, diyakini berperan dalam patogenesis NAFLD, yang didukung oleh teori Two-Hit. Teori ini menjelaskan bahwa akumulasi lemak di hati (hit pertama) dapat menyebabkan stres oksidatif dan kerusakan inflamasi (hit kedua), yang pada akhirnya memicu perkembangan steatohepatitis dan fibrosis hati (Setiono et al., 2022).

Abnormalitas pada tes fungsi hati akibat *fatty liver* sering kali tidak terdeteksi di masyarakat, karena banyak pasien tidak menunjukkan gejala atau tanda klinis yang signifikan. Diagnosis sering kali baru ditegakkan saat menjalani pemeriksaan medis rutin atau ketika kondisi sudah berkembang menjadi lebih serius, seperti sirosis atau kanker hati. Pemeriksaan ultrasonografi (USG) abdomen menjadi salah satu metode utama dalam mendeteksi *fatty liver*, karena dapat menunjukkan akumulasi lemak di hati (Alswat *et al.*, 2019).

Perkembangan teknologi pencitraan medis, terutama ultrasonografi (USG), telah memberikan kemajuan besar dalam mendeteksi penyakit hati difus seperti *fatty liver* secara noninvasif. USG menjadi metode pilihan pertama karena kemampuannya mendeteksi perubahan *echogenicity* hati akibat infiltrasi lemak, tanpa risiko radiasi atau biaya tinggi seperti CT Scan atau MRI. Sensitivitas dan spesifisitas USG dalam mendeteksi steatosis hepatik masingmasing dapat mencapai lebih dari 85% jika kadar lemak hati melebihi 30% dari total berat organ (Ferraioli & Monteiro, 2019). Keunggulan ini menjadikan USG sebagai instrumen yang sangat berharga, terutama di fasilitas kesehatan

primer maupun sekunder seperti RSUD Dr. H. Abdul Moeloek. Namun demikian, USG juga memiliki keterbatasan dalam menilai tingkat keparahan steatosis dan dalam membedakan simple steatosis dari steatohepatitis.

Penelitian sebelumnya telah mengungkap adanya hubungan signifikan antara nilai indeks masa tubuh (IMT) dengan kejadian *fatty liver*. Individu dengan IMT dalam kategori *overweight* dan obesitas memiliki prevalensi *fatty liver* yang jauh lebih tinggi dibandingkan dengan individu dengan IMT normal. Namun, keterbatasan studi terdahulu adalah minimnya analisis terhadap variabel tambahan seperti usia dan jenis kelamin, yang juga turut berperan dalam patogenesis *fatty liver*, terutama pada pasien dengan diabetes melitus tipe 2. Dengan memperluas cakupan variabel yang dianalisis, penelitian ini diharapkan mampu menyajikan data yang lebih mendalam mengenai faktorfaktor klinis yang berhubungan dengan kejadian *fatty liver* pada populasi penderita DM tipe 2 di wilayah Lampung (Younossi *et al.*, 2016).

Pentingnya identifikasi faktor risiko yang berkontribusi terhadap *fatty liver* pada pasien DM tipe 2 juga relevan dengan upaya pencegahan komplikasi lebih lanjut seperti steatohepatitis, fibrosis, hingga sirosis hati. Dengan memahami keterkaitan antara IMT, usia, dan jenis kelamin terhadap gambaran *fatty liver*, klinisi diharapkan dapat melakukan stratifikasi risiko lebih dini dan menerapkan pendekatan intervensi yang lebih tepat sasaran. Selain itu, informasi ini juga penting bagi pengambil kebijakan dan institusi pelayanan kesehatan dalam menyusun program edukasi atau skrining berbasis risiko untuk populasi rentan di daerah urban seperti Bandar Lampung (Ciardullo *et al.*, 2021).

Penemuan pada penelitian Charismatika SD (2017) yaitu risiko 5,571 kali lebih besar *fatty liver* terjadi pada orang-orang yang *overweight* dibandingkan dengan yang berat badannya normal. Penelitian lainnya dilakukan oleh Medina *et al.*, (2018), membuktikan bahwa *fatty liver* terlihat pada gambaran pada USG abdomen dimana lebih sering terjadi pada orang yang mengalami obesitas

sentral. Obesitas sentral, atau obesitas abdominal, adalah kondisi yang ditandai dengan akumulasi lemak berlebih di sekitar organ dalam yang dapat menyebabkan berbagai komplikasi kesehatan seperti penyakit kardiovaskular, diabetes tipe 2, dan gangguan musculoskeletal (Putri *et al.*, 2024).

Mengingat pentingnya deteksi dini dan penanganan *fatty liver*, penelitian ini bertujuan untuk menganalisis hubungan antara indeks masa tubuh *overweight* dengan gambaran *fatty liver* pada hasil USG abdomen di Rumah Sakit DR. H Abdul Moeloek Bandar Lampung. Hasil penelitian ini diharapkan dapat memberikan kontribusi bagi diagnosis yang lebih akurat dan penanganan yang lebih efektif terhadap *fatty liver*. Selain indeks masa tubuh, variabel usia dan jenis kelamin pasien juga akan dianalisis sebagai faktor yang berpotensi berhubungan dengan gambaran *fatty liver* pada USG abdomen. Dengan mempertimbangkan ketiga variabel tersebut, diharapkan penelitian ini dapat memberikan pemahaman yang lebih komprehensif mengenai profil klinis penderita DM tipe 2 yang mengalami *fatty liver*.

1.2 Rumusan Masalah

- 1. Apakah terdapat hubungan antara jenis kelamin dengan kejadian *fatty liver* pada pasien diabetes melitus tipe 2 di Rumah Sakit DR. H Abdul Moeloek.
- 2. Apakah terdapat hubungan antara usia dengan kejadian *fatty liver* pada pasien diabetes melitus tipe 2 di Rumah Sakit DR. H Abdul Moeloek.
- Apakah terdapat hubungan antara indeks masa tubuh dengan kejadian fatty liver pada pasien diabetes melitus tipe 2 di Rumah Sakit DR. H Abdul Moeloek.
- 4. Bagaimana karakteristik pada pasien diabetes melitus tipe 2 yang terdiagnosis *fatty liver* di Rumah Sakit DR. H Abdul Moeloek.

1.3 Tujuan Penelitian

1.3.1 Tujuan Umum

Mengetahui hubungan jenis kelamin, usia dan indeks masa tubuh pada pasien diabetes melitus tipe 2 (DMT2) dengan gambaran *fatty liver* pada USG abdomen di Rumah Sakit DR. H Abdul Moeloek.

1.3.2 Tujuan Khusus

- Mengetahui dan menganalisis hubungan antara jenis kelamin dengan kejadian *fatty liver* pada pasien diabetes melitus tipe 2 di Rumah Sakit DR. H Abdul Moeloek.
- 2. Mengetahui dan menganalisis hubungan antara usia dengan kejadian *fatty liver* pada pasien diabetes melitus tipe 2 di Rumah Sakit DR. H Abdul Moeloek.
- 3. Mengetahui dan menganalisis hubungan antara indeks masa tubuh dengan kejadian *fatty liver* pada pasien diabetes melitus tipe 2 di Rumah Sakit DR. H Abdul Moeloek.
- 4. Mengetahui dan menganalisis karakteristik pada pasien diabetes melitus tipe 2 yang terdiagnosis *fatty liver* di Rumah Sakit DR. H Abdul Moeloek.

1.4 Manfaat Penelitian

1.4.1 Manfaat Teoritis

Penelitian ini diharapkan dapat dijadikan sebagai bahan perbandingan terhadap penelitian serupa sebelumnya atau pun memberi informasi bagi penelitian serupa di lain waktu dan tempat.

1.4.2 Manfaat Aplikatif

Manfaat aplikatif yang diharapkan dari penelitian ini adalah dengan diketahui pengaruh jenis kelamin, usia dan indeks masa tubuh pasien DMT2 terhadap gambaran *fatty liver*, maka dapat membantu dalam menegakkan diagnosis dan penanganan yang lebih adekuat serta upaya pencegahan *fatty liver* sejak dini.

BAB II

TINJAUAN PUSTAKA

2.1 Diabetes Melitus Tipe 2

2.1.1 Definisi

Diabetes Melitus Tipe 2 (DMT2) adalah suatu kelainan metabolik kronis yang ditandai oleh meningkatnya kadar glukosa darah akibat ketidakmampuan tubuh dalam menggunakan insulin secara efektif. Kondisi ini terutama disebabkan oleh dua mekanisme utama, yakni resistensi insulin pada jaringan perifer serta gangguan sekresi insulin dari sel β pankreas. Resistensi insulin mengacu pada penurunan respons jaringan tubuh seperti otot, hati, dan sel adiposa terhadap hormon insulin, yang berfungsi mengatur kadar glukosa darah. Seiring waktu, sel β pankreas tidak mampu mengimbangi peningkatan kebutuhan insulin, sehingga terjadi defisiensi relatif. Kombinasi antara gangguan sekresi dan kerja insulin inilah yang menyebabkan hiperglikemia kronis, ciri khas utama dari DMT2 (Chatterjee *et al.*, 2017).

Dalam beberapa dekade terakhir, prevalensi DMT2 mengalami peningkatan yang sangat signifikan secara global. Perubahan pola makan menjadi tinggi kalori dan lemak, gaya hidup sedenter, serta peningkatan angka obesitas telah menjadi faktor utama pemicu lonjakan tersebut, terutama di negara berkembang yang tengah mengalami transisi demografi dan urbanisasi pesat. Populasi usia lanjut juga turut berkontribusi terhadap peningkatan prevalensi DMT2, mengingat sensitivitas insulin menurun seiring bertambahnya usia. Sebuah laporan dari Chatterjee *et al.*, (2017) menyebutkan bahwa antara tahun 1980

hingga 2004, prevalensi DMT2 meningkat secara eksponensial di berbagai belahan dunia, menjadikannya masalah kesehatan masyarakat yang mendesak. DMT2 juga sering kali tidak terdiagnosis pada tahap awal karena gejalanya berkembang secara perlahan dan tidak khas, sehingga skrining aktif dan peningkatan kesadaran masyarakat menjadi strategi penting dalam deteksi dini.

Diabetes melitus tipe 2 berkontribusi besar terhadap beban penyakit kronis karena berbagai komplikasi jangka panjang yang dapat ditimbulkannya. Komplikasi makrovaskular seperti penyakit jantung koroner, stroke, dan penyakit arteri perifer merupakan penyebab utama morbiditas dan mortalitas pada pasien dengan DMT2. Selain itu, komplikasi mikrovaskular seperti retinopati, nefropati, dan neuropati juga sangat umum ditemukan dan berkorelasi erat dengan durasi penyakit serta kualitas kontrol glikemik. Berbagai uji klinis terkontrol telah menunjukkan bahwa manajemen glukosa darah secara intensif dapat menurunkan risiko komplikasi mikrovaskular secara signifikan. Namun, terapi yang terlalu agresif juga membawa risiko hipoglikemia berat, yang bahkan dikaitkan dengan peningkatan mortalitas, termasuk pada pasien yang tidak menggunakan insulin (Chatterjee et al., 2017). Oleh karena itu, pendekatan manajemen DMT2 harus bersifat individual dan berpusat pada pasien, dengan mengedepankan deteksi dini dan penanganan komprehensif yang mempertimbangkan profil klinis masing-masing individu.

2.1.2 Prevalensi Diabetes Melitus

Prevalensi Diabetes Melitus (DM), khususnya tipe 2, terus meningkat secara global dan menjadi tantangan besar dalam sistem kesehatan masyarakat dunia. Berdasarkan data dari *International Diabetes Federation* (IDF, 2019), pada tahun 2019 tercatat sebanyak 463 juta orang di dunia yang berusia antara 20 hingga 79 tahun hidup dengan DM, yang setara dengan 9,3% dari total populasi usia tersebut. Angka ini menunjukkan beban penyakit yang sangat besar dan diperkirakan akan

terus meningkat seiring pertambahan usia penduduk. IDF juga melaporkan bahwa lebih dari 6,7 juta kematian terjadi akibat komplikasi terkait diabetes. Proyeksi prevalensi DM global menunjukkan bahwa pada kelompok usia 65-79 tahun, angka kejadian dapat mencapai 19,9% atau sekitar 111,2 juta orang. Diperkirakan jumlah penderita diabetes akan melonjak hingga 578 juta pada tahun 2030 dan menembus angka 700 juta pada tahun 2045 (InfoDatin, 2020). Peningkatan prevalensi ini sebagian besar disebabkan oleh pola hidup sedentari, urbanisasi cepat, peningkatan obesitas, serta konsumsi makanan olahan tinggi kalori.

Indonesia sendiri menjadi salah satu negara dengan beban diabetes tertinggi di dunia. Pada tahun 2019, Indonesia tercatat sebagai negara dengan jumlah penderita DM terbesar ketujuh secara global, dengan 10,7 juta orang dewasa (usia 20-79 tahun) yang hidup dengan diabetes (IDF, 2019). Menurut data dari Kementerian Kesehatan Republik Indonesia (Kemenkes RI, 2018), prevalensi DM pada penduduk usia lebih dari 15 tahun yang didiagnosis oleh dokter meningkat dari 1,5% pada tahun 2013 menjadi 2,0% pada tahun 2019. Sementara itu, jika dihitung berdasarkan pemeriksaan darah, prevalensinya naik dari 6,9% pada 2013 menjadi 8,5% pada 2018. Distribusi prevalensi juga bervariasi berdasarkan kelompok umur, dengan angka tertinggi pada kelompok usia 65-74 tahun sebesar 4,94%, diikuti oleh usia 55-64 tahun (3,88%), 45-54 tahun (2,7%), >75 tahun (2,25%), 35-44 tahun (0,84%), dan 25-34 tahun (0,008%). Data juga menunjukkan bahwa prevalensi DM lebih tinggi pada perempuan (1,23%) dibanding laki-laki (0,76%), serta lebih tinggi di wilayah perkotaan (1,38%) dibandingkan pedesaan (0,82%). Di Provinsi Lampung, Kota Bandar Lampung memiliki prevalensi DM tertinggi kedua setelah Kota Metro, yaitu sebesar 2,25% untuk kelompok usia di atas 15 tahun (Kemenkes RI, 2019).

2.1.3 Diagnosis

Mendiagnosis diabetes didasarkan pada pemantauan kadar gula darah dan hemoglobin terglikasi (HbA1c). Kontrol glukosa darah yang dianjurkan adalah dengan memantau glukosa darah enzim plasma intravena. Pemantauan hasil pengobatan dilakukan dengan glukometer. Diagnosis tidak dapat ditegakkan hanya karena adanya glukosuria. Banyak keluhan dapat ditemukan pada pasien diabetes melitus (Soelistijo, 2021). Pada pemeriksaan anamnesis sering didapati gejala khas diabetes, seperti poliuria, polidipsia, polifagia, dan penurunan berat badan, namun penyebabnya tidak diketahui. Gejala umum lainnya termasuk kelemahan, kesemutan, gatal, penglihatan kabur, disfungsi ereksi, dan pruritus vulva (Lestari dan sijid, 2021).

Diabetes dapat didiagnosis dengan empat pemeriksaan: (1) tes glukosa darah puasa, (2) tes glukosa plasma atau tes toleransi setelah 75 g glukosa oral selama 2 jam, (3) tes kadar HbA1C, dan (4) tes glukosa darah acak (Hardianto, 2021). Kriteria diagnosis diabetes Melitus adalah sebagai berikut:

Tabel 1. Diagnosis Diabetes Melitus (PERKENI, 2021)

Pemeriksaan glukosa plasma puasa ≥ 126 mg/dL. Puasa adalah kondisi tidak ada asupan kalori minimal 8 jam

Atau

Pemeriksaan glukosa plasma ≥ 200 mg/dL 2-jam setelah Tes Toleransi Glukosa Oral (TTOG) dengan beban glukosa 75 gram

Atau

Pemeriksaan glukosa plasma sewaktu ≥ 200 mg/dL dengan keluhan klasik atau krisis hiperglikemia

Atau

Pemeriksaan HbA1c \geq 6,5% dengan menggunakan metode yang terstandarisasi oleh *National Glycohaemoglobion Standarization Program* (NGSP) dan *Diabetes Control and Complications Trial Assay* (DCCT)

2.1.4 Komplikasi

Diabetes melitus merupakan salah satu penyakit yang dapat menimbulkan berbagai macam komplikasi, antara lain:

1. Akut

- a) Hipoglikemia (kekurangan glukosa dalam darah) timbul sebagai komplikasi diabetes yang disebabkan karena pengobatan yang kurang tepat (ADA, 2018).
- b) Ketoasidosis diabetik (KAD) disebabkan karena kelebihan kadar glukosa dalam darah sedangkan kadar insulin dalam tubuh sangat menurun sehingga mengakibatkan kekacauan metabolik yang ditandai oleh trias hiperglikemia, asidosis dan ketosis (Price, 2019).
- c) Sindrom (hiperglikemia hiperosmoler nonketotic) adalah komplikasi diabetes melitus yang ditandai dengan hiperglikemia berat dengan kadar glukosa serum lebih dari 600 mg/dl (Adeyinka dan Kondamudin, 2018)

2. Kronis

Komplikasi metabolik kronik pada pasien diabetes melitus dapat berupa kerusakan pada pembuluh darah kecil (*mikrovaskuler*) dan komplikasi pada pembuluh darah besar (*makrovaskuler*) diantaranya:

A. Mikrovaskuler

- Retinopati: Kerusakan retina mata kerusakan retina mata (retinopati) adalah suatu mikroangiopati ditandai dengan kerusakan dan sumbatan pembuluh darah kecil (Saputri, 2020).
- 2) Nefropati: Nefropati Diabetik adalah komplikasi diabetes melitus pada ginjal yang dapat berakhir sebagai gagal ginjal. Penyakit ginjal (nefropati) merupakan penyebab utama kematian dan kecacatan pada DM. Sekitar 50% gagal ginjal tahap akhir di Amerika Serikat disebabkan nefropati

- diabetik. Hampir 60% penderita hipertensi dan diabetes di Asia menderita Nefropati diabetik (Harie *et al.*, 2018)
- 3) Neuropati: Diabetik merupakan komplikasi yang paling sering ditemukan pada pasien diabetes mellitus, neuropati pada diabetes melitus mengacau pada sekelompok penyakit yang menyerang semua tipe saraf (Kusdiyah, 2020).

B. Makrovaskuler

- Komplikasi penyakit jantung koroner pada pasien diabetes melitus disebabkan karena adanya iskemia atau infark miokard yang terkadang tidak disertai dengan nyeri dada atau disebut dengan Silent Myocardial Infarction (SMI) (Saputri, 2020).
- 2) Hipertensi atau tekanan darah tinggi jarang memberikan keluhan yang dramatis seperti kerusakan mata atau kerusakan ginjal orang diabetes cenderung terkena hipertensi dua kali lipat dibandingkan dengan yang tanpa diabetes, diabetes mellitus merusak pembuluh darah, antara 35-75 persen komplikasi diabetes adalah disebabkan hipertensi (Kusdiyah, 2020).

2.1.5 Patofisiologi NAFLD pada Pasien Diabetes Melitus Tipe 2

Fatty liver merupakan kondisi perlemakan hati yang berhubungan erat dengan berbagai gangguan metabolik, terutama diabetes melitus tipe 2 (DMT2) dan obesitas. Dua mekanisme metabolik yang menjadi dasar perkembangan fatty liver adalah peningkatan suplai asam lemak bebas (free fatty acid/FFA) ke hati dan resistensi insulin. Pada individu sehat, insulin bekerja dengan mengikat reseptor spesifik di membran sel, memicu fosforilasi protein IRS-1 dan IRS-2, dan mengaktifkan jalur Protein Kinase B (PKB). Jalur ini kemudian merangsang translokasi transporter glukosa (GLUT) ke membran sel untuk meningkatkan penyerapan glukosa, serta menghambat glukoneogenesis. Namun, pada kondisi resistensi insulin yang umum terjadi pada DMT2, proses ini

terganggu, menyebabkan peningkatan lipolisis jaringan adiposa dan pelepasan FFA ke sirkulasi (Mescher, 2021; Lala *et al.*, 2023).

Peningkatan FFA memiliki implikasi langsung terhadap penumpukan trigliserida di hepatosit. Kelebihan FFA mendorong pembentukan lemak makrovesikuler dan memicu perlemakan hati. Aktivitas enzim Carnitine Palmitoyl Transferase-1 (CPT-1) yang berperan dalam oksidasi FFA juga mengalami perubahan sensitivitas akibat efek inhibisi malonyl-CoA dan aktivasi Uncoupling Protein 2 (UCP-2). Selain itu, meskipun terjadi peningkatan sintesis trigliserida, sekresi Apolipoprotein B (Apo B) menurun pada kasus perlemakan hati berat, diduga akibat degradasi yang dimediasi oleh insulin (Seitz *et al.*, 2023).

Adiposa sebagai jaringan endokrin menghasilkan sejumlah adipokin seperti leptin dan adiponektin yang juga memainkan peran penting dalam patogenesis *fatty liver*. Leptin, yang meningkat pada kondisi obesitas, bersifat proinflamasi dan fibrogenik. Sebaliknya, adiponektin memiliki efek anti-inflamasi dan anti-lipidemik, namun justru menurun pada pasien *fatty liver*. Kadar adiponektin yang rendah juga dikaitkan dengan penurunan sensitivitas insulin dan kerusakan hepatosit. Faktor lingkungan seperti kelebihan asupan energi serta kurangnya aktivitas fisik turut memengaruhi ekspresi kedua adipokin ini, di samping faktor genetik (Susantiningsih & Mustofa, 2018; Lu *et al.*, 2023; Pouwels *et al.*, 2022).

Inflamasi hati dalam *fatty liver* sangat dipengaruhi oleh peningkatan FFA yang mengaktivasi jalur Ikk-β/NF-kB, sehingga meningkatkan sitokin proinflamasi seperti TNF-α, IL-6, dan IL-1β. Aktivasi sel Kupffer, sel imun hati, memperburuk proses inflamasi dan berkontribusi terhadap transisi *fatty liver* ke tahap steatohepatitis. Faktor genetik seperti Polimorfisme gen Apolipoprotein C3 (APOC3) dan gen-gen lain yang memengaruhi distribusi lemak tubuh, sensitivitas insulin, dan respon

hepatik terhadap adipokin juga telah dikaitkan dengan peningkatan kerentanan terhadap *fatty liver*, meskipun sebagian masih perlu dibuktikan lebih lanjut secara epidemiologis (Mescher, 2021).

Hipotesis dua tahap (*two-hit theory*) menjelaskan mekanisme perkembangan *fatty liver*. "Hit" pertama adalah penumpukan lemak di hati akibat resistensi insulin, obesitas, atau dislipidemia, sedangkan "hit" kedua adalah stres oksidatif dan inflamasi yang merusak mitokondria sel hepatik. Dalam DMT2, tingginya kadar FFA akibat resistensi insulin menyebabkan akumulasi lemak di hepatosit, yang kemudian meningkatkan stres oksidatif dan inflamasi. Hal ini menjelaskan mengapa penderita DMT2 sangat rentan terhadap *fatty liver* progresif yang berujung pada steatohepatitis atau bahkan sirosis (Lala *et al.*, 2023).

Selain diabetes dan obesitas, beberapa faktor lain telah diidentifikasi sebagai kontributor penting dalam perkembangan *fatty liver*, yaitu jenis kelamin, usia dan indeks masa tubuh. Individu dengan indeks masa tubuh tinggi memiliki risiko lebih besar mengalami akumulasi lemak visceral dan *fatty liver*. Usia di atas 60 tahun berkaitan dengan penurunan sensitivitas insulin dan peningkatan resistensi metabolik, yang memperparah kondisi hepatik. Sedangkan dari aspek gender, laki-laki cenderung lebih sering mengalami *fatty liver* dibanding perempuan, terutama karena distribusi lemak yang lebih dominan di area visceral dan pengaruh hormonal. Namun, perempuan pascamenopause kehilangan perlindungan estrogen, sehingga risiko mereka meningkat secara signifikan (Younossi *et al.*, 2016; Powell *et al.*, 2021; Setiono *et al.*, 2022; Hossain *et al.*, 2021).

Dengan demikian, kombinasi antara gangguan metabolik seperti diabetes melitus, obesitas, serta faktor-faktor individual seperti usia dan jenis kelamin, memainkan peran integral dalam mekanisme terbentuknya *fatty liver*. Pemahaman mendalam terhadap jalur patofisiologi ini penting

untuk mengembangkan strategi pencegahan dan pengelolaan yang lebih efektif, terutama pada kelompok risiko tinggi

2.1.6 Preventif

Pencegahan diabetes melitus tipe 2 (DMT2) menjadi fokus utama dalam upaya menurunkan beban penyakit kronis di tingkat populasi. Berbeda dengan tipe 1 yang bersifat autoimun dan belum dapat dicegah, DMT2 sangat erat kaitannya dengan gaya hidup dan karenanya bersifat modifiable. Strategi preventif utama mencakup pengelolaan obesitas, pengendalian kadar glukosa darah, dan perubahan pola hidup melalui diet sehat serta peningkatan aktivitas fisik. Penurunan berat badan sekitar 5-10% dari total berat tubuh telah terbukti memberikan dampak signifikan dalam meningkatkan sensitivitas insulin dan menurunkan risiko berkembangnya diabetes pada individu dengan prediabetes. Pada sebagian kasus, intervensi farmakologis seperti penggunaan metformin dan tiazolidinedion dapat diberikan, khususnya pada individu dengan risiko tinggi, namun efektivitas jangka panjang tetap paling menonjol pada intervensi non-farmakologis berbasis perubahan gaya hidup (Perreault *et al.*, 2022).

Salah satu studi paling berpengaruh dalam konteks pencegahan diabetes adalah *Diabetes Prevention Program* (DPP), yang menunjukkan bahwa modifikasi gaya hidup intensif dapat menurunkan risiko DMT2 hingga 58% pada individu *overweight* dengan gangguan toleransi glukosa. Intervensi tersebut meliputi diet rendah lemak, aktivitas fisik minimal 150 menit per minggu, dan konseling perilaku. Efektivitas pencegahan ini terbukti konsisten di berbagai subkelompok populasi, termasuk perbedaan jenis kelamin, etnis, dan latar belakang genetik. Temuan menarik dari DPP menunjukkan bahwa penggunaan metformin paling efektif pada wanita dengan riwayat diabetes gestasional, sedangkan modifikasi gaya hidup memberikan hasil paling signifikan pada individu berusia lebih dari 60 tahun (Perreault *et al.*, 2022). Hal ini menunjukkan

bahwa pendekatan personalisasi berdasarkan faktor risiko individual dapat meningkatkan efektivitas strategi preventif dalam praktik klinis.

Intervensi gaya hidup intensif tidak hanya berdampak pada penundaan atau pencegahan diabetes, tetapi juga berpengaruh signifikan dalam mencegah komplikasi metabolik yang berkaitan, seperti penyakit hati berlemak non-alkoholik (NAFLD). Studi lanjutan dari DPP menunjukkan bahwa perubahan gaya hidup berkelanjutan mampu menurunkan akumulasi lemak hepatik dan mencegah perkembangan steatosis hepatik yang sering ditemukan pada pasien dengan sindrom metabolik. Bahkan, penurunan risiko gabungan antara diabetes dan komplikasi hepatik dapat mencapai 58%, angka yang secara klinis bermakna dalam konteks preventif (Chalasani *et al.*, 2018). Temuan ini menggarisbawahi pentingnya integrasi program promotif dan preventif dalam pelayanan kesehatan primer, khususnya bagi populasi berisiko tinggi seperti penderita prediabetes, *overweight*, dan mereka yang memiliki riwayat keluarga diabetes.

2.2 Jenis Kelamin

2.2.1 Perbedaan Hormonal antara Laki-laki dan Perempuan

Perbedaan hormonal antara laki-laki dan perempuan memiliki implikasi besar terhadap metabolisme tubuh, terutama dalam pengaturan glukosa dan lemak. Hormon estrogen pada perempuan memiliki efek protektif terhadap sensitivitas insulin dan distribusi lemak subkutan, sementara testosteron pada laki-laki cenderung mendorong pembentukan massa otot dan lemak visceral. Distribusi lemak visceral pada laki-laki diketahui lebih berisiko dalam memicu resistensi insulin dibanding lemak subkutan yang umum ditemukan pada perempuan (Palmisano *et al.*, 2018).

Estrogen diketahui meningkatkan ekspresi protein pengangkut glukosa (GLUT4) dan meningkatkan sensitivitas insulin pada jaringan otot dan adiposa. Hal ini menjadikan perempuan pramenopause lebih tahan

terhadap gangguan metabolik seperti diabetes melitus tipe 2 dan *fatty liver*. Namun, setelah menopause, penurunan kadar estrogen menyebabkan peningkatan akumulasi lemak visceral dan penurunan sensitivitas insulin, yang kemudian meningkatkan risiko penyakit metabolik (Ding *et al.*, 2021). Fenomena ini menggambarkan pentingnya peran hormon dalam keseimbangan metabolik lintas siklus hidup perempuan.

Pada laki-laki, testosteron memiliki peran kompleks. Dengan kadar testosteron normal, hormon ini membantu dalam mempertahankan massa otot dan mengurangi akumulasi lemak. Namun, ketika kadar testosteron terlalu rendah atau terlalu tinggi, terjadi gangguan dalam metabolisme glukosa dan lipid. Rendahnya kadar testosteron berhubungan dengan peningkatan resistensi insulin dan kejadian diabetes, sedangkan kadar yang terlalu tinggi juga dapat berdampak negatif terhadap hati, terutama bila disertai obesitas (Grossmann *et al.*, 2018).

Di samping faktor hormonal, aktivitas genetik pada kromosom seks juga memengaruhi regulasi metabolisme. Penelitian menunjukkan bahwa beberapa gen pada kromosom X dan Y terlibat dalam pengaturan metabolisme lipid, fungsi hepatik, dan diferensiasi sel adiposa. Hal ini menyebabkan adanya perbedaan dasar dalam kerentanan terhadap penyakit metabolik antara laki-laki dan perempuan, yang tidak sepenuhnya bisa dijelaskan oleh hormon saja (Link & Reue, 2017).

Karena perbedaan ini, pendekatan pencegahan dan pengobatan untuk gangguan metabolik seperti diabetes melitus dan *fatty liver* perlu disesuaikan dengan jenis kelamin. Beberapa studi bahkan telah mulai menerapkan strategi pengobatan berbasis gender, seperti penggunaan terapi hormon pada perempuan menopause atau modifikasi intervensi diet dan olahraga berdasarkan pola distribusi lemak yang berbeda antara pria dan wanita. Dengan demikian, peran hormonal dan biologis jenis

kelamin menjadi pertimbangan penting dalam praktik kedokteran preventif dan klinis.

2.2.2 Jenis Kelamin sebagai Faktor Risiko DM dan Fatty Liver

Jenis kelamin telah terbukti menjadi faktor risiko yang signifikan dalam pengembangan diabetes melitus tipe 2 dan *Nonalcoholic Fatty Liver Disease*. Secara umum, laki-laki memiliki kecenderungan lebih tinggi untuk mengalami *fatty liver*, terutama karena kecenderungan akumulasi lemak visceral yang lebih besar dibanding perempuan. Lemak visceral ini bersifat pro-inflamasi dan meningkatkan resistensi insulin, yang merupakan mekanisme utama dalam patogenesis *fatty liver* dan diabetes melitus (Younossi *et al.*, 2019).

Pada perempuan, risiko *fatty liver* cenderung meningkat setelah menopause, saat kadar estrogen menurun secara signifikan. Tanpa perlindungan hormon estrogen, perempuan mengalami perubahan dalam distribusi lemak dari perifer ke sentral, serta penurunan sensitivitas insulin. Hal ini menyebabkan peningkatan kejadian diabetes melitus dan NAFLD (*non-alcoholic fatty liver disease*) di kelompok usia lanjut perempuan. Dengan demikian, risiko *fatty liver* dan diabetes sangat dipengaruhi oleh status hormonal yang terkait dengan siklus reproduksi perempuan (Lonardo *et al.*, 2020).

Jenis kelamin juga berpengaruh terhadap respons tubuh terhadap faktor risiko lain seperti obesitas, hipertensi, dan dislipidemia. Misalnya, lakilaki dengan obesitas cenderung menunjukkan akumulasi lemak hati yang lebih besar dibanding perempuan dengan indeks massa tubuh yang sama. Perbedaan ini berkontribusi pada variasi prevalensi dan keparahan *fatty liver* antar gender. Bahkan, dalam populasi dengan gaya hidup serupa, laki-laki lebih mungkin mengalami progresi penyakit ke arah steatohepatitis dibanding perempuan (Ballestri *et al.*, 2017).

Penelitian lain menunjukkan bahwa tingkat aktivitas fisik dan pola makan juga dipengaruhi oleh jenis kelamin, yang secara tidak langsung berdampak pada risiko metabolik. Perempuan cenderung lebih sadar terhadap kesehatan dan mengadopsi pola makan sehat, sedangkan lakilaki cenderung lebih banyak mengonsumsi lemak jenuh dan memiliki gaya hidup yang lebih sedentari, terutama di usia produktif. Perbedaan perilaku ini berkontribusi terhadap ketimpangan risiko metabolik yang ditinjau dari aspek gender (Alkhair *et al.*, 2023).

Maka dari itu, mempertimbangkan jenis kelamin dalam analisis epidemiologi penyakit metabolik menjadi hal yang krusial. Penelitian berbasis gender tidak hanya membantu memahami patogenesis penyakit secara lebih komprehensif, tetapi juga memungkinkan penyusunan strategi intervensi yang lebih tepat sasaran. Dengan menyesuaikan strategi kesehatan masyarakat berdasarkan jenis kelamin, diharapkan penanganan penyakit metabolik seperti diabetes dan *fatty liver* dapat dilakukan secara lebih efektif dan efisien.

2.3 Usia

2.3.1 Pengaruh Usia terhadap Metabolisme

Usia merupakan variabel biologis yang sangat berpengaruh terhadap mekanisme metabolisme tubuh, khususnya dalam regulasi glukosa dan lipid. Seiring bertambahnya usia, terjadi perubahan fisiologis yang mengakibatkan penurunan sensitivitas insulin. Sensitivitas insulin merujuk pada kemampuan sel tubuh, terutama di otot dan hati, untuk merespons insulin dalam mengatur kadar glukosa darah. Menurut *World Health Organization* (WHO), klasifikasi usia lanjut dapat bervariasi tergantung pada konteks sosial, ekonomi, dan budaya. Dalam konteks global, WHO sering menggunakan batas usia 60 tahun ke atas untuk mengkategorikan seseorang sebagai lansia. Pada usia lanjut, terjadi resistensi insulin, yaitu kondisi ketika efektivitas insulin dalam menurunkan kadar glukosa darah menjadi berkurang, sehingga

meningkatkan risiko hiperglikemia kronis yang merupakan ciri khas diabetes melitus tipe 2 (Chatterjee *et al.*, 2017).

Selain resistensi insulin, usia lanjut juga menyebabkan redistribusi lemak tubuh yang bersifat metabolik. Lemak tubuh yang semula tersimpan di jaringan subkutan cenderung mengalami pergeseran ke jaringan visceral, yaitu area lemak di sekitar organ dalam, khususnya rongga abdomen. Lemak visceral dikenal memiliki aktivitas metabolik tinggi yang memproduksi berbagai adipokin dan sitokin proinflamasi seperti interleukin-6 (IL-6) dan tumor necrosis factor-alpha (TNF-α), yang keduanya diketahui mengganggu fungsi insulin serta berperan dalam perkembangan *fatty liver* (Setiawan & Kurniawan, 2021).

Penuaan juga memengaruhi fungsi hati secara langsung. Kapasitas hati dalam melakukan oksidasi asam lemak serta fungsi mitokondrialnya mengalami penurunan secara progresif. Penurunan ini menyebabkan gangguan dalam pemrosesan lipid dan akhirnya memicu akumulasi trigliserida di dalam hepatosit, kondisi yang dikenal sebagai steatosis hepatik atau *fatty liver*. Kondisi ini seringkali tidak bergejala, namun dapat berkembang menjadi steatohepatitis atau bahkan sirosis bila tidak ditangani dengan baik (Powell *et al.*, 2021).

Usia lanjut juga berkaitan dengan menurunnya aktivitas fisik dan peningkatan risiko obesitas. Kombinasi dari penurunan massa otot (sarkopenia) dan peningkatan lemak tubuh membuat pengaturan energi menjadi semakin tidak efisien. Selain itu, seiring bertambahnya usia, risiko penyakit degeneratif seperti hipertensi, gangguan otot dan sendi, diabetes, penyakit jantung, stroke, penyakit ginjal kronik, dan kanker juga meningkat (Mustofa dan Sani, 2024). Hal ini pada gilirannya berdampak pada keseimbangan metabolik tubuh secara keseluruhan dan mempercepat munculnya gangguan metabolik seperti diabetes melitus tipe 2 dan fatty liver non-alkoholik. Penurunan metabolisme basal dan

perubahan hormonal turut memperkuat proses ini, sehingga usia dianggap sebagai faktor predisposisi utama dalam berbagai gangguan metabolik kronis (Wulandari *et al.*, 2023).

Bukti empiris menunjukkan bahwa intervensi gaya hidup sehat dapat menunda atau mengurangi dampak penuaan terhadap metabolisme. Modifikasi pola makan, peningkatan aktivitas fisik, dan pengendalian berat badan terbukti dapat meningkatkan sensitivitas insulin serta mengurangi akumulasi lemak di hati. Namun, pada kelompok usia lanjut, efektivitas intervensi ini cenderung lebih rendah dibandingkan individu yang lebih muda. Oleh karena itu, deteksi dini dan pemantauan rutin terhadap indikator metabolik menjadi sangat penting pada populasi usia tua (Perreault *et al.*, 2022).

2.3.2 Usia sebagai Faktor Risiko DM dan Fatty Liver

Usia merupakan salah satu faktor risiko *non-modifiable* yang penting dalam pengembangan penyakit kronis seperti diabetes melitus tipe 2 (DMT2) dan *Nonalcoholic Fatty Liver Disease* (NAFLD). Data dari *International Diabetes Federation* (2019) menunjukkan bahwa prevalensi DMT2 secara global meningkat tajam pada kelompok usia 45 tahun ke atas, dengan angka tertinggi terdapat pada kelompok usia 65-74 tahun. Peningkatan prevalensi ini diyakini disebabkan oleh kombinasi antara proses penuaan fisiologis dan eksposur jangka panjang terhadap faktor risiko lingkungan seperti diet tinggi kalori dan kurang aktivitas fisik.

Seiring bertambahnya usia, prevalensi gangguan metabolik meningkat secara paralel dengan penurunan fungsi berbagai organ metabolik, termasuk pankreas dan hati. Fungsi sel beta pankreas dalam memproduksi insulin mengalami penurunan, sementara kemampuan hati dalam mengelola lipid juga menurun. Kondisi ini memperbesar kemungkinan terjadinya resistensi insulin dan hiperglikemia. Dalam populasi usia lanjut, bahkan individu dengan berat badan normal

sekalipun berisiko mengalami *fatty liver* karena perubahan komposisi tubuh dan menurunnya kapasitas detoksifikasi hepatik (Simanjuntak *et al.*, 2021).

Studi-studi epidemiologis menyebutkan bahwa hubungan antara usia dan kejadian *fatty liver* memiliki pola linier. Hal ini berarti bahwa semakin tua usia seseorang, semakin besar pula risiko mengalami perlemakan hati, baik pada penderita diabetes maupun individu tanpa diabetes. NAFLD pada usia lanjut sering kali lebih progresif dan memiliki risiko lebih tinggi berkembang menjadi steatohepatitis atau sirosis, yang dapat mengarah pada kegagalan hati atau kanker hepatoseluler (Setiono *et al.*, 2022). Oleh karena itu, usia menjadi prediktor penting dalam prognosis pasien dengan *fatty liver*.

Tidak hanya itu, akumulasi usia juga berdampak pada peningkatan prevalensi komorbiditas lain seperti hipertensi, dislipidemia, dan sindrom metabolik yang turut memperparah kondisi *fatty liver*. Adanya penyakit penyerta membuat pengelolaan NAFLD menjadi lebih kompleks pada populasi lansia. Ketika pasien dengan usia lebih tua mengalami *fatty liver*, intervensi pengobatan menjadi lebih hati-hati karena risiko efek samping dan respon yang lebih lambat terhadap terapi konservatif.

Di Indonesia sendiri, data dari Kementerian Kesehatan Republik Indonesia (2018) menunjukkan bahwa prevalensi DM meningkat dari 1,5% pada tahun 2013 menjadi 2,0% pada tahun 2019 pada kelompok usia di atas 15 tahun. Angka ini menunjukkan kecenderungan bahwa penyakit degeneratif, termasuk DM dan *fatty liver*, mulai muncul di usia yang relatif muda dan meningkat signifikan setelah usia 45 tahun. Fakta ini menegaskan perlunya kebijakan promotif dan preventif yang lebih agresif di populasi usia produktif dan lanjut usia.

2.4 Indeks Massa Tubuh

2.4.1 Definisi

Tingkat gangguan kesehatan dapat ditentukan oleh tiga faktor utama: 1) jumlah lemak, 2) distribusi lemak, dan 3) adanya faktor risiko tambahan. Dengan mempertimbangkan tinggi dan berat badan, kita dapat menghitung indeks masa tubuh (IMT) yang mencerminkan status gizi serta komposisi lemak tubuh sebagai pengganti untuk menilai kelebihan berat badan atau *overweight* pada orang dewasa. Indeks Massa Tubuh adalah indikator yang paling umum dan praktis untuk menilai prevalensi kelebihan berat badan dan obesitas di kalangan orang dewasa. Dalam penelitian epidemiologi, IMT dihitung dengan cara membagi berat badan dalam kilogram (kg) dengan kuadrat tinggi badan dalam meter (m²) (Callahan, 2023).

Terdapat dua klasifikasi Indeks Massa Tubuh (IMT), yaitu yang ditetapkan oleh WHO dan yang khusus untuk populasi Asia (lihat Tabel2 dan 3). Klasifikasi ini didasarkan pada meta-analisis yang melibatkan berbagai kelompok etnis dengan konsentrasi lemak tubuh, usia, dan jenis kelamin yang serupa. Hasil analisis menunjukkan bahwa etnis Afrika-Amerika memiliki IMT yang lebih tinggi sebesar 1,3 kg/m², sementara etnis Polinesia menunjukkan IMT yang lebih tinggi sebesar 4,5 kg/m² dibandingkan dengan etnis Kaukasia. Di sisi lain, IMT pada populasi Cina, Ethiopia, Indonesia, dan Thailand masing-masing lebih rendah sebesar 1,9, 4,6, 3,2, dan 2,9 kg/m² dibandingkan dengan etnis Kaukasia (Callahan, 2023). Oleh karena itu, klasifikasi IMT yang ditetapkan oleh WHO lebih sesuai untuk etnis Kaukasia yang memiliki ukuran tubuh lebih besar, sehingga para ahli kemudian merumuskan klasifikasi khusus untuk populasi Asia yang cenderung memiliki ukuran tubuh lebih kecil (Hossain *et al.*, 2021).

Tabel 2.Klasifikasi IMT untuk ASIA Dewasa Menurut WHO (Haam *et al.*, 2023).

Klasifikasi	Indeks Massa Tubuh (kg/m²)
Underweight	<18.5
Batas Normal	18.5 - 22,9
Overweight	23-24,9
Obesitas tingkat 1	25 - 29,9
Obesitas tingkat 2	≥30

Tabel 3. Klasifikasi IMT pada Orang Dewasa Menurut WHO (Weir dan Jan, 2023).

Klasifikasi	Indeks Massa Tubuh (kg/m²)
Underweight	<18.50
Sangat Kurus	<16.00
Sedang Kurus	16.00 - 16.99
Sedikit Kurus	17.00 - 18.49
Batas Normal	18.50 - 24.99
Overweight (Pre-Obesitas)	25.00 - 29.99
Obesitas tingkat 1	30.00 - 34.99
Obesitas tingkat 2	35.00 - 39.99
Obesitas tingkat 3	≥40.00

Tabel IMT untuk populasi Asia (Tabel 2) menunjukkan bahwa seseorang dianggap normal apabila IMT-nya 18.5 - 22,9 kg/ m², dan mengalami kelebihan berat badan jika IMT-nya 23-24,9 kg/m², serta dikategorikan sebagai obesitas jika IMT-nya lebih dari 25 kg/m². Peningkatan angka obesitas di seluruh dunia merupakan salah satu dampak dari modernisasi gaya hidup, yang ditandai dengan peningkatan asupan kalori dan penurunan aktivitas fisik, serta urbanisasi yang dipengaruhi oleh faktor lingkungan. Menurut Wulandari *et al* (2023), pengukuran IMT tidak selalu akurat untuk mengklasifikasikan kelebihan berat badan dan obesitas pada individu dengan massa otot yang tinggi, seperti atlet, serta pada wanita hamil dan menyusui.

Dalam konteks klinis, nilai IMT yang tinggi khususnya pada kategori overweight dan obesitas telah terbukti berkorelasi kuat dengan peningkatan risiko terjadinya fatty liver, terutama pada individu dengan diabetes melitus tipe 2. Keadaan kelebihan lemak tubuh, terutama lemak viseral, dapat menyebabkan resistensi insulin, peningkatan kadar asam lemak bebas dalam darah, dan akhirnya memicu akumulasi trigliserida dalam sel hati. Kondisi ini merupakan awal dari perkembangan Nonalcoholic Fatty Liver Disease (NAFLD). Beberapa studi menunjukkan bahwa prevalensi NAFLD pada individu obesitas dapat mencapai 80-90%, dengan risiko lebih besar mengalami progresi ke steatohepatitis dan fibrosis hati (Younossi et al., 2016; Hossain et al., 2021). Oleh karena itu, dalam penelitian ini, IMT dijadikan sebagai variabel independen untuk mengevaluasi sejauh mana status berat badan berkontribusi terhadap gambaran fatty liver berdasarkan hasil USG abdomen.

2.4.2 Overweight

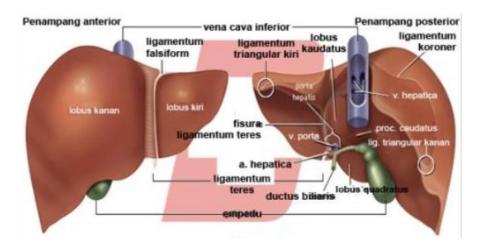
Overweight atau kelebihan berat badan adalah suatu kondisi fisiologis yang ditandai oleh akumulasi lemak tubuh berlebih yang melebihi kebutuhan fisiologis, namun belum mencapai ambang batas obesitas. Kondisi ini dapat terjadi pada semua kelompok usia, mulai dari anakanak, remaja, dewasa, hingga lansia. Masyarakat cenderung mengabaikan kenaikan berat badan yang terjadi secara bertahap, sehingga tidak jarang individu yang sebelumnya berada dalam kategori berat badan normal secara perlahan masuk ke dalam kategori overweight tanpa disadari. Hal ini umumnya berkaitan dengan perubahan gaya hidup, seperti pola makan tinggi kalori dan lemak serta minimnya aktivitas fisik. Di era modern saat ini, urbanisasi, pekerjaan yang lebih banyak duduk, serta kemudahan akses makanan cepat saji turut memperparah kondisi tersebut (Westbury et al., 2023).

Overweight tidak hanya berdampak pada estetika atau kepercayaan diri seseorang, tetapi juga memiliki konsekuensi kesehatan yang serius. Salah satu risiko yang paling banyak diteliti adalah keterkaitannya dengan resistensi insulin, hipertensi, dislipidemia, dan gangguan metabolisme lain yang merupakan komponen sindrom metabolik. Dalam banyak studi, faktor overweight terbukti menjadi risiko penting terhadap perkembangan penyakit degeneratif, termasuk diabetes melitus tipe 2 dan fatty liver. Lemak tubuh yang berlebih, khususnya lemak viseral, dapat memicu proses inflamasi kronis tingkat rendah yang berdampak pada gangguan fungsi hepatik. Namun demikian, tidak semua individu yang mengalami overweight akan secara otomatis mengalami komplikasi tersebut; pengaruh faktor genetik, distribusi lemak tubuh, serta tingkat aktivitas fisik juga turut menentukan risiko aktual yang dimiliki seseorang terhadap perkembangan *fatty liver* (Westbury *et al.*, 2023).

Dalam konteks *fatty liver*, *overweight* berperan sebagai salah satu pemicu akumulasi lemak dalam hepatosit yang dapat menyebabkan perubahan morfologis dan fungsional pada jaringan hati. Penelitian menunjukkan bahwa risiko terjadinya *fatty liver* meningkat secara signifikan pada individu dengan indeks masa tubuh (IMT) yang termasuk dalam kategori *overweight*, terutama bila disertai dengan gangguan metabolik lain seperti hiperglikemia dan hipertrigliseridemia. Namun demikian, terdapat pula fenomena yang disebut sebagai *metabolically healthy overweight*, yaitu kondisi di mana seseorang mengalami kelebihan berat badan tanpa menunjukkan gangguan metabolik signifikan. Oleh karena itu, pemahaman mendalam mengenai peran *overweight* dalam patogenesis *fatty liver* perlu mempertimbangkan berbagai aspek, termasuk faktor usia, jenis kelamin, dan aktivitas fisik, yang semuanya akan dianalisis lebih lanjut dalam penelitian ini (Westbury *et al.*, 2023).

2.2.3 Obesitas

Obesitas merupakan kondisi fisiologis yang ditandai oleh akumulasi lemak tubuh yang berlebihan dan bersifat patologis. Secara umum, obesitas diukur menggunakan parameter Indeks Massa Tubuh (IMT), di mana seseorang dikategorikan obesitas apabila IMT-nya ≥30 kg/m² (WHO, 2013). Secara klinis, obesitas bukan hanya mencerminkan peningkatan berat badan, tetapi juga menandakan perubahan kompleks dalam regulasi energi tubuh, termasuk gangguan pada sistem neuroendokrin dan metabolisme lipid. Akumulasi lemak, terutama pada area viseral atau intra-abdominal, berperan penting dalam peningkatan risiko berbagai gangguan metabolik, karena jaringan adiposa berfungsi aktif secara biologis dan menghasilkan berbagai mediator inflamasi seperti interleukin-6 (IL-6), TNF-α, dan leptin. Mediator-mediator ini berkontribusi pada resistensi insulin dan proses inflamasi sistemik kronis tingkat rendah, yang menjadi dasar dari berbagai komplikasi metabolik termasuk diabetes melitus tipe 2 dan fatty liver (Susantiningsih dan Mustofa, 2018).


Peningkatan prevalensi obesitas di seluruh dunia menjadi masalah kesehatan masyarakat yang semakin serius. Berdasarkan data dari World Health Organization (WHO), pada tahun 2013 diperkirakan terdapat lebih dari satu miliar orang dewasa di dunia yang mengalami overweight, dan sedikitnya 300 juta di antaranya tergolong obesitas secara klinis. Fenomena ini bukan hanya terjadi di negara-negara maju, tetapi juga di negara berkembang, termasuk Indonesia, yang mengalami transisi epidemiologi dan gaya hidup. Pola makan tinggi lemak jenuh, konsumsi makanan olahan, rendahnya asupan serat, serta minimnya aktivitas fisik telah menjadi kombinasi faktor risiko yang sangat kuat dalam menciptakan lingkungan obesogenik. Obesitas juga semakin sering ditemukan pada usia yang lebih muda, bahkan pada anak-anak dan remaja, yang dapat meningkatkan risiko penyakit kronis di usia produktif dan mengganggu kualitas hidup secara keseluruhan (WHO, 2013).

Dalam kaitannya dengan penyakit degeneratif, obesitas telah diidentifikasi sebagai salah satu faktor risiko utama yang dapat memicu terjadinya berbagai kondisi kronis. Individu dengan obesitas memiliki risiko lebih tinggi untuk mengalami resistensi insulin, hipertensi, dislipidemia, penyakit jantung koroner, stroke, serta beberapa jenis kanker. Salah satu manifestasi penting dari obesitas adalah perlemakan hati non-alkoholik (NAFLD), di mana akumulasi lemak dalam hati terjadi akibat gangguan metabolisme lipid yang diperparah oleh resistensi insulin. Obesitas viseral secara khusus berkaitan erat dengan perkembangan fatty liver, karena lemak viseral memiliki aktivitas lipolitik yang tinggi dan berkontribusi besar terhadap peningkatan kadar asam lemak bebas dalam sirkulasi. Oleh karena itu, dalam konteks penelitian ini, obesitas menjadi variabel kunci yang sangat relevan untuk dianalisis hubungannya dengan gambaran fatty liver pada pasien diabetes melitus tipe 2 (Susantiningsih dan Mustofa, 2018).

2.5 Hati

2.5.1 Histologi dan Anatomi Hati

Hati adalah organ terbesar dalam tubuh, berkontribusi sekitar 2% dari total berat tubuh, atau sekitar 1,5 kg pada rata-rata orang dewasa (Guyton dan Hall, 2021). Hati terletak di sebagian besar kuadran kanan atas perut dan berfungsi sebagai pusat metabolisme tubuh dengan berbagai fungsi yang kompleks. Batas atas hati sejajar dengan ruang interkostal V di sisi kanan, sementara batas bawahnya miring ke atas dari iga IX di sisi kanan menuju iga VIII di sisi kiri. Permukaan belakang hati berbentuk cekung dan memiliki celah transversal sepanjang 5 cm yang berasal dari sistem porta hepatis. Permukaan depan yang cembung terbagi menjadi dua lobus oleh ligamentum falsiform, yaitu lobus kiri dan lobus kanan, di mana lobus kanan memiliki ukuran sekitar dua kali lipat dari lobus kiri seperti yang ditunjukkan pada gambar 1 (Azmi, 2016).

Gambar 1. Anatomi Hati (Azmi, 2016)

Hati terdiri dari unit heksagonal yang disebut lobulus hati. Di tengah setiap lobulus terdapat vena sentral yang dikelilingi oleh lempenglempeng sel hati, yaitu hepatosit dan sinusoid yang teratur secara radial (Mescher, 2021). Di bagian tepi setiap lobulus, terdapat tiga jenis pembuluh: cabang arteri hepatika, cabang vena porta, dan duktus biliaris. Darah dari cabang-cabang arteri hepatika dan vena porta mengalir dari pinggiran lobulus menuju ke ruang kapiler yang melebar yang dikenal sebagai sinusoid (Sherwood & Ward, 2021).

Hati terdiri dari berbagai jenis sel. Hepatosit mencakup sekitar 60% dari total sel hati, sedangkan sisanya terdiri dari sel-sel epitelial sistem empedu dalam jumlah signifikan dan sel-sel non-parenkimal, termasuk endotelium, sel kupffer, dan sel stellata yang berbentuk bintang (Paulsen, 2019). Hepatosit dipisahkan oleh sinusoid yang melingkari vena hepatika eferen dan duktus hepatikus. Sinusoid adalah saluran darah yang berkelok-kelok dan melebar, dengan diameter yang tidak teratur, dilapisi oleh sel endotel yang memiliki jendela tidak utuh, dan dipisahkan dari hepatosit oleh ruang perisinusoidal. Hal ini memungkinkan zat-zat makanan yang mengalir dalam sinusoid untuk menembus dinding endotelial yang berpori dan berinteraksi langsung dengan hepatosit (Mescher, 2021). Sel-sel lain yang terdapat dalam dinding sinusoid termasuk sel fagositik kupffer yang merupakan bagian penting dari

sistem retikuloendotelial, serta sel stellata yang memiliki aktivitas miofibroblastik, berperan dalam pengaturan aliran darah sinusoidal dan berkontribusi pada proses perbaikan kerusakan hati (Paulsen, 2019).

2.5.2 Fisiologi Hati

Organ metabolik terbesar dan terpenting di tubuh adalah hati, dimana penting bagi sistem pencernaan untuk sekresi garam empedu. Sherwood dan Ward (2021) memaparkan bahwa hati juga memiliki fungsi lainnya, yaitu:

- Karbohidrat, lemak, protein sebagai nutrien utama tubuh, setelah diserap salurna pencernaan akan dilakukan pengolahan metabolik di hati.
- 2. Obat dan senyawa asing, zat-zat sisa dan hormon dapat didetoksifikasi.
- 3. Mengangkut hormon steroid, tiroid dan kolesterol, serta sintesis protein plasma yang penting untuk pembekuan darah.
- 4. Penyimpanan glikogen, lemak, besi, tembaga, dan banyak vitamin.
- 5. Hati dan ginjal bersama mengaktifan vitamin D.
- 6. Terdapat makrofag residen yang membantu pengeluaran bakteri dan sel darah merah yang lama.
- 7. Ekskresi kolesterol dan bilirubin.
- 8. Suplai energi bagi fungsi tubuh melalui oksidasi asam lemak.

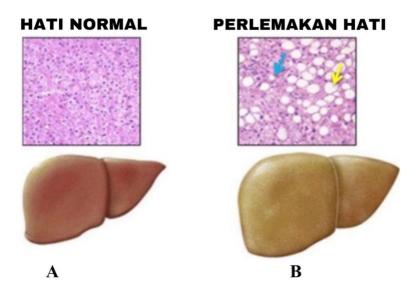
Kanalikuli biliaris dalam sistem duktus ekskretorius akan menerima empedu, dimana dikeluarkan dan diproduksi oleh sel eksokrin pada hepatosit. Proses sekresi empedu melibatkan aktivitas hepatosit (sumber utama empedu) dan kolangiosit yang terletak di sepanjang duktulus empedu. Menurut Paulsen (2019), asam empedu dibuat dari kolesterol di hepatosit melalui penambahan struktur cincin hidroksilasi, yang membuatnya larut dalam air karena bergabung dengan glisin, taurin, dan sulfat. Asam empedu dalam empedu memainkan peran penting dalam mengemulsikan lemak yang masuk ke usus halus dari lambung. Proses pengemulsian ini membantu lipase pankreas pencernaan lemak. Setelah

dicerna, lemak diserap oleh sel-sel usus halus, menuju pembuluh limfatika, dan akhirnya menuju vena sentralis untuk didistribusikan ke seluruh tubuh melalui aliran darah. (Mescher, 2021).

Kadar kolesterol total dan tingkat kolesterol yang terikat pada berbagai protein pembawa harus diperhatikan, karena keduanya lebih terkait dengan risiko penyakit. Sebagian besar kolesterol dalam darah terikat pada protein plasma tertentu dalam bentuk kompleks lipoprotein, memungkinkannya larut dalam darah. Tiga jenis utama lipoprotein dikenal berdasarkan kepadatan protein mereka dibandingkan dengan lipid lainnya. Yang pertama adalah lipoprotein berdensitas tinggi (High Density Lipoprotein/HDL), yang memiliki kadar protein tertinggi dan kolesterol terendah; yang kedua adalah lipoprotein berdensitas rendah (Low Density Lipoprotein/LDL), yang memiliki kadar protein lebih rendah dan kolesterol lebih tinggi; dan yang terakhir adalah lipoprotein berdensitas sangat rendah (Very Low Density Lipoprotein/VLDL), yang memiliki kadar protein tertinggi dan kolesterol terendah, namun lipid yang dibawanya adalah lemak netral, bukan kolesterol. Kolesterol yang diangkut dalam kompleks LDL sering disebut kolesterol jahat, karena dapat mengantarkan kolesterol ke sel-sel, termasuk yang melapisi dinding pembuluh. Sebaliknya, kolesterol yang diangkut dalam kompleks HDL dikenal sebagai kolesterol baik karena HDL membantu mengeluarkan kolesterol dari tubuh (Sherwood & Ward, 2021; Mustofa, 2019).

Jika tubuh mengonsumsi lebih banyak lemak dan karbohidrat daripada yang dibutuhkannya, hati akan mengubah lemak menjadi trigliserol. Selanjutnya, trigliserol dikemas dalam VLDL dan dilepaskan ke dalam sirkulasi. Di sana, itu didistribusikan ke berbagai jaringan, terutama jaringan otot dan adiposa. Kemudian, melalui proses oksidasi, itu disimpan atau digunakan sebagai energi (Guyton dan Hall, 2021). Sekitar 80% kolesterol yang dibuat hati diubah menjadi garam empedu, yang

kemudian disekresikan kembali ke dalam empedu. Sisanya diangkut dalam lipoprotein dan didistribusikan melalui darah ke seluruh jaringan tubuh. Hati juga menghasilkan fosfolipid, yang terutama diangkut dalam lipoprotein. Fosfolipid dan kolesterol keduanya digunakan oleh sel untuk membuat membran, struktur intrasel, dan berbagai zat kimia yang diperlukan untuk fungsi sel. Hampir semua sintesis lemak dari karbohidrat dan protein juga berlangsung di hati. Setelah lemak disintesis, lemak tersebut ditranspor dalam lipoprotein ke jaringan lemak untuk disimpan (Guyton dan Hall, 2021).


Salah satu fungsi spesifik hati adalah metabolisme lemak. Untuk mendapatkan energi dari lemak netral, lemak pertama-tama dipecah menjadi gliserol dan asam lemak. Kemudian, asam lemak dipecah melalui oksidasi beta menjadi radikal asetil berkarbon dua, yang membentuk asetil koenzim A (asetil-KoA). Asetil-KoA dapat masuk ke dalam siklus asam sitrat dan dioksidasi untuk menghasilkan energi yang sangat besar. Oksidasi beta dapat terjadi di semua sel tubuh, tetapi terutama berlangsung cepat di sel hati. Hati tidak dapat menggunakan semua asetil-KoA yang dihasilkan. Sebaliknya, asetil-KoA diubah melalui kondensasi dua molekul asetil-KoA menjadi asam asetoasetat, yang merupakan asam dengan kelarutan tinggi yang dapat meninggalkan sel hati dan masuk ke cairan ekstraseluler, kemudian ditransportasikan ke seluruh tubuh untuk diserap oleh jaringan lain. Jaringan tersebut kemudian mengubah kembali asam asetoasetat menjadi asetil-KoA dan mengoksidasinya dengan cara biasa (Mustofa, 2024).

2.6 Fatty liver

Fatty liver atau steatosis hepatik, merupakan kondisi di mana terjadi akumulasi lemak berlebih dalam sel-sel hati. Pada kondisi fisiologis, hati hanya mengandung sedikit lemak. Namun, jika kadar lemak melebihi 5–10% dari total berat hati, maka kondisi ini dikategorikan sebagai fatty liver (Vancells et al., 2021). Fatty liver sering kali tidak menunjukkan gejala klinis, namun pada

sebagian individu, kondisi ini dapat berkembang menjadi peradangan hati (steatohepatitis), fibrosis, hingga sirosis. Penderita diabetes melitus tipe 2 (DM Tipe 2), khususnya dengan indeks masa tubuh tinggi, merupakan kelompok dengan risiko tinggi mengalami kondisi ini, sehingga penting untuk mendeteksi perlemakan hati sejak dini, misalnya melalui pemeriksaan ultrasonografi.

Secara histopatologi, seperti yang ditunjukkan pada gambar 2, hati yang mengalami perlemakan menunjukkan hepatosit yang membengkak akibat infiltrasi lemak. Penumpukan lipid yang berlebihan di hati menyebabkan inti sel hepatosit terdesak ke satu sisi, sementara sitoplasma sel diisi oleh satu vakuola yang berisi lipid. Secara makroskopis, perubahan akibat infiltrasi lemak ini menyebabkan pembengkakan jaringan dan memberikan tampilan silindris berwarna kekuningan akibat kandungan lipid (Antunes *et al.*, 2023).

Gambar 2. Perbandingan Makroskopis dan Mikroskopis pada Hati Normal dan *Fatty liver* (Mescher, 2021).

Keterangan: Mikroskopis: Hati Normal (A) terlihat lobuler dengan hepatosit polygonal, sinusoida, sel kupffer, triad portal di sudut lobulus. Fatty Liver (B) menunjukkan penumpukan lemak dalam hepatosit, yang tampak sebagai vakuola besar (panah kuning) dan vakuola kecil (panah biru), menyebabkan hepatosit terlihat membesar dan terdesak. Makroskopis: Hati Normal (A) berwarna merah kecoklatan, permukaan halus, dan tekstur kenyal, ukurannya simetris tanpa pembesaran atau nodul. Fatty Liver (B) tampak membesar, berwarna lebih pucat atau kekuningan, dengan permukaan yang lebih lembut dan beminyak.

Beberapa ahli mendukung pelaksanaan biopsi karena pemeriksaan histopatologi dapat membantu mengidentifikasi penyebab lain dari penyakit hati dan memperkirakan prognosis. Namun, meskipun prognosis umumnya baik, ketiadaan terapi yang benar-benar efektif, serta risiko dan biaya yang terkait dengan biopsi, menjadi alasan bagi beberapa kelompok untuk menentang penggunaan biopsi hati sebagai pemeriksaan rutin dalam diagnosis fatty liver (Neuberger et al., 2020). Sebagian besar hasil pemeriksaan fisik pasien dengan fatty liver menunjukkan kondisi normal, namun 25-50% di antaranya menunjukkan adanya hepatomegali. Pemeriksaan kadar ALT dalam serum menunjukkan level ringan hingga sedang, dan pada 25-50% pasien, terdapat peningkatan kadar AST, meskipun kadang-kadang juga ditemukan pasien dengan kadar enzim yang normal. Penting untuk dicatat bahwa beberapa studi menunjukkan bahwa konsentrasi AST dan ALT tidak selalu berkorelasi dengan aktivitas histologis, bahkan kadar enzim tersebut dapat tetap normal pada penyakit hati yang sudah parah. Saat ini, ultrasonografi dianggap sebagai pilihan terbaik sebagai salah satu metode pencitraan untuk mendeteksi perlemakan hati (Lala et al., 2023).

2.6.1 Alcoholic Fatty Liver Disease

Alcoholic Fatty Liver Disease (AFLD) merupakan tahap awal dari rangkaian penyakit hati akibat konsumsi alkohol, yang ditandai dengan penumpukan lemak dalam sel-sel hati (hepatosit). Kondisi ini muncul sebagai respons terhadap konsumsi alkohol yang berlebihan dan kronis, yang mengganggu homeostasis metabolisme lipid di hati. Alkohol yang masuk ke tubuh dimetabolisme di hati oleh dua enzim utama, yaitu alkohol dehidrogenase (ADH) dan aldehida dehidrogenase (ALDH), yang secara bertahap mengubah etanol menjadi asetaldehida, suatu senyawa toksik dan sangat reaktif. Asetaldehida dapat merusak berbagai komponen sel, termasuk membran dan protein, serta mengganggu fungsi mitokondria—organela penting dalam proses oksidasi asam lemak. Gangguan ini menyebabkan penurunan efisiensi pemecahan lemak menjadi energi, sehingga trigliserida terakumulasi di dalam hepatosit dan menyebabkan steatosis hepatik akibat alkohol (Jeongeun et al., 2021).

Selain gangguan metabolisme, konsumsi alkohol juga memicu proses inflamasi dan stres oksidatif di dalam hati. Produksi asetaldehida yang berlebihan merangsang pembentukan spesies oksigen reaktif (ROS), yang mempercepat peroksidasi lipid dan merusak komponen sel hepatik. Reaksi inflamasi yang berkelanjutan akan menyebabkan aktivasi sel Kupffer, yaitu makrofag hati, yang kemudian melepaskan sitokin proinflamasi seperti tumor necrosis factor-alpha (TNF-α) dan interleukin-6 (IL-6). Mekanisme ini memperkuat kerusakan jaringan dan menyebabkan transisi dari steatosis sederhana ke bentuk yang lebih parah, yaitu hepatitis alkoholik. Hepatitis alkoholik ditandai dengan adanya infiltrasi sel radang, nekrosis hepatosit, dan perubahan balonisasi sel hati. Jika tidak ditangani, peradangan kronik ini dapat berkembang menjadi fibrosis hati dan akhirnya mencapai tahap sirosis, suatu kondisi di mana jaringan hati normal digantikan oleh jaringan parut yang permanen dan mengganggu fungsi hepatik secara menyeluruh (Jeongeun et al., 2021).

Pada tahap akhir, sirosis alkoholik dapat menyebabkan komplikasi berat yang bersifat sistemik dan mengancam jiwa. Disfungsi hati yang progresif akan memengaruhi kemampuan hati dalam menjalankan fungsi metabolik, sintesis protein, dan detoksifikasi. Hal ini dapat menyebabkan munculnya hipertensi portal, ensefalopati hepatik, asites, serta peningkatan risiko terjadinya karsinoma hepatoseluler (kanker hati primer). Meskipun AFLD dapat dicegah dan pada tahap awal bersifat reversibel jika konsumsi alkohol dihentikan, sebagian besar pasien terlambat didiagnosis karena gejala yang tidak spesifik atau cenderung tidak muncul hingga kondisi sudah parah. Oleh karena itu, edukasi publik mengenai dampak konsumsi alkohol, skrining dini pada populasi risiko tinggi, dan upaya intervensi untuk mengurangi konsumsi alkohol menjadi sangat penting dalam mencegah progresi AFLD ke tahap yang lebih berat (Jeongeun *et al.*, 2021).

2.6.2 Nonalcoholic Fatty Liver Disease

Nonalcoholic Fatty Liver Disease (NAFLD) merupakan bentuk paling umum dari penyakit hati berlemak yang tidak berkaitan dengan konsumsi alkohol dalam jumlah signifikan. Kondisi ini sangat erat hubungannya dengan sindrom metabolik, yakni kumpulan faktor risiko metabolik yang mencakup obesitas sentral, resistensi insulin, dislipidemia, dan hipertensi. Sekitar 75% pasien dengan NAFLD memiliki kelebihan berat badan atau obesitas, dan lebih dari 50% di antaranya juga menderita diabetes melitus tipe 2 (Younossi *et al.*, 2016). NAFLD mencakup spektrum penyakit hati mulai dari steatosis sederhana (simple steatosis) hingga bentuk yang lebih berat seperti *steatohepatitis non-alkoholik* (NASH), fibrosis, dan bahkan sirosis hati. Di negara-negara berkembang, termasuk kawasan Asia Tenggara, prevalensi NAFLD dalam populasi umum diperkirakan mencapai 25–30%, menjadikannya penyebab paling sering dari penyakit hati kronis yang sering kali tidak terdiagnosis karena sifatnya yang asimptomatik pada tahap awal.

Patofisiologi *Nonalcoholic Fatty Liver Disease* (NAFLD) pada penderita diabetes melitus tipe 2 (DMT2) melibatkan mekanisme yang kompleks, terutama akibat kombinasi antara resistensi insulin dan disfungsi metabolisme lipid. Resistensi insulin meningkatkan proses lipolisis di jaringan adiposa, yang menghasilkan lonjakan asam lemak bebas (*free fatty acids*/FFA) dalam sirkulasi. Hati kemudian menyerap FFA ini dan mengubahnya menjadi trigliserida, sehingga terjadi penumpukan lemak dalam hepatosit atau steatosis hepatik. Selain menyebabkan akumulasi lemak, proses ini juga menimbulkan stres oksidatif dan reaksi inflamasi yang dapat memperburuk kondisi menjadi *nonalcoholic steatohepatitis* (NASH) dan akhirnya fibrosis hati. Diagnosis NAFLD umumnya dilakukan melalui pencitraan seperti ultrasonografi (USG) abdomen, yang menunjukkan peningkatan echogenicity akibat infiltrasi lemak di hati. Meskipun biopsi hati masih menjadi standar emas untuk membedakan NAFLD dari NASH, prosedur

ini bersifat invasif dan tidak cocok untuk skrining populasi secara luas. Oleh karena itu, pendekatan non-invasif seperti USG sangat penting, terutama bagi pasien dengan risiko metabolik tinggi seperti penderita DMT2 dan obesitas (Younossi *et al.*, 2016).

2.6.3 Gambaran Klinis dan Laboratorium

Sebagian besar pasien dengan *fatty live*r tidak menunjukkan gejala khas atau tanda klinis yang mencolok, sehingga kondisi ini sering tidak terdeteksi secara dini. Beberapa pasien hanya melaporkan keluhan umum seperti kelelahan, rasa tidak nyaman di perut bagian kanan atas, atau malaise ringan. Pada pemeriksaan fisik, hepatomegali (pembesaran hati) menjadi temuan paling sering dan dapat dijumpai pada sekitar 25–50% pasien. Dalam kasus yang lebih lanjut, komplikasi seperti sirosis hati, asites, perdarahan varises esofagus, dan bahkan hepatoseluler karsinoma dapat terjadi, meskipun sebagian besar kasus NAFLD tetap berada pada tahap steatosis ringan hingga sedang (Lala *et al.*, 2023).

Dari sisi pemeriksaan laboratorium, profil enzim hati sering kali menunjukkan perubahan meskipun tidak selalu konsisten. Kadar Alanine Aminotransferase (ALT) dan Aspartate Aminotransferase (AST) umumnya mengalami peningkatan ringan hingga sedang, dengan ALT biasanya lebih tinggi dibandingkan AST, terutama pada tahap awal penyakit. Namun, penting untuk dicatat bahwa sekitar 25–50% pasien dapat memiliki kadar ALT dan AST yang masih dalam batas normal, meskipun secara histologis terdapat perubahan signifikan pada hati. Oleh karena itu, enzim hati bukan indikator absolut untuk menyingkirkan *fatty liver*. Selain itu, peningkatan Gamma-Glutamyl Transferase (γGT) dan Alkaline Phosphatase (ALP) juga dapat ditemukan, meskipun nilainya sering kali tidak terlalu tinggi (Antunes *et al.*, 2023).

Pemeriksaan tambahan lainnya meliputi tes fungsi hati sintetik seperti kadar albumin dan rasio albumin/globulin yang dapat menurun pada tahap lanjut, serta pemeriksaan bilirubin yang umumnya masih dalam batas normal pada fase awal *fatty liver*. Rasio ALT/AST <1 biasanya ditemukan pada *Nonalcoholic Fatty Liver*. Selain enzim hati, profil lipid seperti trigliserida dan kolesterol total juga cenderung meningkat, mengingat *fatty liver* sangat berkaitan dengan dislipidemia sebagai salah satu komponen sindrom metabolik. Oleh karena itu, interpretasi hasil laboratorium perlu dipadukan dengan data klinis dan pencitraan, seperti ultrasonografi, untuk memperoleh diagnosis yang lebih akurat dan komprehensif (Simanjuntak *et al*, 2021; Lala *et al.*, 2023).

Tiga kategori utama tes fungsi hati (LFTs), yaitu:

- 1. Peningkatan enzim aminitransferase, Alanine Transaminase (ALT/SGPT) dan Aspartat Aminotransferase (AST/SGOT), biasanya mengarah pada perlukaan hepatoseluler atau inflamasi
- 2. Keadaan patologis yang mempengaruhi sistem empedu intra dan ekstrahepatis dapat menyebabkan peningkatan Fosfatase Alkali (ALP) dan Gamma-Glutamil Transpeptidase (yGT)
- 3. Fungsi sintesis hati, seperti produk albumin, urea dan faktor pembekuan. Bilirubin dapat meningkat pada hampir semua tipe patologis hepatobilier. Berikut macam-macam bilirubin:
 - a. Bilirubin *direct* (terkonjugasi) melewati hati, normalnya antara 0-0,3 desiliter.
 - b. Bilirubin *indirect* (tidak terkonjugasi) tidak melewati hati, normalnya antara 0-0,3 desiliter.
 - c. Bilirubin total adalah jumlah total bilirubin *direct* + bilirubin *indirect*, normalnya antara 0,3-1,9 desiliter.

Hasil pemeriksaan fungsi hati pada pasien dengan *fatty liver* menunjukkan bahwa rasio Albumin/Globulin biasanya kurang dari 1 desiliter dan kadar bilirubin umumnya masih dalam batas normal. Sementara itu, kadar AST dan ALT mengalami peningkatan sekitar 2 hingga 3 kali lipat dari nilai normal, serta γGT dan ALP meningkat sekitar setengah hingga satu kali dari nilai normal. Kadar trigliserid dan kolesterol juga terlihat meningkat (Lala *et al.*, 2023).

Fatty liver memiliki hubungan yang erat dengan sindrom metabolik, yang mencakup obesitas, resistensi insulin, hipertensi, dan dislipidemia. Risiko sindrom metabolik perlu diperhatikan pada individu yang obesitas dengan Indeks Massa Tubuh (IMT) lebih dari 25 kg/m² atau lingkar pinggang lebih dari 88 cm. Resistensi insulin dapat diidentifikasi melalui konsentrasi insulin puasa yang lebih dari 60 pmol/L atau kadar glukosa puasa yang lebih dari 6,1 mmol/L. Hipertensi dapat diukur dengan ratarata tekanan sistolik yang melebihi 140 mmHg atau tekanan diastolik yang lebih dari 90 mmHg. Dislipidemia didefinisikan sebagai konsentrasi trigliserid puasa yang lebih dari 1,7 mmol/L (150 mg/dL) atau kadar HDL-kolesterol puasa yang kurang dari 1,0 mmol/L. Gangguan fungsi hati ditandai dengan nilai yang melebihi batas normal (ALP > 135 U/L, ALT > 50 U/L, atau yGT > 33 U/L). Penelitian ini menunjukkan bahwa gangguan fungsi hati, termasuk ALP, ALT, dan yGT, memiliki hubungan yang signifikan dengan sindrom metabolik (Simanjuntak et al., 2021).

2.6.4 Perjalanan Penyakit dan Prognosis

Perjalanan alamiah penyakit *fatty liver* atau perlemakan hati, baik yang bersifat alkoholik maupun non-alkoholik, umumnya berlangsung secara progresif dan seringkali tidak menunjukkan gejala pada tahap awal. Namun demikian, kondisi ini tidak dapat dianggap remeh karena telah terbukti meningkatkan risiko morbiditas dan mortalitas, terutama akibat penyakit kardiovaskular. Beberapa penelitian menyatakan bahwa pasien dengan *fatty liver* memiliki peningkatan risiko kematian akibat gangguan jantung dibandingkan populasi umum, bahkan ketika fungsi hati belum menunjukkan kerusakan berat (Lala *et al.*, 2023). Hal ini disebabkan oleh hubungan erat antara perlemakan hati dengan komponen sindrom metabolik seperti hipertensi, dislipidemia, dan diabetes melitus tipe 2, yang semuanya berkontribusi terhadap penyakit jantung aterosklerotik. Seiring waktu, *fatty liver* dapat berkembang ke arah yang lebih parah tergantung pada sejumlah faktor, termasuk durasi penyakit, keparahan resistensi insulin, dan respons inflamasi tubuh. Perjalanan klinis NAFLD

terdiri dari spektrum yang mencakup simple steatosis, steatohepatitis (NASH), fibrosis, hingga sirosis dan karsinoma hepatoseluler (Lindenmeyer dan McCullough, 2018). Pada tahap simple steatosis, lemak menumpuk di dalam sel hati tanpa disertai peradangan atau kerusakan jaringan. Namun, bila proses inflamasi terus berlangsung, maka jaringan parut mulai terbentuk (fibrosis), yang pada akhirnya dapat menggantikan struktur normal hati dan menyebabkan sirosis. Risiko tertinggi terletak pada transisi dari NASH ke fibrosis berat dan sirosis, di mana prognosis menjadi buruk dan pasien rentan mengalami komplikasi terminal seperti gagal hati atau kanker hati primer.

Meskipun perjalanan penyakit bisa memburuk, beberapa studi menunjukkan bahwa *fatty liver*, khususnya pada tahap awal, masih bersifat reversibel. Perbaikan histologis hati, seperti berkurangnya inflamasi dan pembalikan fibrosis, dapat dicapai terutama pada pasien yang melakukan intervensi gaya hidup secara konsisten. Penurunan berat badan sekitar 7–10% dari total berat tubuh melalui diet sehat dan olahraga teratur terbukti secara signifikan menurunkan kadar lemak di hati dan memperbaiki gambaran histopatologis (Lala *et al.*, 2023). Namun demikian, penurunan berat badan yang terlalu cepat justru dikaitkan dengan progresi penyakit dan potensi terjadinya gagal hati. Oleh karena itu, strategi manajemen *fatty liver* perlu dilakukan secara hati-hati dan berkelanjutan, dengan pendekatan yang bersifat multidisipliner dan personal.

2.6.5 Epidemiologi dan Patofisiologi

Meningkatnya Prevalensi diabetes melitus tipe 2 (DMT2) menunjukkan peningkatan yang signifikan secara global, terutama sebagai konsekuensi dari meningkatnya angka obesitas, pola makan tinggi kalori, dan kurangnya aktivitas fisik. Pada tahun 2015, International Diabetes Federation (IDF) memperkirakan terdapat 415 juta orang di dunia yang mengidap diabetes, dan lebih dari 90% di antaranya merupakan penderita DMT2. Jumlah ini diproyeksikan akan meningkat menjadi 642 juta pada

tahun 2040, menjadikannya sebagai salah satu masalah kesehatan masyarakat terbesar di abad ke-21 (IDF Diabetes Atlas, 2016).

Insiden dan prevalensi DMT2 sangat bervariasi berdasarkan wilayah geografis dan tingkat sosial ekonomi. Sekitar 80% pasien diabetes saat ini berasal dari negara berpenghasilan rendah hingga menengah, dengan peningkatan prevalensi yang konsisten di hampir semua negara sejak tahun 1980. Selain itu, terdapat sekitar 318 juta individu dengan kondisi praklinis berupa gangguan toleransi glukosa, yang berisiko tinggi berkembang menjadi DMT2. Intervensi gaya hidup seperti peningkatan aktivitas fisik dan diet seimbang, serta terapi farmakologis, terbukti mampu menunda bahkan mencegah onset penyakit. Menurut American Diabetes Association (ADA, 2020), pasien dengan DMT2 memiliki risiko kematian akibat segala penyebab sebesar 15% lebih tinggi dibandingkan individu non-diabetes, dengan risiko tertinggi terjadi pada kelompok usia muda (<55 tahun) dan kadar HbA1c <6,9%.

Secara patofisiologis, diabetes melitus tipe 2 (DMT2) timbul akibat interaksi kompleks antara faktor genetik dan lingkungan. Gaya hidup tidak aktif dan konsumsi makanan tinggi gula serta lemak dapat memicu resistensi insulin dan hiperglikemia kronik. Faktor genetik juga berperan penting, terutama saat seseorang terpapar lingkungan yang mendukung obesitas. Studi genome-wide (GWAS) association studies mengidentifikasi beberapa varian genetik yang memengaruhi regulasi glukosa dan meningkatkan risiko DMT2, meskipun hanya menjelaskan sekitar 10% variasi genetik. Analisis transkriptomik menunjukkan keterkaitan antara ekspresi gen, obesitas, dan diabetes, dengan variasi fenotipe berdasarkan etnis. Skor risiko genetik tinggi berkorelasi dengan meningkatnya angka kematian, khususnya pada individu obesitas non-Hispanik kulit putih dengan DMT2 (Leong et al., 2016).

Berdasarkan uraian tersebut, dapat disimpulkan bahwa *fatty liver*, baik yang disebabkan oleh konsumsi alkohol (AFLD) maupun yang tidak (NAFLD), merupakan bagian dari spektrum gangguan metabolik yang berkaitan erat dengan obesitas dan DMT2. Variabel seperti indeks massa tubuh, usia, dan jenis kelamin terbukti memiliki kontribusi terhadap prevalensi dan tingkat keparahan *fatty liver*, terutama pada populasi dengan DM tipe 2. Oleh karena itu, pemahaman terhadap aspek epidemiologis dan patofisiologis penyakit ini sangat penting sebagai dasar untuk skrining dini, diagnosis tepat, dan pencegahan komplikasi lanjut yang lebih efektif.

2.7 Ultrasonografi Hepar

2.7.1 Definisi

Ultrasonografi (USG) adalah teknik pencitraan diagnostik non-invasif yang menggunakan gelombang suara berfrekuensi tinggi untuk menghasilkan gambaran visual dari organ-organ internal tubuh. Teknik ini memungkinkan dokter untuk mengevaluasi struktur, ukuran, dan bentuk berbagai organ tanpa perlu melakukan pembedahan atau tindakan invasif lainnya. Keunggulan utama USG adalah sifatnya yang aman, cepat, tidak menimbulkan rasa sakit, dan tidak menggunakan radiasi ionisasi seperti pada sinar-X atau CT scan. Oleh karena itu, USG sangat cocok digunakan secara luas dalam berbagai bidang kedokteran, termasuk kebidanan, kardiologi, dan hepatologi. Dalam konteks hepatologi, USG memainkan peran penting dalam mendeteksi kelainan struktural dan difus pada hati, seperti fatty liver, fibrosis, maupun sirosis (Sanjaya et al., 2022).

USG bekerja dengan menggunakan kristal piezoelektrik yang terdapat di dalam alat yang disebut transduser. Kristal ini menghasilkan gelombang suara frekuensi tinggi yang dipancarkan ke dalam tubuh. Ketika gelombang suara ini mengenai jaringan atau organ, sebagian dipantulkan kembali (disebut echo), sementara sebagian lainnya diteruskan. Echo yang kembali ditangkap oleh transduser yang sama, kemudian diubah menjadi

sinyal listrik. Sinyal ini kemudian diproses oleh komputer menjadi gambar dua dimensi dalam skala abu-abu pada layar monitor. Perbedaan kepadatan jaringan, seperti antara cairan, otot, dan jaringan lemak, akan menghasilkan tingkat *echogenicity* yang berbeda, sehingga memungkinkan identifikasi struktur organ secara jelas dan akurat (Sanjaya *et al.*, 2022).

Meskipun USG memiliki banyak keunggulan, terdapat juga keterbatasan dalam aplikasinya. Jaringan bertulang dan yang mengandung udara, seperti paru-paru dan usus, merupakan konduktor suara yang buruk dan menghasilkan distorsi pada gambar. Sebaliknya, cairan seperti darah dan empedu merupakan media penghantar suara yang sangat baik, sehingga organ seperti hati dan ginjal dapat divisualisasikan dengan baik melalui USG. Seiring berkembangnya teknologi medis dalam dua dekade terakhir, resolusi gambar USG menjadi semakin tajam dan sensitif, memungkinkan deteksi dini berbagai kelainan anatomi dan patologis di hati. Dengan demikian, USG kini menjadi alat bantu yang sangat penting dalam evaluasi klinis pasien dengan gangguan hepatik, termasuk untuk menilai adanya perlemakan hati non-alkoholik (NAFLD) dan penyakit hati lainnya (Sanjaya *et al.*, 2022).

2.7.2 Cara Kerja

Ultrasonografi bekerja berdasarkan prinsip pemantulan gelombang suara frekuensi tinggi yang dipancarkan oleh transduser. Transduser merupakan komponen kunci dari alat USG yang berfungsi ganda sebagai pemancar dan penerima gelombang suara. Gelombang tersebut dihasilkan ketika pulsasi listrik dari generator diubah menjadi energi akustik melalui kristal piezoelektrik yang terdapat di dalam transduser. Gelombang suara ini kemudian diarahkan ke bagian tubuh yang ingin diperiksa. Saat gelombang mengenai jaringan atau organ dalam tubuh, sebagian akan dipantulkan kembali (sebagai echo), sementara sisanya akan terus menembus ke jaringan yang lebih dalam (Sanjaya *et al.*, 2022).

Setiap jaringan tubuh memiliki karakteristik akustik yang berbeda, sehingga gelombang suara akan dipantulkan dengan intensitas yang bervariasi tergantung pada densitas dan komposisi jaringan yang dilaluinya. Misalnya, jaringan yang padat seperti hati dan otot akan memantulkan lebih banyak gelombang dibandingkan jaringan yang berisi cairan. Echo yang kembali ke transduser kemudian diubah kembali menjadi sinyal listrik, diperkuat, dan diproses oleh sistem komputerisasi perangkat USG menjadi gambar visual dalam bentuk grayscale. Skala abuabu yang dihasilkan menggambarkan tingkat *echogenicity* dari jaringan yang diperiksa semakin padat jaringan, semakin terang gambarnya, dan sebaliknya (Sanjaya *et al.*, 2022).

Saat transduser digerakkan di atas permukaan kulit pasien, ia akan memindai jaringan tubuh secara bertahap, layaknya melakukan potongan melintang atau longitudinal terhadap organ. Hasil pemindaian tersebut muncul secara real-time pada layar monitor, memungkinkan visualisasi dinamis dari struktur organ dalam, seperti gerakan darah, kontur hati, atau adanya massa patologis. Operator USG dapat memanfaatkan kemampuan ini untuk mengarahkan irisan pencitraan ke arah tertentu yang diinginkan, sehingga seluruh bagian organ dapat dianalisis secara menyeluruh. Kemampuan USG untuk memberikan gambaran anatomis dan fungsional secara cepat dan non-invasif menjadikannya sangat bermanfaat dalam praktik klinis sehari-hari, termasuk untuk evaluasi penyakit hati seperti steatosis dan fibrosis (Sanjaya *et al.*, 2022).

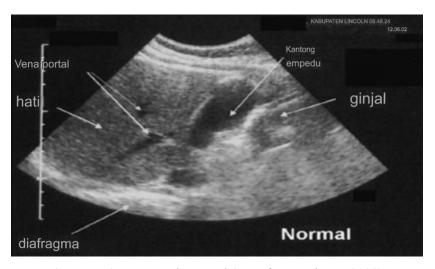
2.7.3 Persiapan Pasien

Meskipun pemeriksaan ultrasonografi (USG) bersifat non-invasif dan relatif aman, efektivitas hasil pencitraan sangat dipengaruhi oleh kondisi tubuh pasien pada saat pemeriksaan. Oleh karena itu, diperlukan persiapan tertentu guna memastikan kualitas gambar yang optimal. Untuk sebagian besar jenis pemeriksaan, persiapan khusus tidak selalu diperlukan. Namun, pada pasien yang mengalami gangguan pencernaan seperti obstipasi, disarankan untuk diberikan laksatif malam sebelumnya. Hal ini bertujuan

untuk mengurangi akumulasi gas dan kotoran di dalam usus yang dapat mengganggu transmisi gelombang suara. Pemeriksaan organ di rongga perut bagian atas, termasuk hati, pankreas, dan limpa, idealnya dilakukan pada pagi hari dalam keadaan puasa selama minimal 6 jam. Kondisi perut kosong memungkinkan visualisasi struktur organ menjadi lebih jelas karena jumlah gas dan cairan di lambung dan usus berkurang secara signifikan (Sanjaya *et al.*, 2022).

Untuk pemeriksaan kandung empedu, persiapan puasa menjadi sangat penting. Puasa minimal 6 jam bertujuan untuk memungkinkan dilatasi maksimal kandung empedu sehingga dapat divisualisasikan secara optimal pada layar USG. Kandung empedu yang kosong karena makanan akan terlihat kolaps dan menyulitkan interpretasi gambar. Sementara itu, dalam pemeriksaan kebidanan dan pelvis seperti pemeriksaan rahim, ovarium, atau kandung kemih pasien justru diminta untuk mengisi kandung kemih hingga penuh. Kandung kemih yang penuh akan mendorong usus menjauh dari daerah pelvis dan berfungsi sebagai jendela akustik yang meningkatkan resolusi pencitraan struktur di sekitarnya. Oleh karena itu, pemahaman mengenai persiapan pasien berdasarkan jenis pemeriksaan sangat penting agar kualitas diagnostik USG dapat dicapai secara maksimal (Sanjaya *et al.*, 2022).

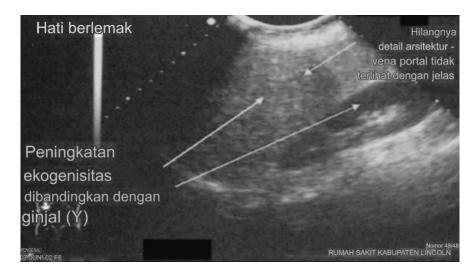
2.7.4 Teknik Pemeriksaan


Tiga irisan penting yang sangat berguna untuk pemeriksaan hati adalah irisan longitudinal, transversal, dan subkostal. Ketiga irisan ini dapat dihasilkan menggunakan transduser linier, sektor, atau kombinasi campuran (Sanjaya et al., 2022). Posisi pasien biasanya berbaring atau miring ke kiri (*left lateral/decubitus*) sambil menahan napas pada saat inspirasi dalam. Jarak antara setiap irisan umumnya sekitar 1-2 cm hingga seluruh jaringan ikat terlihat. Vena kava inferior dan ligamentum falciform dapat dijadikan patokan dalam memeriksa lobus kanan dan lobus kiri (Sanjaya et al., 2022).

2.7.5 Gambaran Ultrasonografi Hati Normal

Ultrasonografi hati adalah metode pencitraan untuk mendeteksi penyakit hati baik yang bersifat fokal maupun difus, menentukan staging tumor primer, mendeteksi deposit sekunder, serta sebagai pemeriksaan tambahan untuk kalkulus dan ikterus, dan juga sebagai bantuan dalam biopsi hati atau prosedur intervensional (Sanjaya *et al.*, 2022).

Adapun gambaran USG hati normal seperti yang ditunjukkan pada gambar 3, memiliki deskripsi yaitu:


- 1. Permukaan rata, batas belakang lobus kanan yaitu diafragma merupakan garis tebal yang mempunyai densitas eko tinggi,
- 2. Ujung lobus kanan dan kiri hati biasanya lancip,
- Parenkim hati terlihat sebagai jaringan dengan struktur eko homogen dengan sonodensitas menengah artinya lebih tinggi daripada parenkim limpa namun lebih rendah daripada parenkim pankreas,
- 4. Vena hepatika sebagai pembuluh anekoik yang naik ke perifer makin kecil,
- 5. Vena porta sebagai pembuluh anekoik dengan dinding tebal.

Gambar 3. USG Hati Normal (Degefu & Knipem, 2023)

2.7.6 Gambaran Ultrasonografi Fatty liver

Pada pemeriksaan ultrasonografi (USG) pada kasus fatty liver, infiltrasi lemak di hati ditandai oleh peningkatan difus ekogenisitas parenkim hepatik, yang tampak lebih cerah (hiperekoik) dibandingkan dengan korteks ginjal atau limpa. Teknik pencitraan USG memiliki sensitivitas sekitar 83,4% dan spesifisitas 81,0% dalam mendeteksi steatosis hepatik ringan. Oleh karena itu, USG tetap menjadi modalitas skrining utama yang non-invasif, murah, dan mudah diakses dalam mendeteksi *fatty liver*, terutama pada populasi berisiko tinggi seperti penderita obesitas, diabetes tipe 2, dan sindrom metabolic (Lee CM *et al.*, 2023)

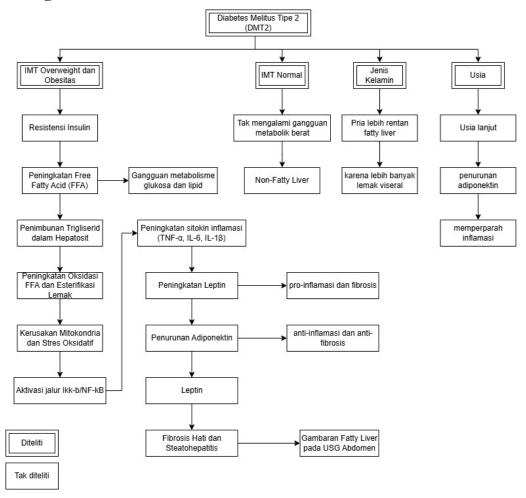
Gambar 4. USG Fatty liver (Goel et al., 2024)

Gambaran ultrasonografi abdomen fokus hati pada kasus *fatty liver* menampakkan peninggian densitas eko kasar yang heterogen serta terlihat hepatomegali, tepi hati terlihat tumpul, terlihat penebalan permukaan hati yang ireguler. Gambaran pembuluh darah di hati tidak dapat dibedakan dari jaringan hati yang ada di sekitarnya.

Berdasarkan gambaran ultrasonografi tersebut, dapat disimpulkan bahwa USG merupakan alat diagnostik yang efektif dan noninvasif dalam mendeteksi *fatty liver*. Tingkat sensitivitas dan spesifisitas yang tinggi menjadikan USG sangat bermanfaat dalam skrining awal, terutama pada

pasien dengan risiko tinggi seperti penderita diabetes melitus dengan indeks massa tubuh tinggi. Oleh karena itu, dalam penelitian ini, pemeriksaan USG abdomen digunakan untuk menilai gambaran *fatty liver* sebagai variabel dependen yang dikaitkan dengan karakteristik pasien.

2.8 Faktor Risiko Fatty Liver (IMT, Usia, dan Jenis Kelamin)


Fatty liver memiliki beberapa faktor risiko yang telah diidentifikasi secara konsisten dalam berbagai studi epidemiologi, termasuk Indeks Massa Tubuh (IMT), usia, dan jenis kelamin. IMT merupakan indikator status berat badan yang berkorelasi kuat dengan akumulasi lemak tubuh. Individu dengan IMT dalam kategori overweight dan obesitas memiliki prevalensi fatty liver yang jauh lebih tinggi. Peningkatan berat badan mendorong akumulasi lemak viseral dan memperburuk resistensi insulin, yang pada akhirnya menyebabkan peningkatan akumulasi trigliserida di dalam hepatosit (Younossi et al., 2016; Hossain et al., 2021).

Usia juga merupakan determinan penting dalam prevalensi *fatty liver*. Prevalensi NAFLD meningkat seiring bertambahnya usia, terutama pada usia di atas 45 tahun, yang berkaitan dengan penurunan sensitivitas insulin dan peningkatan resistensi metabolik. Proses penuaan menyebabkan perubahan fisiologis yang mendukung akumulasi lemak di hati. Meskipun demikian, beberapa studi menunjukkan bahwa hubungan antara usia dan *fatty liver* dapat dipengaruhi oleh faktor lain seperti pola makan, aktivitas fisik, dan status hormonal (Powell *et al.*, 2021).

Jenis kelamin juga memiliki pengaruh terhadap prevalensi *fatty liver*. Beberapa penelitian menyebutkan bahwa laki-laki memiliki kecenderungan lebih tinggi mengalami *fatty liver* dibandingkan perempuan, terutama karena perbedaan distribusi lemak viseral dan hormon. Namun, pada perempuan yang telah menopause, risiko *fatty liver* meningkat karena penurunan kadar estrogen yang sebelumnya

bersifat protektif terhadap akumulasi lemak hepatik (Setiono *et al.*, 2022; Younossi *et al.*, 2019).

2.9 Kerangka Teori

Gambar 5. Kerangka Teori

Kerangka teori seperti yang ditunjukkan pada gambar 5 menggambarkan Obesitas, usia, jenis kelamin, dan diabetes melitus tipe 2 (DMT2) merupakan faktor-faktor yang saling berhubungan erat dan sering kali berkontribusi pada perkembangan *fatty liver*. Pada individu dengan obesitas atau DMT2, terjadi resistensi insulin, yaitu kondisi di mana sel-sel tubuh menjadi kurang sensitif terhadap efek insulin. Insulin pada keadaan normal bekerja untuk meningkatkan penyerapan glukosa ke dalam sel dan mengatur metabolisme lemak, seperti lipogenesis (pembentukan lemak) dan glukoneogenesis (pembentukan glukosa). Namun, pada kondisi resistensi insulin, proses-proses tersebut terganggu. Akibatnya, terjadi peningkatan konsentrasi *Free*

Fatty Acids (FFA) dalam darah yang berasal dari jaringan adiposa (lemak), yang merupakan salah satu penyebab utama penumpukan lemak di hati, sebuah kondisi yang dikenal dengan fatty liver.

Peningkatan kadar FFA dalam darah berkontribusi pada akumulasi trigliserid dalam hepatosit (sel hati), yang dapat membentuk lemak makrovesikuler dalam hati. Penumpukan trigliserid ini berhubungan dengan peningkatan oksidasi dan esterifikasi lemak, yang terutama terjadi di mitokondria sel hati. Namun, peningkatan oksidasi FFA ini dapat menyebabkan kerusakan pada mitokondria itu sendiri, yang memicu stres oksidatif. Stres oksidatif ini menjadi faktor pemicu utama dalam proses inflamasi hati. Inflamasi hati dimediasi oleh aktivasi jalur Ikk-b/NF-kB, yang berfungsi untuk meningkatkan produksi mediator inflamasi seperti TNF-α, IL-6, dan IL-1β, serta mengaktivasi sel Kupffer yang berperan dalam reaksi inflamasi di hati. Akumulasi FFA di hati juga langsung meningkatkan inflamasi, yang kemudian dapat memperburuk kondisi liver dan menyebabkan perkembangan steatohepatitis (peradangan hati akibat penumpukan lemak).

Selain itu, adipokin, yaitu molekul yang disekresikan oleh jaringan adiposa, juga memainkan peran penting dalam perkembangan *fatty liver*. Dua adipokin utama yang terlibat adalah leptin dan adiponektin. Leptin, yang kadarnya tinggi pada individu dengan obesitas, berperan dalam mengatur nafsu makan, tetapi juga berkontribusi pada inflamasi dan fibrosis hati. Sebaliknya, adiponektin memiliki efek anti-inflamasi dan anti-fibrotik, serta membantu dalam pengaturan metabolisme glukosa dan lipid. Pada pasien dengan *fatty liver*, kadar adiponektin cenderung menurun, yang memperburuk proses inflamasi dan fibrosis pada hati. Oleh karena itu, kadar leptin yang tinggi dan adiponektin yang rendah menjadi indikator penting dalam perkembangan dan perburukan kondisi *fatty liver*.

Two-hit theory merupakan model yang umum digunakan untuk menjelaskan perkembangan fatty liver. Tahap pertama melibatkan penumpukan lemak

dalam hepatosit akibat obesitas, dislipidemia, atau DMT2. Kondisi ini menyebabkan lonjakan asam lemak bebas (FFA) yang diserap hati dan diubah menjadi trigliserida. Pada obesitas, kelebihan FFA memicu oksidasi lemak di mitokondria, yang pada akhirnya merusak mitokondria itu sendiri—disebut sebagai *hit* kedua. Kerusakan ini menimbulkan stres oksidatif, inflamasi, dan dapat berkembang menjadi fibrosis serta steatohepatitis.

Faktor lain yang memperburuk *fatty liver* antara lain inflamasi kronis, gangguan metabolisme lipid, rendahnya kadar adiponektin, serta tingginya leptin. Usia lanjut dan jenis kelamin laki-laki juga meningkatkan risiko karena memengaruhi sensitivitas insulin dan distribusi lemak. Kombinasi kelebihan FFA dan resistensi insulin memperparah gangguan metabolik dan mempercepat progresi kerusakan hati. Oleh karena itu, pemahaman hubungan antara obesitas, DMT2, usia, dan jenis kelamin sangat penting untuk strategi pencegahan dan pengelolaan *fatty liver* yang efektif.

2.10 Kerangka Konsep

Gambar 6. Kerangka Konsep

Dalam penelitian ini, terdapat beberapa variabel bebas yang dianalisis terhadap satu variabel terikat, seperti yang terlihat pada Gambar 6. Variabel bebas yang dimaksud mencakup Indeks Massa Tubuh (IMT), jenis kelamin, dan usia, sedangkan gambaran *fatty liver* pada USG abdomen berperan sebagai variabel terikat. IMT merupakan salah satu variabel bebas utama yang mengukur status berat badan individu, dihitung berdasarkan berat badan dalam kilogram dibagi dengan kuadrat tinggi badan dalam meter. Klasifikasi IMT dalam penelitian ini mengikuti pedoman yang ditetapkan oleh organisasi kesehatan, dan dikategorikan menjadi tiga kelompok: normal, *overweight*, dan obesitas. Variabel ini penting karena menunjukkan

seberapa besar berat badan seseorang relatif terhadap tinggi badannya, yang dapat menjadi indikator awal potensi gangguan kesehatan, termasuk risiko penyakit hati.

Selain IMT, usia dan jenis kelamin juga dianalisis sebagai variabel bebas dalam penelitian ini karena keduanya dianggap memiliki kontribusi terhadap gambaran *fatty liver*. Usia diklasifikasikan ke dalam beberapa kelompok umur, sedangkan jenis kelamin dibedakan menjadi laki-laki dan perempuan. Kedua variabel ini dipertimbangkan karena berdasarkan sejumlah studi, faktor usia dan jenis kelamin berperan dalam menentukan risiko gangguan metabolik, termasuk perlemakan hati.

Sebagai variabel terikat, gambaran *fatty liver* pada USG abdomen pada pasien diabetes melitus (DM) tipe 2 merupakan hasil utama yang dianalisis. Pemeriksaan USG dilakukan untuk mendeteksi akumulasi lemak dalam selsel hati, yang dikenal sebagai fatty liver atau steatosis hepatik. Gambaran USG memberikan informasi visual mengenai kondisi hati pasien dan membantu mengidentifikasi tanda awal kerusakan hati akibat berbagai faktor risiko, termasuk status IMT, usia, dan jenis kelamin.

Dengan meneliti hubungan antara ketiga variabel bebas tersebut—IMT, usia, dan jenis kelamin—dengan variabel terikat berupa gambaran *fatty liver*, penelitian ini bertujuan untuk mengeksplorasi secara komprehensif faktor-faktor yang dapat memengaruhi kondisi hati pada pasien DM tipe 2. Diharapkan dari hasil analisis data dapat ditemukan hubungan yang signifikan yang dapat memperkuat pemahaman mengenai kontribusi masing-masing faktor terhadap kejadian *fatty liver*.

2.9 Hipotesis

H0: Tidak terdapat hubungan antara jenis kelamin dengan gambaran USG abdomen *fatty liver* pada pasien diabetes melitus tipe 2 di RSUD Dr. H. Abdul Moeloek Provinsi Lampung.

Ha: Terdapat hubungan antara jenis kelamin dengan gambaran USG abdomen *fatty liver* pada pasien diabetes melitus tipe 2 di RSUD Dr. H. Abdul Moeloek Provinsi Lampung.

H0: Tidak terdapat hubungan antara usia dengan gambaran USG abdomen *fatty liver* pada pasien diabetes melitus tipe 2 di RSUD Dr. H. Abdul Moeloek Provinsi Lampung.

Ha: Terdapat hubungan antara usia dengan gambaran USG abdomen *fatty liver* pada pasien diabetes melitus tipe 2 di RSUD Dr. H. Abdul Moeloek Provinsi Lampung.

H0: Tidak terdapat hubungan antara indeks masa tubuh dengan gambaran USG abdomen *fatty liver* pada pasien diabetes melitus tipe 2 di RSUD Dr. H. Abdul Moeloek Provinsi Lampung.

Ha: Terdapat hubungan antara indeks masa tubuh dengan gambaran USG abdomen *fatty liver* pada pasien diabetes melitus tipe 2 di RSUD Dr. H. Abdul Moeloek Provinsi Lampung.

BAB III

METODE PENELITIAN

3.1 Desain Penelitian

Penelitian ini menggunakan desain studi analitik observasional pendekatan *cross-sectional* dengan data sekunder. Desain ini dipilih karena memungkinkan peneliti untuk mengevaluasi hubungan antara indeks massa tubuh (IMT), usia, dan jenis kelamin pada pasien DM tipe 2 dengan gambaran USG fatty liver pada satu titik waktu. Studi *cross-sectional* efektif untuk mengidentifikasi korelasi antarvariabel pada populasi yang telah terdiagnosis dengan penyakit tertentu (Wang *et al.*, 2023)

3.2 Lokasi dan Waktu Penelitian

3.2.1 Lokasi Penelitian

Penelitian ini dilaksanakan di RSUD Dr. H. Abdul Moeloek, Provinsi Lampung, dengan tujuan untuk mengevaluasi hasil diagnosis klinis Diabetes Melitus Tipe 2 dengan *Fatty Liver*.

3.2.2 Waktu Penelitian

Penelitian ini berlangsung selama satu bulan, dari 8 Maret – 8 April 2025

3.3 Populasi dan Sampel Penelitian

Populasi target dalam penelitian ini adalah pasien dengan diagnosis klinis dan laboratoris Diabetes Melitus Tipe 2 yang dirawat di RSUD Dr. H. Abdul Moeloek, Provinsi Lampung pada Bulan Januari sampai Bulan Desember tahun 2023 yang berjumlah 95 orang. Penelitian ini berfokus pada populasi terjangkau, yaitu pasien dengan diagnosis klinis Diabetes Melitus Tipe 2 di

RSUD Dr. H. Abdul Moeloek yang memiliki rekam medis lengkap. Sampel yang digunakan dalam penelitian ini terdiri dari data rekam medis pasien dengan diagnosis klinis Diabetes Melitus Tipe 2, yang mencakup hasil ultrasonografi (USG) serta data usia, jenis kelamin, dan indeks massa tubuh (IMT).

3.3.1 Kriteria Inklusi

- 1. Rekam medis pasien Diabetes Melitus Tipe 2 dari segala usia dan jenis kelamin yang memiliki diagnosis klinis *Fatty Liver* dan mencantumkan hasil USG positif maupun negatif.
- 2. Rekam medis pasien Diabetes Melitus Tipe 2 dari segala usia dan jenis kelamin yang memiliki diagnosis klinis *Fatty Liver* dan mencantumkan hasil pengukuran berat badan dan tinggi badan.

3.3.2 Kriteria Eksklusi

- 1. Rekam medis pasien Diabetes Melitus Tipe 2 dari segala usia dan jenis kelamin yang memiliki diagnosis klinis *Fatty Liver* tetapi tidak mencantumkan hasil USG.
- 2. Rekam medis pasien Diabetes Melitus Tipe 2 dari segala usia dan jenis kelamin yang memiliki diagnosis klinis *Fatty Liver* tetapi tidak mencantumkan hasil pengukuran berat badan dan tinggi badan

Dalam penelitian ini, dilakukan pengambilan sampel dengan metode *total* sampling terhadap 95 pasien rawat inap dan didiagnosis diabetes melitus tipe 2 di RSUD Dr. H. Abdul Moeloek pada tahun 2023. Dari jumlah tersebut, sebanyak 52 pasien memenuhi kriteria inklusi untuk dianalisis lebih lanjut. Kriteria inklusi mencakup pasien diabetes melitus yang menjalani pemeriksaan USG abdomen dan memiliki data jenis kelamin, usia,berat badan yang lengkap dan telah didiagnosis dengan diabetes melitus tipe 2. Pasien yang memiliki riwayat konsumsi alkohol berlebihan, penyakit hati lainnya, atau kondisi medis serius lainnya dikecualikan dari penelitian ini. Pemilihan metode *total* sampling bertujuan untuk memperoleh representasi yang komprehensif dari

populasi yang diteliti, sehingga hasil penelitian dapat mencerminkan kondisi nyata di lapangan.

3.4 Identifikasi Variabel dan Definisi Operasional

3.4.1 Variabel Independen

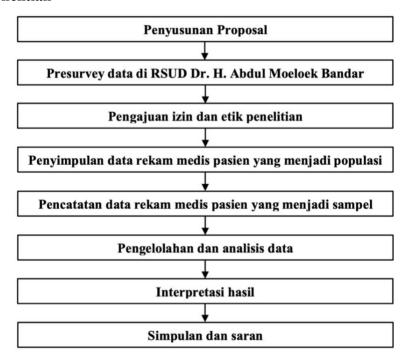
- 1. Jenis Kelamin, yaitu klasifikasi biologis antara laki-laki dan perempuan yang dicatat dari data pasien.
- 2. Usia, yaitu umur responden dalam tahun yang dihitung berdasarkan tanggal lahir hingga waktu pemeriksaan dilakukan.
- 3. Indeks masa tubuh (IMT), yaitu nilai yang diperoleh dari hasil pembagian berat badan (dalam kilogram) dengan kuadrat tinggi badan (dalam meter kuadrat), yang digunakan untuk mengelompokkan status berat badan seseorang.

3.4.2 Variabel Depandeen

Gambaran *fatty liver*, yaitu hasil pencitraan organ hati melalui pemeriksaan ultrasonografi (USG) abdomen, yang menunjukkan ada atau tidaknya infiltrasi lemak di hati (*fatty liver*) pada pasien dengan diagnosis diabetes melitus tipe 2.

3.5 Definisi Operasional

Definisi operasional atau definisi istilah memaparkan batasan atau pengertian istilah-istilah yang terkait dengan konsep pokok permasalahan yang diteliti yaitu hubungan antara jenis kelamin, usia dan indeks masa tubuh pada pasien diabetes melitus tipe 2 dengan gambaran *fatty liver* pada USG abdomen.


Tabel 4. Definisi Operasional Variabel Bebas Penelitian

No	Variable	Definisi Operasional	Sumber Data	kategori			
Variable Bebas							
1	Jenis Kelamin	Jenis kelamin pasien sampel yang tercatat dalam rekam medis	Rekam Medis	1 = Laki – laki 2 = Perempuan			
2.	Usia	Usia pasien sampel yang tercatat dalam rekam medis sesuai dengan klasifikasi WHO	Rekam Medis	$1 = < 60 \text{ tahun}$ $2 = \ge 60 \text{ tahun}$			
3.	Indeks Masa Tubuh (IMT)	IMT pasien sampel yang tercatat berat badan (kg) dan tinggi badan (m²) dalam rekam medis	Rekam Medis	1 = Normal: $18,5 - 22,9$ 2 = Overweight: $23 - 24,9$ 3 = Obesitas: $25 - \ge 30$			

Tabel 5. Definisi Operasional Variabel Terikat Penelitian

No	Variable	Definisi Operasional	Sumber Data	kategori			
Variable Terikat							
1.	Gambaran Fatty Liver pada pasien Diabetes Melitus Tipe 2	Diagnosis pasien sampel yang tercatat dalam rekam medis	Rekam Medis	$0 = Fatty\ Liver$ $1 = NonFatty\ Liver$			

3.6 Alur Penelitian

Gambar 7. Alur Penelitian

Proses penelitian dimulai dengan tahap penyusunan proposal, yang mencakup perencanaan penelitian, seperti latar belakang, tujuan, metode, dan rencana pelaksanaan. Proposal ini menjadi dasar pelaksanaan penelitian. Selanjutnya, dilakukan presurvey data di RSUD Dr. H. Abdul Moeloek Bandar Lampung untuk mengidentifikasi ketersediaan data yang diperlukan. Setelah itu, peneliti melanjutkan dengan pengajuan izin dan etik penelitian kepada pihak berwenang untuk memastikan penelitian dilakukan sesuai dengan prinsip etika yang berlaku.

Setelah izin diperoleh, dilakukan pengumpulan data rekam medis pasien yang menjadi populasi untuk mendapatkan gambaran data secara menyeluruh. Dari populasi ini, dipilih sampel yang sesuai untuk penelitian, di mana data rekam medis dari sampel tersebut kemudian dicatat termasuk data jenis kelamin, usia, IMT, dan hasil USG abdomen dalam tahap pencatatan data rekam medis pasien yang menjadi sampel. Data yang telah dikumpulkan ini kemudian diolah dan dianalisis secara sistematis pada tahap pengolahan dan analisis data.

Hasil dari analisis tersebut kemudian diinterpretasikan pada tahap interpretasi hasil, sehingga dapat memberikan jawaban atas pertanyaan penelitian atau tujuan yang telah ditetapkan. Akhirnya, penelitian ini ditutup dengan penarikan simpulan dan saran berdasarkan hasil yang diperoleh, yang juga disertai rekomendasi untuk penelitian lanjutan atau penerapan praktis.

3.6 Analisis Data

Data yang telah dikumpulkan dan dicatat selanjutnya dikelompokan ke dalam beberapa kategori kemudian diolah dan dianalisis menggunakan metode analitik observasional dengan statistik non parametrik. Dalam menganalisis variabel digunakan kelompok pembanding sehingga metode yang digunakan adalah analitik observasional. Metode pendekatan yang digunakan dalam analitik observasional ini adalah *cross sectional*.

Pendekatan *cross sectional* digunakan karena pengukuran/observasi terhadap nilai variabel dilakukan sebanyak satu kali. Data yang digunakan berjenis kategorik dan berskala nominal sehingga statistik yang digunakan adalah statistik non parametrik dengan metode uji *chi- square*. Analisis data pada penelitian ini akan dilakukan menggunakan komputer. Analisis yang dilakukan adalah:

1. Analisis Univariat

Analisis ini dilakukan untuk menggambarkan dan menganalisis distribusi frekuensi dari masing-masing variabel berdasarkan kelompoknya. Data yang diolah dalam analisis univariat adalah distribusi frekuensi jenis kelamin, usia dan indeks masa tubuh

2. Analisis Bivariat

Analisis bivariat dilakukan untuk menguji ada atau tidaknya hubungan pada variabel bebas (jenis kelamin, usia dan indeks masa tubuh) dengan variabel terikat (gambaran *fatty liver* pada pasien diabetes melitus tipe 2). Analisis ini menggunakan metode uji statistik *chi-square*.

Dalam mengambil keputusan uji statistik/menguji hipotesis, dilakukan pendekatan probabilistik dengan aplikasi pengolah data. Hasil dari uji statistik berupa p value atau tingkat kemaknaan (α). Untuk bidang kesehatan, tingkat kemaknaan yang biasa digunakan sebesar 5% (α =0,05). Hasil uji dikatakan memiliki hubungan bermakna bila nilai p value = α (p value = 0,05). Hasil uji dikatakan tidak memiliki hubungan bermakna apabila nilai p value > α (p value>0,05). Pada uji tabel 2x2, jika tidak memenuhi syarat uji chi-square, yaitu nilai frekuensi harapannya kurang dari 5 maka dilakukan uji alternatif yaitu uji Fisher Exact Test. Sedangkan pada tabel 4x2, jika frekuensi harapan yang kurang dari 5 lebih dari 20%, maka akan dilakukan pengelompokan ulang menjadi tabel yang lebih sederhana (Fauziyah, 2018). Uji chi-square dilakukan untuk masingmasing variabel bebas (jenis kelamin, usia dan indeks masa tubuh) terhadap gambaran fatty liver pada pasien diabetes melitus tipe 2 guna mengidentifikasi hubungan yang signifikan secara statistik.

3.7 Etika Penelitian

Penelitian ini dilakukan di RSUD Dr. H. Abdul Moeloek Bandar Lampung pada 8 Maret – 8 April 2025 yang disetujui melalui persetujuan etik oleh Komisi Etik Penelitian Kesehatan RSUD Dr. H. Abdul Moeloek Bandar Lampung dengan nomor seri 000.9.2/360B/VII.01/III/2025.

BAB V SIMPULAN DAN SARAN

5.1 Simpulan

Berdasarkan hasil penelitian yang telah didapatkan terkait hubungan antara jenis kelamin, usia dan indeks masa tubuh dengan gambaran *fatty liver* pada pasien diabetes melitus tipe 2 di RSUD DR. H. Abdul Moelok Provinsi Lampung, dapat simpulan sebagai berikut:

- 1. Tidak terdapat hubungan yang signifikan antara jenis kelamin dengan kejadian *fatty liver* pada pasien diabetes melitus tipe 2 di RSUD DR. H. Abdul Moelok. Pada pasien diabetes melitus tipe 2 dengan *fatty liver* mayoritas diderita oleh individu dengan jenis kelamin perempuan.
- 2. Terdapat hubungan yang signifikan antara usia dengan kejadian *fatty liver* pada pasien diabetes melitus tipe 2 di RSUD DR. H. Abdul Moelok. Pada pasien diabetes melitus tipe 2 dengan *fatty liver* mayoritas diderita oleh individu dengan usia ≥60 tahun.
- 3. Terdapat hubungan yang signifikan antara indeks masa tubuh dengan kejadian *fatty liver* pada pasien diabetes melitus tipe 2 di RSUD DR. H. Abdul Moelok. Pada pasien diabetes melitus tipe 2 dengan *fatty liver* mayoritas diderita oleh individu indeks masa tubuh obesitas.
- 4. Di RSUD DR. H. Abdul Moelok, penderita diabetes melitus tipe 2 yang paling beresiko mengalami *fatty liver* adalah individu dengan jenis kelamin perempuan, usia ≥60 tahun, dan memiliki indeks massa tubuh dalam kategori obesitas.

5.2 Saran

Berdasarkan hasil penelitian dan simpulan yang telah diuraikan, terdapat beberapa implikasi yang dapat ditarik untuk praktik klinis, pengembangan pelayanan rumah sakit, serta arahan bagi penelitian selanjutnya. Adapun saransaran tersebut dijabarkan sebagai berikut:

1. Untuk Praktik Klinis:

Pemeriksaan IMT hendaknya menjadi bagian integral dalam penilaian awal pasien diabetes melitus tipe 2, terutama dalam konteks pencegahan dan deteksi dini komplikasi hepatik seperti *fatty liver*. Mengingat IMT terbukti memiliki hubungan yang signifikan dengan gambaran *fatty liver*, maka nilai IMT dapat dijadikan indikator awal untuk melakukan skrining USG abdomen, sehingga diagnosis dapat ditegakkan sejak dini dan intervensi dapat dilakukan secara lebih optimal. Edukasi kepada pasien mengenai pentingnya menjaga berat badan ideal juga harus ditingkatkan, karena obesitas tidak hanya memperburuk kondisi diabetes, tetapi juga berisiko menimbulkan gangguan hati yang progresif.

2. Untuk Rumah Sakit:

RSUD Dr. H. Abdul Moeloek sebagai rumah sakit rujukan di Provinsi Lampung diharapkan dapat menyusun dan menerapkan protokol pemeriksaan rutin *fatty liver* menggunakan ultrasonografi abdomen bagi pasien diabetes melitus tipe 2, terutama yang berada dalam kategori *overweight* dan obesitas. Selain sebagai bagian dari pencegahan komplikasi, protokol ini juga dapat digunakan sebagai data epidemiologis lokal untuk memetakan beban penyakit hati terkait metabolik. Rumah sakit juga diharapkan dapat memberikan pelatihan rutin bagi tenaga medis mengenai interpretasi hasil USG hati dan manajemen klinis *fatty liver* secara komprehensif.

3. Untuk Penelitian Selanjutnya:

Penelitian ini memiliki keterbatasan dalam jumlah sampel dan variabel yang diteliti. Oleh karena itu, disarankan agar penelitian serupa dapat dilakukan dengan ukuran sampel yang lebih besar dan melibatkan populasi

yang lebih beragam dari berbagai latar belakang sosial, ekonomi, dan gaya hidup. Selain itu, penelitian lanjutan sebaiknya mempertimbangkan variabel tambahan seperti durasi penyakit diabetes, kadar HbA1c, riwayat konsumsi alkohol, pola diet, serta tingkat aktivitas fisik yang dapat memberikan pemahaman yang lebih luas mengenai faktor-faktor yang berperan dalam terjadinya *fatty liver*. Penambahan pendekatan longitudinal atau kohort juga dapat membantu dalam memahami progresivitas *fatty liver* pada pasien DM tipe 2 dari waktu ke waktu.

DAFTAR PUSTAKA

- Adeyinka A, Kondamudi NP. 2018. Hyperosmolar hyperglycemic nonketotic coma (HHNC, hyperosmolar hyperglycemic nonketotic syndrome). *StatPearls*. *Treasure Island(FL): StatPearls Publishing*.
- Alkhair, Avila DZ, Khatimah NH, Darmin, Hardinandar F, Mulya KS. 2023. Penyuluhan Edukasi Bahaya Makanan Siap Saji (Junk Food) Di MAN 1 Kota Bima. *Jurnal Pengabdian kepada Masyarakat MAPALUS*. 1(2): 1-7.
- Alkhair AM, Ristanti, Wulandari R. 2023. Gaya hidup dan penyakit metabolik: Tinjauan dari perspektif epidemiologi perkotaan. Jurnal Kesehatan Masyarakat, 15(1): 1–12.
- Alswat KA, Fallatah HI, Al-Judaibi B, Elsiesy HA, Al-Hamoudi WK, Qutub AN, *et al.* 2019. Position statement on the diagnosis and management of non-alcoholic fatty liver disease. *Saudi Med J.* 40(6):531-40.
- American Diabetes Association. 2018. *Standards of Medical Care in Diabetes-* 2018 M. Matthew C. Riddle, ed., *Available at*: https://diabetesed.net/wp-content/uploads/2017/12/2018-ADA-Standards-of-Care.pdf.
- American Diabetes Association. 2020. Classification and Diagnosis of Diabetes: *Standards of Medical Care in Diabetes—2020. Diabetes Care* 1 January 2020; 43 (Supplement 1): S14–31.
- Antunes C, Azadfard M, Hoilat GJ, Gupta M. 2023. Fatty Liver. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing. Available from: https://www.ncbi.nlm.nih.gov/books/NBK441992/
- Antunes C, Azwan I, Lopes S. 2023. Histopathology and imaging characteristics of hepatic steatosis. World Journal of Hepatology, 15(2): 145–56.
- Azmi F. 2016. Anatomi dan Histologi Hepar. Jurnal Fakultas Kedokteran Universitas Islam Al Azhar Mataram p147-54
- Ballestri S, Nascimbeni F, Romagnoli D, Baldelli E, Targher G, Lonardo A. 2017. The independent predictors of non-alcoholic steatohepatitis and its individual histological features. *Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy*, 10, 121-30.

- Callahan EA, editor. 2023. *Translating Knowledge of Foundational Drivers of Obesity into Practice: Proceedings of a Workshop Series*. Washington (DC): National Academies Press (US): The Science, Strengths, and Limitations of Body upta Index. Available from: https://www.ncbi.nlm.nih.gov/books/NBK594362/
- Chalasani N, Younossi Z, Lavine JE, Diehl AM, Brunt E, Cusi K, et al. 2018. The diagnosis and management of non-alcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology, 67(1): 328–57.
- Chatterjee S, Khunti K, Davies MJ. Type 2 diabetes. Lancet. 2017 Jun 3;389(10085):2239-2251. doi: 10.1016/S0140-6736(17)30058-2. Epub 2017 Feb 10. Erratum in: Lancet. 2017 Jun 3;389(10085):2192
- Charismatika SD. 2017. Hubungan antara overweight dengan kejadian *fatty liver*. Jurnal Kesehatan, 8(2): 115–21.
- Ciardullo S, Muraca E, Perra S, Bianconi E, Oltolini A, Cannistraci R, et al. 2021.

 NAFLD and risk of incident diabetes in a general population: A 10-year follow-up study. BMJ Open Diabetes Research and Care, 9(1), e002109.
- Degefu D, Knipe H. 2023. Liver ultrasound. Reference article, Radiopaedia.org (Accessed on 13 Nov 2024) https://doi.org/10.53347/rID-168996
- Ding Y, Ma X, Wang Y, Liu Y, Ma R, He M. (2021). The impact of menopause on metabolic health. *Frontiers in Endocrinology*, *12*, 626902.
- Fauziyah N. 2018. Analisis Data Menggunakan Chi-Square Test di Bidang Kesehatan Masyarakat dan Klinis. Politeknik Kesehatan Kemenkes Bandung, Bandung.
- Ferraioli G, Monteiro LBS. 2019. *Ultrasound-based techniques for the diagnosis of liver steatosis*. *World Journal of Gastroenterology*, 25(40): 6053–62.
- Goel A, Campos A, Molinari A, et al. 2024. Diffuse hepatic steatosis (grading).

 Reference article, Radiopaedia.org (Accessed on 13 Nov 2024)

 https://doi.org/10.53347/rID-33279
- Grossmann, M., Wittert, G., & Wu, F. C. (2018). Androgens, diabetes and prostate cancer. *Endocrine-Related Cancer*, *25*(2), R49-R59.

- Guyton AC, Hall J. 2021. *Textbook of medical Physiology*. 14th Ed. *Science Direct*: Canada.
- Haam JH, Kim BT, Kim EM, Kwon H, Kang JH, Park JH, *et al.* 2023. Diagnosis of Obesity: 2022 Update of Clinical Practice Guidelines for Obesity by the Korean Society for the Study of Obesity. *J Obes Metab Syndr.* 32(2):121-9.
- Hardianto D. 2021. Telaah Komprehensif Diabetes Melitus: Klasifikasi, Gejala, Diagnosis, Pencegahan, Dan Pengobatan. Jurnal Bioteknologi & Biosains Indonesia (JBBI) 7(2):304–17. doi: 10.29122/jbbi.v7i2.4209.
- Harie SES, Eva D, Afriwardi. 2018. Faktor Risiko Pasien Nefripati Diabetik yang Dirawat di Bagian Penyakit Dalam RSUP Dr.M. Djamil Padang. 2018. Jurnal Kesehatan Andalas. 7 (2).
- Hossain MM, Rahman MM, Khan MA. 2021. Body Mass Index and Its Association with Liver Enzymes in Non-Alcoholic Fatty Liver Disease. *Journal of Hepatology and Gastroenterology*, 9(4), 200-7.
- Hossain FB, Shawon MSR, Tang H. 2021. Body mass index and liver disease: A global perspective. Obesity Reviews, 22(10): e13249.
- IDF Diabetes Atlas. 2016. Seventh Edition. International Diabetes Federation.
- InfoDatin. 2020. Tetap Produktif, Cegah, dan Atasi Diabetes Melitus. Pusat Data dan Informasi Kementrian Kesehatan RI.
- International Diabetes Federation. 2019. International Diabetes Federation Diabetes Atlas (Edisi 10). Belgium: Internasional Diabetes Federation.
- Ivan's E, Sari NA. 2021. Potret Perbandingan Kebijakan Harga Pangan dengan Realita Harga Beras, Gula dan Kedelai di Tahun Pertama Pandemi Covid-19, Indonesia. Indonesian Journal of Science and Technology, 1(1), 82-104.
- Jeongeun H, Jinsol H, Chanbin L, Myunghee Y, Youngmi J. 2021.

 Pathophysiological Aspects of Alcohol Metabolism in the Liver.

 International Journal of Molecular Sciences. 22(11): 5717.
- Kemenkes RI. 2018. Hasil Utama RISKESDAS 2018. In Kemenkes RI.
- Kemenkes RI. 2019. Laporan Provinsi Lampung *RISKESDAS 2018*. Lembaga Penerbit Badan Litbang Kesehatan.
- Kusdiyah E. 2020. Karakteristik Faktor-Faktor Risiko Terjadinya Komplikasi Kronik Nefropati Diabetik Dan Atau Penyakit Pembuluh Darah Perifer Pada

- Penderita Diabetes melitus tipe 2 Di RSUD Raden Matther Tahun 2018. E-SEHAD Vol 1 No 1: 19-32.
- Kusnadi T, Pratama GE, Suryani A. 2018. Obesitas dan faktor risiko terkait dengan fatty liver pada lansia. *Jurnal Hepatologi Indonesia*, 17(2): 72–9. https://doi.org/10.1234/jhi.v17i2.1234
- Lala V, Zubair M, Minter DA. 2023. Liver Function Tests. [Updated 2023 Jul 30]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK482489/
- Leong A, Porneala B, Dupuis J, Florez JC, Meigs JB. Type 2 Diabetes Genetic Predisposition, Obesity, and All-Cause Mortality Risk in the U.S.: A Multiethnic Analysis. Diabetes Care. 2016 Apr;39(4):539-46.
- Lestari Z, Sijid SA. 2021. Diabetes Melitus: Review Etiologi, Patofisiologi, Gejala, Penyebab, Cara Pemeriksaan, Cara Pengobatan dan Cara Pencegahan. UIN Alauddin Makassar, November, 237–41. http://journal.uin-alauddin.ac.id/index.php/psb
- Liver Disease-An Evolving View. Clin Liver Dis. 2018 Feb;22(1):11-21.
- Lu CW, Yang KC, Chi YC, Wu TY, Chiang CH, Chang HH, *et al.* 2023. Adiponectin-leptin ratio for the early detection of lean non-alcoholic fatty liver disease independent of insulin resistance. *Ann Med.* 55(1):634-42.
- Lu Y, Younossi Z, Shulman G. 2023. Adiponectin and leptin in fatty liver pathogenesis. Nature Metabolism, 5(3): 211–24.
- Manurung, N. 2018. Keperawatan Medikal Bedah Konsep Mind Mapping dan Nanda NIC NOC Jilid 1. CV. Trans Info Media.
- Medina S, Arifin R, Lestari P. 2018. Hubungan obesitas sentral dengan fatty liver berdasarkan pemeriksaan USG. Jurnal Radiologi Indonesia, 12(2): 80–6.
- Mescher AL. 2021. Junqueira's Basic Histology Text & Atlas. 16th Edition, McGraw Hill.
- Mustofa S. 2019. Lipid; biokimia, pencernaan, penyerapan dan transportnya di dalam tubuh. *Lampung: Aura CV*.
- Mustofa S. 2024. Pengantar metabolisme lemak. Bandar Lampung: CV Rizky Karunia Mandiri. hlm 9-10.

- Mustofa S, Adjeng ANT, Kurniawaty E, Ramadhita L, Tamara T .2024. Influence of Rhizophora apiculata barks extract on cholesterol, triglyceride, LDL, and HDL levels of Rattus norvegicus (Sprague Dawley) fed high-cholesterol diet. Research Journal of Pharmacy and Technology, 17(1); 396-400.
- Mustofa S, Sani NA. 2024. Preparation for Retirement Period, The Importance of Increasing Knowledge of Healthy Lifestyles and Overcoming Health Problems at Retirement Age. *Medical Profession Journal of Lampung*, *14*(1), 196-204. https://doi.org/10.53089/medula.v14i1.826
- Neuberger J, Patel J, Caldwell H, Davies S, Hebditch V, Hollywood C, *et al.* 2020. Guidelines on the use of liver biopsy in clinical practice from the British Society of Gastroenterology, the Royal College of Radiologists and the Royal College of Pathology. Gut. 2020 Aug;69(8):1382-403.
- Paulsen F, Waschke J, Gunardi S. 2019. *Sobotta Atlas Anatomi Manusia*. Edisi 24. Jakarta: EGC.
- PERKENI. 2021. Pedoman pengelolaan dan pencegahan diabetes melitus tipe 2 di Indonesia 2021. PB. PERKENI.
- Perreault L, Davies M, Frias JP, Laursen PN, Lingvay I, Machineni S, *et al.* Changes in Glucose Metabolism and Glycemic Status With Once-Weekly Subcutaneous Semaglutide 2.4 mg Among Participants With Prediabetes in the STEP Program. Diabetes Care. 2022 Oct 1;45(10):2396-405.
- Pouwels S, Sakran N, Graham Y, Leal A, Pintar T, Yang W, et al. 2022. Non-alcoholic fatty liver disease (NAFLD): a review of pathophysiology, clinical management and effects of weight loss. *BMC Endocr Disord*. 14;22(1):63.
- Powell EE, WongVW, Rinella M. 2021. Non-alcoholic fatty liver disease. *Lancet (London, England)*, 397(10290), 2212–24. https://doi.org/10.1016/S0140-6736(20)32511-3.
- Price SA, Wilson LM. 2019. *Patofisiologi: Konsep Klinis Proses- proses penyakit* (6th ed.; H. Hartanto, Ed). Jakarta: EGC.
- Putri RA, Setiorini A, Mayasari D, Mustofa S. 2024. Central Obesity as a Risk Factor for Low Back Pain. Medical Profession Journal of Lampung, 14(11); 2100-7.

- Rahmawati D, Setiawan M, Kurniawan A. (2023). Pengelolaan berat badan dan pencegahan fatty liver pada wanita dengan obesitas. *Jurnal Penyakit Dalam Indonesia*, 29(1): 35–41. https://doi.org/10.22678/jpdi.v29i1.2023
- Saputri RD. 2020. Komplikasi Sistemik Pada Pasien Diabetes Melitus Tipe 2. Jurnal Ilmiah Kesehatan Sandi Husada Vol 11 No 1, 230-6.
- Sari DP, Hamranani SST, Supardi S, Damayanti F. 2024. Physical activity and climacteric symptoms among premenopause women. *Journal of Nursing Science Update (JNSU)*, 12(1), 18–25. https://doi.org/10.21776/ub.jik.2024.012.01.03
- Sanjaya ER, Muninggar J, Setiawan A. 2022. Uji Coba Metode Pencitraan Multimodalitas Ultrasonografi Dan Fotoakustik. Jurnal Fisika. 7(1): 8-14.
- Seitz, Helmut K, Bernardo Moreira, Neuman MG. 2023. "Pathogenesis of Alcoholic Fatty Liver a Narrative Review. *Life*. 13(8).
- Setiawan SI, Kurniawan J. 2021. Pilihan Tatalaksana Penyakit Perlemakan Hati NonAlkohol (Non-Alcoholic Fatty Liver Disease/ NAFLD). *CDK*. 48(3): 173-5.
- Setiawan VW, Stram DO, Porcel J, Lu SC, Le Marchand L, Noureddin M. 2016. Prevalence of NAFLD in the United States: Ethnicity and age-based disparities. Hepatology, 64(1): 73–84.
- Setiono DD, Wantania FEN, Polii EFBI. 2022. Faktor-faktor Risiko Non-Alcoholic Fatty Liver Disease pada Dewasa. *e-CliniC*. 10(2):234-41.
- Setiono W, Nugraha F, Kurniawan R. 2022. Epidemiologi dan faktor risiko NAFLD pada populasi Asia. Jurnal Gastrohepatologi Indonesia, 4(1): 1–8.
- Setiono W, Kurniawan R. 2021. Epidemiology and progression of NAFLD: A global overview. Journal of Hepatic Medicine, 6(2): 88–96.
- Sherwood L, Ward C. 2021. *Human Physiology: From Cells to Systems*. 5th Edition.
- Simanjuntak S, Simanjuntak SGU, Pasaribu S. 2021. Hubungan Sindrom Metabolik Dengan Non-Alcoholic Fatty Liver Disease (Nafld). *Jurnal Kedokteran Methodist*. 15(1): 66-74.

- Soelistijo S. 2021. Pedoman Pengelolaan dan Pencegahan Diabetes Melitus Tipe 2 Dewasa di Indonesia 2021. Glob Initiat Asthma [Internet]. 2021;46. Available from: www.ginasthma.org.
- Sriwaningsi L, Natadidjaja H, Sudarma V, Herwana E. 2023. Hubungan Obesitas Dan Hipertrigliseridemia Dengan Kejadian Perlemakan Hati Pada Usia 30-60 Tahun. *Jurnal Kesehatan Tambusai*. 4(3): 2745-55.
- Susantiningsih T, Kurniawaty E, Mustofa S. 2017. Penyuluhan Kesehatan tentang Bahaya Penyakit Diabetes Mellitus kepada Ibu-ibu Majelis Taklim Al Muttaqien di Kecamatan Kalianda Kabupaten Lampung Selatan. *JPM* (Jurnal Pengabdian Masyakat) Ruwa Jurai. 3(1): 85-9.
- Susantiningsih T, Mustofa S. 2018. Ekspresi IL-6 dan TNF-α pada obesitas. *Jurnal Kedokteran Universitas Lampung*. 2(2): 174-80.
- Suwinawati E, Ardiani H, Ratnawati R. 2020. Hubungan Obesitas dengan Kejadian Diabetes Melitus Tipe 2 Di Pos Pembinaan Terpadu Penyakit Tidak Menular Puskesmas Kendal Kabupaten Ngawi. *Journal of Health Science and Prevention*. 4(2): 79–84. https://doi.org/10.29080/jhsp.v4i2.388
- Suwinawati H, Lestari D, Puspitasari R. 2020. Peran sitokin proinflamasi pada resistensi insulin hepatik dan perlemakan hati. Jurnal Biomedik Eksakta, 8(1): 45–53.
- Taufik M, Andayani W. 2023. Pengaruh perubahan gaya hidup terhadap peningkatan prevalensi diabetes melitus di perkotaan. *Jurnal Ilmiah Manajemen dan Pelayanan Kesehatan*, 9(2): 97-103.
- Vancells L, Pau, Esther VE, Emilio SM. 2021. Overview of Non-Alcoholic Fatty Liver Disease (NAFLD) and the Role of Sugary Food Consumption and Other Dietary Components in Its Development. *Nutrients*.13(5): 1442.
- Wang X, Li Y, Zhang X. 2023. Cross-sectional studies: A comprehensive review. Journal of Clinical Epidemiology, 142(5), 114-22.
- Wantoro A. Mustofa S. 2025. Sistem pakar medis. Kuningan. Penerbit Goresan Pena, 1-88.
- Wantoro A, Zulkifli, Fitria YA, Yana AD, Mustofa S. 2025. Evaluasi Kinerja Algoritma Machine Learning (ML) Menggunakan Seleksi Fitur pada

- Klasifikasi Diabetes. Jurnal Informatika Polinema, 11(3); 311–6. Retrieved from https://jurnal.polinema.ac.id/index.php/jip/article/view/7290
- Waspadji S. 2017. Hidup Sehat Dengan Diabetes SEbagai Panduan Penyandang Diabetes dan Keluarganya serta Petugas Kesehatan Terkait. Pusat Diabetes dan Lipit. Jakarta: Balai Penerbit FKUI.
- Weir CB, Jan A. 2023. BMI Classification Percentile And Cut Off Points. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing. Available from: https://www.ncbi.nlm.nih.gov/books/NBK541070/
- Westbury S, Oyebode O, van Rens T, Barber TM. 2023. Obesity Stigma: Causes, Consequences, and Potential Solutions. *Curr Obes Rep.* 12(1):10-23.
- Wulandari MZ, Hamdi AF, Nurhalisa FZ, Hutabarat DFP, Septiani GC, Nurazizah DA, et al. 2023. Penggunaan Perhitungan Indeks Massa Tubuh sebagai Penanda Status Gizi pada Mahasiswa Prodi Kesehatan Masyarakat Rombel 2D. *Jurnal Analis*. 2(2): 124-31.
- Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. 2016. *Global epidemiology of nonalcoholic fatty liver disease—Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology, 64*(1): 73–84.
- Younossi ZM, Golabi P, de Avila L, Paik JM, Srishord M, Fukui N, Nader F. 2019. The global epidemiology of NAFLD and NASH in patients with type 2 diabetes: A systematic review and meta-analysis. *Journal of Hepatology*, 71(4): 793-801.
- Zhang, H., & Li, T. 2024. Menopause and metabolic liver disease: The shifting landscape of NAFLD in postmenopausal women. *Hepatology International*, 18(1), 22–31. https://doi.org/10.1007/s12072-024-10567