SINTESIS DAN KARAKTERISASI SENYAWA DIBUTILTIMAH(IV) DI-(4-NITROBENZOAT) DAN DIBUTILTIMAH(IV) DI-(4-KLOROBENZOAT) SERTA UJI ANTIPROLIFERASI SEBAGAI SENYAWA ANTIKANKER TERHADAP SEL KANKER HeLa (SERVIKS)

(SKRIPSI)

Oleh ENY RATNAWATI 2117011083

FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS LAMPUNG BANDAR LAMPUNG 2025

ABSTRAK

SINTESIS DAN KARAKTERISASI SENYAWA DIBUTILTIMAH(IV) DI-(4-NITROBENZOAT) DAN DIBUTILTIMAH(IV) DI-(4-KLOROBENZOAT) SERTA UJI ANTIPROLIFERASI SEBAGAI SENYAWA ANTIKANKER TERHADAP SEL KANKER HeLa (SERVIKS)

Oleh

ENY RATNAWATI

Kanker merupakan penyakit mematikan yang menempati peringkat kedua sebagai penyebab kematian tertinggi di dunia, dengan angka kematian mencapai 9,6 juta jiwa setiap tahunnya. Penyakit ini ditandai oleh pertumbuhan sel abnormal yang menyebar melalui jaringan ikat, darah, serta menyerang organ-organ penting seperti sumsum tulang belakang. Oleh karena itu, penting dilakukan pencarian agen antikanker baru yang efektif namun memiliki efek samping yang minimal. Salah satu upaya yang dilakukan adalah melalui pemanfaatan senyawa turunan organotimah(IV), yaitu dibutiltimah(IV) di-(4-nitrobenzoat) dan dibutiltimah(IV) di-(4-klorobenzoat).

Senyawa tersebut disintesis melalui reaksi antara dibutiltimah(IV) oksida dengan ligan asam 4-nitrobenzoat dan asam 4-klorobenzoat dalam pelarut metanol. Hasil sintesis diperoleh dalam bentuk padatan berwarna putih dengan rendemen masing-masing sebesar 87,44% dan 85,53%. Senyawa hasil sintesis kemudian dikarakterisasi menggunakan spektrofotometer UV-*Vis*, FTIR, ¹H-NMR, ¹³ C-NMR, dan *microelemental analyzer* untuk memastikan struktur dan kemurnian senyawa.

Uji aktivitas antiproliferasi dilakukan terhadap sel kanker serviks (HeLa). Hasil uji menunjukkan bahwa kedua senyawa memiliki aktivitas antiproliferasi yang baik. Senyawa dibutiltimah(IV) di-(4-nitrobenzoat) menunjukkan aktivitas yang lebih tinggi dengan nilai IC_{50} sebesar 3,90 µg/mL dan indeks selektivitas (IS) sebesar 9,33 terhadap sel normal (Vero). Sementara itu, dibutiltimah(IV) di-(4-klorobenzoat) memiliki nilai IC_{50} sebesar 4,34 µg/mL dan indeks selektivitas sebesar 14,33. Kedua senyawa dinyatakan berpotensi sebagai kandidat agen antikanker yang selektif terhadap sel kanker.

Kata kunci: dibutiltimah(IV) di-(4- nitrobenzoat), dibutiltimah(IV) di-(4- klorobenzoat), *IC*₅₀, sel HeLa, uji antiproliferasi

ABSTRACT

SYNTHESIS AND CHARACTERIZATION OF DIBUTILTIMAH(IV)DI-(4-NITROBENZOAT) AND DIBUTILTIMAH(IV)DI-(4- KLOROBENZOAT) AND ANTIPROLIFERATION TEST AS ANTIKANKER SOLUTION AGAINST HeLa (SERVICAL) CANCER CELS

By

ENY RATNAWATI

Cancer is a deadly disease that ranks second as the leading cause of death worldwide, with 9.6 million deaths each year. The disease is characterized by abnormal cell growth that spreads through connective tissue, blood, and invades important organs such as the spinal cord. Therefore, it is important to look for new anticancer agents that are effective yet have minimal side effects. One of the efforts made is through the utilization of organotin (IV) derived compounds, namely dibutyltin (IV) di-(4-nitrobenzoate) and dibutyltin (IV) di-(4chlorobenzoate). This compound was synthesized through the reaction between dibutyltin (IV) oxide with 4-nitrobenzoic acid and 4-chlorobenzoic acid ligands in methanol solvent. The synthesis results obtained are white solids with yields of 87.44% and 85.53%, respectively. The synthesized compounds were then characterized using UV-Vis spectrophotometer, FTIR, ¹H-NMR, ¹³ C-NMR, and microelement analysis to ensure the structure and purity of the compounds. Antiproliferation activity test was conducted on cervical cancer cells (HeLa). The test results show that both compounds have good antiproliferation activity. Dibutiltin(IV) di-(4-nitrobenzoate) compound showed higher activity with IC₅₀ value of 3.90 µg/mL and selectivity index (IS) of 9.33 against normal cells (Vero). Meanwhile, dibutyltin (IV) di-(4-chlorobenzoate) had an IC₅₀ value of 4.34 μg/mL and a selectivity index of 14.33. Both compounds were found to have potential as anticancer agent candidates that are selective to cancer cells.

Key words: antiproliferation assay, dibutyltin(IV) di-(4-nitrobenzoate), dibutyltin(IV) di-(4-chlorobenzoate), HeLa cells), IC₅₀

SINTESIS DAN KARAKTERISASI SENYAWA DIBUTILTIMAH(IV) DI-(4-NITROBENZOAT) DAN DIBUTILTIMAH(IV) DI-(4-KLOROBENZOAT) SERTA UJI ANTIPROLIFERASI SEBAGAI SENYAWA ANTIKANKER TERHADAP SEL KANKER HeLa (SERVIKS)

Oleh

ENY RATNAWATI

Skripsi

Sebagai Salah Satu Syarat untuk Mencapai

Gelar SARJANA SAINS

Pada

Jurusan Kimia

Fakultas Matematika dan Ilmu Pengetahuan Alam

JURUSAN KIMIA
FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM
UNIVERSITAS LAMPUNG
BANDAR LAMPUNG
2025

Judul

SINTESIS DAN KARAKTERISASI

SENYAWA DIBUTILTIMAH(IV) DI- (4-

NITROBENZOAT) DAN DIBUTILTIMAH(IV) DI-(4-KLOROBENZOAT) SERTA UJI

ANTIPROLIFERASI SEBAGAI SENYAWA ANTIKANKER TERHADAP SEL KANKER

HeLa (SERVIKS)

Nama Mahasiswa

Eny Ratnawati

Nomor Induk Mahasiswa

2117011083

Jurusan

Kimia

Fakultas

Matematika dan Ilmu Pengetahuan Alam

MENYETUJUI

1. Komisi Pembimbing

The state of the s

Prof. Sutopo Hadi, M.Sc., Ph.D NIP. 197104151995121001 Prof. Noviany, S.Si., M.Si., Ph.D.

NIP. 197311191998022001

2. Ketua Jurusan Kimia FMIPA

Prof. Dr. Mita Rilyanti. S.Si., M.Si. NIP. 197205302000032001

MENGESAHKAN

1. Tim Penguji

Ketua : Prof. Sutopo Hadi, M.Sc., Ph.D.

April

Sekretaris

Prof. Noviany, S.Si., M.Si., Ph.D.

Plaisury

Penguji

Bukan pembimbing

Prof. Rudy T. M. Situmeang, M.Sc., Ph.D.

2. Dekan Fakultas Matematika dan Ilmu Pengetahuan Alam

Dr. Eng. Heri Satria, S.Si, M.Si.

NIP. 197110012005011002

Tanggal Lulus Ujian Skripsi : 17 Juli 2025

SURAT PERNYATAAN KEASLIAN SKRIPSI

Yang bertanda tangan di bawah ini:

Nama Mahasiswa

Eny Ratnawati

Nomor Pokok Mahasiswa

2117011083

Jurusan

: Kimia

Fakultas

Matematika dan Ilmu Pengetahuan Alam

Perguruan Tinggi

Universitas Lampung

Menyatakan dengan sebenar-benarnya bahwa skripsi yang berjudul "Sintesis dan Karakterisasi Senyawa Dibutiltimah(IV) di-(4-nitrobenzoat) dan Dibutiltimah(IV) di-(4-klorobenzoat) serta Uji Antiproliferasi Sebagai Senyawa Antikanker Terhadap Sel Kanker HeLa (Serviks)" adalah benar karya sendiri dan saya tidak keberatan jika sebagian atau seluruh data di dalam skripsi tersebut digunakan oleh dosen atau program studi untuk kepentingan publikasi sesuai dengan kesepakatan dan sepanjang nama saya disebutkan.

> Bandar Lampung, 17 Juli 2025 Menyatakan

2117011083

RIWAYAT HIDUP

Penulis bernama lengkap *Eny Ratnawati* lahir di Lampung Tengah pada tanggal 29 Januari 2003. Penulis merupakan anak ke empat dari empat bersaudara, putri dari Bapak Rohmad dan Ibu Laminem. Penulis mengawali jenjang pendidikan dari Taman Kanak-kanak Ra Al Islam XII B di Jambi yang telah diselesaikan pada tahun 2009. Penulis melanjutkan jenjang berikutnya di Sekolah Dasar Negri 161,

Jambi yang diselesaikan pada tahun 2015, kemudian melanjutkan pendidikan Sekolah Menengah Pertama di Madrasah Tsanawiyah Pondok Pesantren Hidayatul Mubtadi-in Jambi yang diselesaikan pada tahun 2018, dan melanjutkan pendidikan Sekolah Menengah Atas di Madrasah Aliyah Pondok Pesantren Hidayatul Mubtadi-in Jambi, yang diselesaikan pada tahun 2021.

Pada tahun 2021, penulis diterima di lembaga pendidikan bidang penerbangan, yaitu *Riau International College* (RIC) di Provinsi Riau. Namun, penulis memutuskan untuk tidak melanjutkan pendidikan di lembaga tersebut karena memiliki keinginan untuk melanjutkan studi di perguruan tinggi negeri. Selanjutnya, penulis sempat diterima sebagai mahasiswa Program Studi S1 Sastra Inggris di Universitas Islam Negeri Sulthan Thaha Saifuddin Jambi. Namun, karena penulis tetap bertekad untuk menempuh pendidikan di bidang sains, kesempatan tersebut tidak diambil. Penulis kemudian memilih untuk mengikuti seleksi masuk perguruan tinggi negeri melalui jalur SBMPTN. Masih pada tahun 2021, penulis akhirnya diterima sebagai mahasiswa Program Studi Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Lampung melalui jalur Seleksi Bersama Masuk Perguruan Tinggi Negeri (SBMPTN).

Selama menempuh sebagai mahasiswa kimia di Universitas Lampung, penulis pernah mengikuti kegiatan Kader Muda Himaki (KAMI) FMIPA Unila tahun 2021-2022. Penulis juga telah mengikuti kegiatan Karya Wisata Ilmiah ke-32 yang

diselenggarakan oleh BEM FMIPA Unila pada tahun 2021. Kegiatan pada saat tersebut dilakukan di dua tempat yaitu Rumah Hijau Bandar Lampung dan di Desa Sinarsari Kecamatan Skincau Lampung Barat. Pada tahun 2022, penulis juga pernah mengikuti kegiatan organisasi *Chemistry English Club* (CEC) bidang Design and Publication. Selain itu, penulis aktif kegiatan organisasi BEM FMIPA Unila pada tahun 2022 di bidang Isu dan Pergerakan (Isper). Penulis juga sempet menjadi panitia pelaksana MIPA EXPO yang diselenggarakan oleh BEM FMIPA Unila. Pada tahun 2023 penulis diterima di Program Merdeka Belajar Kampus Merdeka (MBKM) pada kegiatan pembangunan dan pemberdayaan desa (Bina Desa) di Lampung Selatan. Pada tahun 2024, penulis menyelesaikan Praktik Kerja Lapangan (PKL) di Laboratorium Anorganik - Fisik, Universitas Lampung.

Pada periode perkuliahan akhir, penulis telah menyelesaikan riset penelitian dengan judul "Sintesis dan Karakterisasi Senyawa Dibutiltimah(IV) di-(4-nitrobenzoat) dan Dibutiltimah(IV) di-(4-klorobenzoat) serta Uji Antiproliferasi Sebagai Senyawa Antikanker Terhadap Sel Kanker HeLa (Serviks)" pada tahun 2025 di Jurusan Kimia, Universitas Lampung.

Motto Hidup

" اطْلُبُوا الْعِلْمَ وَلَقْ بِالصِّينِ، فَإِنَّ طَلَبَ الْعِلْمِ فَريضَةٌ عَلَى كُلِّ مُسْلِمِ"

"Tuntutlah ilmu walaupun sampai ke Negeri Cina, karena mencari ilmu itu wajib atas setiap Muslim."

(Al-Baihagi)

°وَإِذَا سَالَكَ عِبَادِي عَنِي فَإِنِّي قَرِيبٌ ﴿ أَجِيبُ دَعْوَةَ ٱلدَّاعِ إِذَا دَعَانَ "

"Dan apabila hamba-hamba-Ku bertanya kepadamu tentang Aku, maka (jawablah): sesungguhnya Aku dekat. Aku mengabulkan permohonan orang yang berdoa apabila ia berdoa kepada-Ku."

(QS. Al-Baqarah: 186)

"أنا عندَ ظنِّ عبدي بي، فليظنَّ بي ما شاءً"

"Aku (Allah) sesuai dengan persangkaan hamba-Ku kepada-Ku. Maka, hendaklah ia berprasangka kepada-Ku sebagaimana yang ia kehendaki."

(HR. Ahmad dan Ibnu Hibban)

"لَا يُكَلِّفُ ٱللَّهُ نَفْسًا إلَّا وُسْعَهَا"

"Allah tidak membebani seseorang melainkan sesuai dengan kesanggupannya." (QS. Al-Baqarah: 286)

"Orang lain ga akan bisa faham struggle dan masa sulitnya kita, yang mereka hanya ingintahu bagian success stories. Berjuanglah untuk diri sendiri walaupun ga ada yang tepuk tangan. Kelak kita di masa depan akan sangat bangga dengan apa yang kita perjuangkan hari ini, tetap berjuang ya"

(Fardy Y)

"Education is not the learning of facts, but the training of the mind to think"

(Albert Einstein)

"Hardships often prepare ordinary people for an extraordinary destiny."
(C.S. Lewis)

PERSEMBAHAN

Dengan penuh rasa syukur ke hadirat Allah Subhanahu wa Ta'ala, atas segala rahmat, petunjuk, dan kekuatan yang telah mengiringi setiap langkah hingga tersusunnya karya ini. Goresan tinta ini akan kupersembahkan sebagai ungkapan cinta, hormat, dan bakti yang tulus untuk dua sosok teristimewa dalam hidupku:

Bapak Rohmad dan Ibu Laminem

Senantiasa menjadi rumah bagi setiap lelahku, tempat aku menemukan ketenangan dalam diam dan kekuatan dalam doa. Langkah ini tak akan pernah sampai sejauh ini tanpa peluh yang tak terlihat dan doa yang diam-diam dipanjatkan setiap malam. Terima kasih atas cinta yang tak mengenal batas, kesetiaan dalam mendampingi, dan ketulusan yang tak pernah meminta kembali.

Dengan penuh rasa hormat dan terima kasih saya kepada:

Prof. Sutopo Hadi, M.Sc., Ph.D.

Prof. Noviany, S.Si., M.Si., Ph.D.

Beserta seluruh Bapak Ibu Dosen Jurusan Kimia FMIPA Universitas Lampung, yang telah menjadi cahaya penuntun dalam pencarian ilmu, memberikan arahan, ilmu, dan teladan yang akan terus menjadi bekal dalam kehidupan.

Tak lupa, untuk keluarga besar, sahabat seperjuangan, dan teman-teman tercinta, yang selalu hadir memberi semangat, mendengarkan di saat sulit, dan mengingatkan makna kebersamaan.

SANWACANA

Puji dan syukur kepada Allah SWT, karena atas rahmat, ridho, dan karunia-Nya, skripsi ini dapat penulis selesaikan. Skripsi dengan judul "Sintesis dan Karakterisasi Senyawa Dibutiltimah(IV) di-(4-nitrobenzoat) dan Dibutiltimah(IV) di-(4-klorobenzoat) serta Uji Antiproliferasi Sebagai Senyawa Antikanker Terhadap Sel Kanker HeLa (Serviks)" merupakan salah satu syarat untuk memperoleh gelar Sarjana Sains di Universitas Lampung. Penulis menyadari, penyelesaian skripsi ini tidak terlepas dari bantuan berbagai pihak, oleh karena itu pada kesempatan ini penulis mengucapkan terima kasih kepada:

- 1. Kedua orang tua tercinta, terkasih, dan tersayang Bapak dan Mamak, yang telah mengusahakan segalanya untuk anak bungsumu ini. Selalu memberikan dukungan yang senantiasa menjadikan Penulis tetap kuat dalam menghadapi segala hal. Semoga atas do'a yang selalu engkau panjatkan untuk Penulis disepertiga malam segera terijabah oleh Allah SWT. Semoga bapak dan mamak selalu diberikan kesehatan, panjang umur, dan selalu ada dalam lindungan Allah SWT, dan selalu ada dalam setiap episode kehidupan Penulis. Penulis berharap suatu saat nanti bapak dan mamak bisa bangga terhadap anak bungsunya ini.
- 2. Ibu Prof. Dr. Lusmeilia Afriani, D.E.A., I.P.M., selaku Rektor Universitas Lampung.
- 3. Bapak Dr. Eng. Heri Satria, S.Si, M.Si. selaku dekan Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Lampung.
- 4. Bapak Mulyono, Ph.D. selaku Ketua Jurusan Kimia Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Lampung.
- 5. Bapak Prof. Sutopo Hadi, S.Si., M.Sc., Ph.D. selaku Dosen Pembimbing Akademik dan Dosen Pembimbing I, atas segala bentuk kebaikan, bimbingan, arahan, masukan, serta ilmu pengetahuan yang telah diberikan secara

- konsisten sejak masa perkuliahan hingga penyusunan dan penyelesaian skripsi ini.
- 6. Ibu Prof. Noviany, S.Si., M.Si., Ph.D. selaku Dosen Pembimbing II, atas kebaikan, bimbingan, arahan, masukan, dan seluruh ilmu pengetahuan yang diberikan selama proses perkuliahan s.d. penyelesaian skripsi.
- 7. Bapak Prof. Rudy T. Mangapul Situmeang, M.Sc., Ph.D. selaku Dosen Pembahas, atas segala bentuk dukungan, bimbingan, masukan, serta ilmu pengetahuan yang telah banyak memberikan wawasan dan kontribusi dalam proses penyusunan hingga penyelesaian skripsi ini.
- 8. Bapak dan Ibu Dosen Jurusan Kimia FMIPA Universitas Lampung;
- Bapak dan Ibu Tenaga Kependidikan, serta PLP Laboratorium Kimia Anorganik - Fisik dan Laboratorium Biokimia Jurusan Kimia FMIPA Universitas Lampung.
- 10. Kakak dan Mbak, Ali Mustofa, Maulana Ilyas, Khusnan Efendy, Jamiatun, Laelatun Nafisah, Nurul Ikromah, serta beberapa keponakan yang selalu ada menjadi sumber semangat bagi Penulis selama menjalani masa perkuliahan.
- 11. Sahabat terbaik, Anggun Marchella yang selalu hadir dan membersamai dalam suka maupun duka selama empat tahun masa perkuliahan atas kebersamaan, dukungan, semangat, dan doa yang tak pernah putus. Kehadiranmu menjadi salah satu kekuatan besar yang membantu Penulis melewati setiap tantangan dan proses hingga akhirnya mencapai titik ini. Semoga persahabatan ini terus terjalin dengan erat dalam setiap langkah kehidupan ke depan.
- Sahabat-sahabat terdekat yang senantiasa memberikan motivasi, dukungan, dan menjadi tempat berbagi dikala senang maupun sulit yang berasal dari Jambi.
- 13. Syahrun Al Munawar yang dengan tulus meluangkan waktu dan hadir, baik di saat suka maupun duka selama perjalanan menyelesaikan skripsi ini.
- 14. Sutopo Research 2021, yang telah menjadi rekan satu Praktik Kerja Lapangan dan Penelitian hingga penyusunan tugas akhir, Mariana Lupita S, Dini Aulia Adha, Linda Nurul, dan Vanessa Wardani, atas kerja sama, bantuan, semangat, kepedulian, kekompakan, serta waktu luang untuk mendengarkan keluh kesah Penulis. Semoga kelak kita sukses bersama dan dapat dipertemukan kembali dalam keadaan yang lebih baik lagi dari saat ini.

- 15. Kakak tingkat satu pembimbing Sutopo Research 2020, yang telah memberikan bimbingan, arahan, serta berbagi pengalaman yang sangat membantu selama proses penelitian berlangsung.
- 16. Adik tingkat satu bimbingan Sutopo Research 2022, yang telah menunjukkan antusiasme, semangat kerja keras, dan kerja sama yang luar biasa. Kehadiran dan kontribusinya memberikan energi positif dalam meyelesaikan penelitian ini.
- 17. Teman-teman Kimia 2021 terutama kelas B atas segala kenangan selama perkuliahan.
- 18. Teman-teman yang namanya tidak dapat disebutkan satu per satu, namun tetap memiliki arti penting dalam kehidupan Penulis selama menempuh pendidikan ini.
- 19. Cherry, Pupu, dan Milky yang setia menemani Penulis dalam suka maupun duka, terutama di tengah proses penyusunan skripsi dan menjadi teman setia dalam keheningan.
- 20. Terakhir teruntuk diri sendiri, atas keteguhan hati, semangat, dan keberanian untuk terus melangkah meski dihadapkan berbagai rintangan. Tetap bertahan, berjuang, dan tidak menyerah dalam setiap proses yang panjang hingga akhirnya mampu mencapai titik ini. Semoga langkah ke depan selalu diberi kekuatan, ketulusan, dan keyakinan untuk terus belajar dan bertumbuh.

Terima kasih disampaikan kepada semua pihak yang telah memberikan bantuan, dukungan, serta doa dalam proses penyusunan skripsi ini, yang tidak dapat disebutkan satu per satu. Semoga Allah SWT membalas segala kebaikan yang telah diberikan. Penulis berharap, semoga skripsi ini dapat memberikan manfaat, baik bagi Penulis secara pribadi maupun bagi para pembaca secara umum.

Bandar Lampung, 17 Juli 2025 Penulis

DAFTAR ISI

Halaman

DAFTAR TABEL	vi
DAFTAR GAMBAR	vii
I. PENDAHULUAN	1
1.1 Latar Belakang	1
1.2 Tujuan Penelitian	4
1.3 Manfaat Penelitian	4
II. TINJAUAN PUSTAKA	5
2.1 Penyakit Kanker	5
2.1.1 Kanker	5
2.1.2 Kanker HeLa (Serviks)	6
2.2 Senyawa Organotimah	8
2.3 Timah (Sn)	9
2.4 Asam 4-Nitrobenzoat dan Asam 4-Klorobenzoat	10
2.5 Senyawa Organotimah	11
2.6 Senyawa Turunan Organotimah	13
2.6.1 Senyawa Organotimah Hidroksida dan Oksida	14
2.6.2 Senyawa Organotimah Karboksilat	15
2.7 Aplikasi Senyawa Organotimah	16
2.8 Analisis Senyawa Organotimah	17
2.8.1 Analisis Spektrofotometri UV-Vis	
2.8.2 Analisis Spektrofotometri Infrared (IR)	
2.8.3 Analisis Spektrofotometri ¹ H-NMR dan ¹³ C-NMR	20
2.8.4 Analisis Spektrofotometri microelemental analyzer	22
2.9 Toksisitas Organotimah	22
2.10 Uji Antiproliferasi Terhadap Sel Kanker	23
2.10.1. Antiproliferasi	23
2.10.2. Antikanker	24
III. METODE PENELITIAN	25
3.1 Waktu dan Tempat	25
3.2. Alat dan Bahan	25
3.3. Prosedur dan Penelitian	26
3.3.1 Sintesis dan Karakterisasi Senyawa Dibutiltimah(IV)	26
di-(4-nitrobenzoat)	∠0
(4-klorobenzoat)	27
3.3.3 Pengujian Antiproliferasi terhadap Sel Kanker HeLa (serviks) .	21

IV. HASIL DAN PEMBAHASAN	32
4.1 Sintesis Senyawa Organotimah(IV) Karboksilat	
4.1.1 Sintesis Senyawa Dibutiltimah(IV) Di-(4-nitrobenzoat)	
4.1.2 Sintesis Senyawa Dibutiltimah(IV) Di-(4-klorobenzoat)	
4.2 Karakterisasi Senyawa Hasil Sintesis	
4.2.1 Karakterisasi Menggunakan Spektrofotometer UV-Vis	
4.2.2 Karakterisasi Menggunakan Spektrofotometer FTIR	
4.2.3 Karakterisasi Menggunakan Spektrofotometer ¹ H-NMR	
dan ¹³ C-NMR	46
4.2.4. Analisis Unsur Menggunakan Microelemental Analyzer	53
4.3 Hasil Uji Antiproliferasi Produk Sintesis Terhadap Galur Sel Kanker	
Serviks HeLa	55
V. KESIMPULAN DAN SARAN	
5.1 Kesimpulan	
5.2 Saran	62
DAFTAR PUSTAKA	63
LAMPIRAN	70
Lampiran 1.Perhitungan Stoikiometri Reaksi Sintesis Senyawa Turunan	
Dibutiltimah(IV) Di-nitrobenzoat dan Dibutiltimah(IV	
Diklorobenzoat	71
Lampiran 2.Perhitungan persentase kandungan unsur teoritis dan data hasil	
pengukuran microelemental analyzer	75
Lampiran 3.Perhitungan nilai <i>IC</i> ₅₀ Senyawa Organotimah(IV) terhadap	
Sel HeLa	
Lampiran 4.Perhitungan nilai IC50 Senyawa Organotimah(IV) terhadap Sel Ven	ro 79
Lampiran 5.Perhitungan Nilai Indeks Selektivitas (IS)	
Senyawa Organotimah(IV)	
Lampiran 6.Perhitungan Konversi μg/mL ke μM	
Lampiran 7.Hasil Karakterisasi UV-Visible	
	05
Lampiran 8.Hasil Karakterisasi FTIR	
Lampiran 8.Hasil Karakterisasi FTIRLampiran 9.Hasil Karakterisasi ¹ H-NMR	87
Lampiran 8.Hasil Karakterisasi FTIR	87 88
Lampiran 8.Hasil Karakterisasi FTIRLampiran 9.Hasil Karakterisasi ¹ H-NMR	87 88 89

DAFTAR TABEL

Tab	pel Halaman
1.	λmaks dari spektrum UV-Vis senyawa dibutiltimah(IV)
2.	Serapan Khas IR untuk Organotimah Karboksilat
3.	Nilai Geseran Kimia untuk ¹ H dan ¹³ C-NMR
4.	Data spektrum UV- <i>Vis</i> senyawa dibutiltimah(IV) oksida dan dibutiltimah(IV) di-(4-nitrobenzoat)
5.	Data spektrum UV-Vis dari senyawa dibutiltimah(IV) oksida dan dibutiltimah(IV) di-(4-klorobenzoat)
6.	Data vibrasi ikatan senyawa dibutiltimah(IV) oksida dan dibutiltimah(IV) di- (4-nitrobenzoat)
7.	Data vibrasi ikatan senyawa dibutiltimah(IV) oksida dan dibutiltimah(IV) di- (4-klorobenzoat)
8.	Data pergeseran kimia ¹ H-NMR dan ¹³ C-NMR senyawa hasil sintesis 53
9.	Perbandingan komposisi unsur teoritis dan hasil analisis
10.	Hasil uji sitotoksisitas senyawa turunan azol terhadap sel HeLa
11.	Perbandingan Nilai Indeks Selektivitas Sel Vero terhadap sel HeLa

DAFTAR GAMBAR

Ga	ımbar	Halaman
1.	Area perkembangan kanker serviks	6
2.	Senyawa asam 4-nitrobenzoat	11
3.	Senyawa asam 4-klorobenzoat	11
4.	Sintesis senyawa dibutiltimah(IV) di(4-nitrobenzoat) dari senyawa dibutiltimah(IV) oksida dan asam 4-nitrobenzoat	15
5.	Sintesis senyawa dibutiltimah(IV) di(4-klorobenzoat) dari senyawa dibutiltimah(IV) oksida dan asam 4-klorobenzoat	16
6.	Diagram alir penelitian	31
7.	Reaksi sintesis senyawa dibutiltimah(IV) di-(4-nitrobenzoat)	32
8.	Senyawa dibutiltimah(IV) di-(4-nitrobenzoat)	34
9.	Reaksi sintesis senyawa dibutiltimah(IV) di-(4-klorobenzoat)	34
10.	. Senyawa dibutiltimah(IV) di-(4-klorobenzoat)	36
11.	. Spektrum UV- <i>Vis</i> senyawa dibutiltimah(IV) oksida (a) dan senyawa dibutiltimah(IV) di-(4-nitrobenzoat) (b)	37
12.	. Spektrum UV- <i>Vis</i> senyawa dibutiltimah(IV) oksida (a) dan senyawa dibutiltimah(IV) di-(4-klorobenzoat) (b)	39
13.	. Spektrum FTIR senyawa dibutiltimah(IV) oksida (a)	42
14.	. Spektrum FTIR senyawa dibutiltimah(IV) di-(4-nitrobenzoat)	43
15.	. Spektrum FTIR senyawa dibutiltimah(IV) di-(4-klorobenzoat)	45
16.	. Spektrum ¹ H-NMR (a) dan ¹³ C-NMR (b) senyawa dibutiltimah(IV) di nitrobenzoat)	
17.	. Struktur dan penomoran senyawa dibutiltimah(IV) di-(4-nitrobenzoat) 48
18.	. Spektrum ¹ H-NMR (a) dan ¹³ C-NMR (b) senyawa dibutiltimah(IV) di	i-(4-

19.	Struktur dan penomoran senyawa dibutiltimah(IV) di-(4-klorobenzoat) 5	51
20.	Grafik penentuan nilai <i>IC</i> ₅₀ Senyawa dibutiltimah(IV) di-(4-Nitrobenzoat) 5	57
21.	Grafik penentuan nilai <i>IC</i> ₅₀ Senyawa dibutiltimah(IV) di-(4-Klorobenzoat) 5	57
22.	Grafik persamaan linier penentuan nilai IC_{50} senyawa dibutiltimah(IV) di-4-nitrobenzoat dan dibutiltimah(IV) di-4-klorobenzoat	
23.	Reaksi pembentukan senyawa dibutiltimah(IV) di-(4-nitrobenzoat)	71
24.	Reaksi pembentukan senyawa dibutiltimah(IV) di-(4-klorobenzoat)	73

I. PENDAHULUAN

1.1 Latar Belakang

Pada saat ini penyakit kanker merupakan salah satu penyakit tertinggi kedua di dunia dengan angka kematian sebesar 9,6 juta setiap tahunnya. Selain itu, 70% kematian akibat kanker ternyata juga banyak terjadi di negara berkembang, termasuk Indonesia. Berdasarkan data dari Globocan (2022), Indonesia mengalami lebih dari 408.661 kasus kanker dengan angka kematian sebesar 242.099 kasus. Kanker tertinggi pada perempuan adalah kanker payudara (66.271 kasus), diikuti kanker leher rahim (36.964 kasus). Kanker tertinggi pada laki-laki adalah kanker paru-paru (38.904 kasus), diikuti kanker kolorektal (35.676 kasus). Menurut data WHO diketahui terdapat 493.243 jiwa pertahun penderita kanker serviks baru di dunia, dengan angka kematian yang disebabkan oleh kanker serviks sebanyak 273.505 jiwa pertahun (Emilia, 2010). Berdasarkan data BPJS, kanker merupakan penyakit katastropik dengan pembiayaan kedua tertinggi setelah penyakit jantung (3,5 Triliun) (Tim Promkes, 2023).

Kanker merupakan penyakit yang ditandai dengan berkembangnya sel kanker yang bersifat abnormal. Sel-sel kanker tersebut akan berkembang dengan cepat, tidak terkendali, dan akan terus membelah diri, selanjutnya menyusup ke jaringan sekitarnya (*invasive*) dan terus menyebar melalui jaringan ikat, darah, dan menyerang organ-organ penting serta syaraf tulang belakang. Sel normal hanya akan membelah diri untuk mengganti sel-sel yang telah mati dan rusak, sebaliknya sel kanker mengalami pembelahan secara terus menerus meskipun tubuh tidak memerlukannya sehingga menyebabkan penumpukan sel baru (Mangan, 2009). Sel kanker ini, memiliki kemampuan untuk menyebar ke seluruh bagian tubuh. Pertumbuhan dan penyebaran sel-sel abnormal yang terjadi pada sel penyusun kolon hingga ke bagian rektum yang disebut dengan kanker korolektal (*American Cancer Society*, 2019). Seperti pada kanker serviks, kanker ini merupakan salah

satu penyakit kedua terbanyak ditemukan pada wanita setelah kanker payudara dan menjadi penyebab kematian utama pada wanita (Aziz, 2006).

Kanker serviks adalah tumor ganas primer yang berasal dari sel epitel skuamosa. kanker serviks merupakan kanker yang terjadi pada serviks atau leher rahim, suatu daerah pada organ reproduksi wanita yang merupakan pintu masuk ke arah rahim, letaknya antara rahim (uterus) dan liang senggama atau vagina (Riano, 2002).

Terdapat berbagai faktor yang melatar belakangi terjadinya resiko penyakit kanker serviks. Beberapa faktor yang diduga meningkatkan kejadian kanker serviks tersebut seperti, faktor sosiodemografis yang meliputi usia, status sosial ekonomi, dan aktifitas seksual yang meliputi usia pertama kali melakukan hubungan seks, pasangan seks yang berganti-ganti, paritas, kurang menjaga kebersihan genital, merokok, riwayat penyakit kelamin, trauma kronis pada serviks, serta penggunaan kontrasepsi oral dalam jangka lama yaitu lebih dari 4 tahun (Diananda, 2007). Metode yang umum digunakan dalam pengobatan kanker, seperti terapi radioterapi, kemoterapi, terapi ginetik, terapi kombinasi, terapi imun, dan pembedahan. Selain dari semua metode terapi tersebut membutuhkan biaya yang cukup mahal, kemungkinan adanya resiko efek samping, seperti sakit pada tenggorokan, kelelahan, dan rambut rontok juga tidak bisa dianggap remeh. Selain itu, teknik pada suatu metode penelitian yang relatif sulit. Sehingga upaya pengobatan kanker melalui kemoterapi, terapi gen, radiasi atau penyinaran serta pembedahan masih memiliki kelemahan (Padmi, 2008). Oleh sebab itu, berbagai penelitian yang ada saat ini dikembangkan untuk mencari senyawa baru, terutama organotimah(IV), yang dapat berperan dalam pengobatan kanker (Ullah et al., 2019).

Senyawa organotimah adalah senyawa yang mengandung sedikitnya satu ikatan kovalen C-Sn. Sebagian besar senyawa organotimah dapat dianggap sebagai turunan dari R_nSnX_{4-n}(n = 1-4) dan diklasifikasikan sebagai mono, di-, tri-, dan tetra- organotimah(IV) tergantung pada gugus alkil (R) atau aril (Ar) yang terikat pada Sn (Pellerito *and* Nagy, 2002). Saat ini, pengujian aktifitas antikanker senyawa organotimah(IV) sebagai bahan alternatif antikanker telah banyak dilakukan dan masih menarik untuk terus dilakukan mengingat potensi besar yang terdapat dalam senyawa golongan ini (Hadi *et al.*, 2008).

Studi sebelumnya telah melaporkan bahwa senyawa timah(IV) mungkin berikatan dengan glikoprotein atau protein seluler organisme hidup, dan juga dapat menyebabkan kematian sel melalui interaksi dengan DNA (Pellerito *et al.*, 2006). Mekanisme interaksi umum antara molekul kecil/obat-obatan dan DNA terutama terjadi melalui tiga interaksi non-kovalen pengikatan interkalatif, pengikatan alur mayor/minor, dan pengikatan elektrostatik. Teknik pemodelan spektroskopi dan molekuler berguna untuk menyelidiki interaksi pengikatan DNA (Rehman *et al.*, 2015).

Pengujian aktifitas antikanker senyawa organotimah(IV) sebagai bahan alternatif antikanker terus dilakukan mengingat potensi besar yang terdapat dalam senyawa golongan ini (Hadi *et al.*, 2008). Kereaktifan biologis dari senyawa organotimah(IV) ditentukan oleh jumlah dasar dari gugus organik yang terikat pada atom pusat Sn. Anion yang terikat dalam senyawa organotimah(IV) berperan penting dan dapat meningkatkan kereaktifan dalam berbagai uji biologis (Pellerito *and* Nagy, 2002; Szorcsik *et al.*, 2002).

Penelitian dengan mensintesis senyawa logam berupa dibutiltimah(IV) 4nitrobenzoat dan dibutiltimah(IV) 4-klorobenzoat dapat menjadi salah satu senyawa yang dapat sebagai agen dalam pengembangan senyawa anti-kanker terhadap sel kanker serviks. Alasan tersebut dapat dilihat dari keunggulan yang dimiliki suatu senyawa ini, yaitu diantaranya selektivitas dan stabilitas yang tinggi sehingga dapat secara langsung menargetkan sel kanker yang lebih spesifik, serta tidak mudah terdegradasi dalam tubuh dan dapat mempertahankan aktivitas terapeutiknya lebih lama. Senyawa logam ini juga memiliki kemampuan yang terlibat langsung dalam interaksi penargetan sel kanker, termasuk DNA, RNA, dan protein (Ardhani et al., 2024). Selain itu, proses sintesis yang lebih mudah dan efektif, profil toksisitas yang lebih rendah, dan memiliki kemampuan kombinasi dengan terapi anti kanker lain yang cukup baik. Bukti tersebut juga diperkuat dari penelitian yang telah dilakukan sebelumnya yakni banyak organotimah(IV) yang telah ditemukan sebagai antikanker yaitu sintesis difeniltimah(IV), dibutiltimah(IV), dan trifeniltimah(IV) hidroksibenzoat yang mampu mempengaruhi aktivitas dalam menghambat dan sebagai antikanker yang baik (Hadi dan Elianasari, 2018).

Berdasarkan latar belakang diatas, peneliti tertarik untuk melakukan sintesis senyawa dibutiltimah(IV) di-(4- klorobenzoat) dan dibutiltimah(IV) di-(4- nitrobenzoat) serta dilakukan uji proliferasi antikanker terhadap sel kanker HeLa (serviks).

1.2 Tujuan Penelitian

Adapun tujuan dari penelitian ini adalah

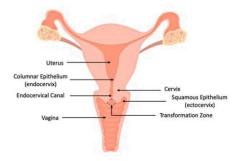
- 1. Melakukan sintesis senyawa dibutiltimah(IV) di-(4-nitrobenzoat) dan dibutiltimah(IV) di-(4-klorobenzoat).
- 2. Melakukan karakterisasi suatu senyawa dibutiltimah(IV) di-(4-nitrobenzoat) dan dibutiltimah(IV) di-(4-klorobenzoat) menggunakan spektrofotometer UV-*Vis*, FTIR, ¹H-NMR, ¹³C-NMR, dan *Microelemental analyzer*.
- 3. Melakukan uji antiproliferasi terhadap sel kanker serviks (HeLa).

1.3 Manfaat Penelitian

Manfaat yang diperoleh dari penelitian ini adalah menambah pengetahuan mengenai aktivitas senyawa dibutiltimah(IV) di-(4-nitrobenzoat) dan dibutiltimah(IV) di-(4-klorobenzoat) sebagai agen antikanker serta memperoleh informasi terkait potensi senyawa organotimah(IV) yang dapat berguna dalam bidang kesehatan maupun bidang industri.

II. TINJAUAN PUSTAKA

2.1 Penyakit Kanker


2.1.1 Kanker

Tumor (dalam bahasa latin artinya "pembengkakan") merupakan sekelompok sel abnormal yang terbentuk hasil proses pembelahan sel yang berlebihan dan tidak terkoordinası. Dalam bahasa medisnya, tumor dikenal sebagai neoplasia. "Neo" berarti "baru", "plasia" berarti "pertumbuhan" atau "pembelahan". Neoplasia mengacu pada pertumbuhan sel-sel di sekitarnya yang normal. Berdasarkan pengertian tumor diatas, tumor dibagi menjadi dua golongan besar, yaitu tanor jinak (bening) dan tumor ganas (malignan) atau kanker (Cotran et al., 2015). Sel kanker juga didefinisikan sebagai sel neoplastik atau sel dengan proliferasi yang berlawanan dari kontrol normalnya. Selain itu, sel kanker biasanya mampu untuk menyerang dan berkolonisasi di jaringan sekitar sehingga disebut malignan. Pada prosesnya akibat dari perkembangan kelompok sel yang abnormal, maka akan mempengaruhi sel lain sehingga mengalami pembelahan suatu sel yang berlebihan dan tidak terkoordinasi. Suatu sel dikatakan menjadi sel kanker bila telah mengabaikan sinyal eksternal dan internal yang meregulasi proliferasi sel, dapat menghindari apoptosis, secara genetik tidak stabil, bisa keluar dari jaringan awalnya (invasif), bisa bertahan hidup dan berproliferasi di jaringan lain atau asing. Oleh karena itu disebut sebagai metastasis (Alberts et al, 2008). Beberapa faktor yang dapat memicu metastasis seperti, sistem kekebalan tubuh yang melemah, hipoksia (kekurangan oksigen dalam jaringan), asidosis laktat (penumpukan asam laktat dalam darah), autophagy (jenis kematian sel). Penyebab metastasis kanker juga didasari oleh sifat sel kanker itu sendiri yang telah rusak secara penetik,

sel kanker yang rusak tidak mati dan terus membelah, sehingga jumlah sel kanker semakin banyak dan dapat membentuk tumor ganas. Penyebaran sel kanker ini dapat terjadi melalui berbagai cara, seperti melalui aliran darah, sistem getah bening, atau langsung ke jaringan Iain (Tim Medis, 2024).

2.1.2 Kanker HeLa (Serviks)

Kanker HeLa atau sering dikenal sebagai kanker serviks merupakan kanker yang asal perkembangannya dari serviks yang terdapat pada lubang sempit menuju rahim serta terhubung dengan vagina melalui kanal endoserviks (bagian dari serviks yang menghubungkan ekstoserviks dengan rahim) (Burmeister et al., 2022). Serviks sendiri terbagi dua tempat yakni ekstoserviks dan endoserviks, bagian ekstoserviks terdapat pada luar serviks yang menonjol kearea permukaan vagina dengan ciri memiliki lapisan basal, tengah, permukaan, serta memiliki sel epitel skuamosa berlapis yang berfungsi sebagai penutup bagian tersebut, sementara endoserviks memiliki sel yang lebih sederhana yakni terdiri dari sel epitel kolumnar (Agustianti, 2021). Kemudian menuju skuamosulumnar yang dikenal sebagai persimpangan squamo-columnar, suatu daerah yang menjadi penyatuan antara lapisan epitel skuamosa dan kolumnar pada serviks (leher rahim). Area tempat kedua daerah ini bertemu disebut "zona transformasi", yang terdiri dari epitel metaplastik yang menggantikan epitel berlapis kolumnar dari endoserviks. Menurut Burmeister et al. (2022), zona tersebut merupakan lokasi yang paling memungkinkan terjadinya perubahan patologis yang dapat mengarah pada perkembangan kanker serviks. Adapun ilustrasi lokasi tersebut dapat dilihat pada Gambar 1 berikut.

Gambar 1. Area perkembangan kanker serviks

Resiko kemunculan kanker serviks dapat disebabkan oleh beberapa faktor, diantaranya yaitu terkait dengan adanya paparan *Human Papillomavirus* (HPV) yang umumnya ditularkan secara seksual, dimana proses perkembangannya ini melalui seseorang yang menderita kanker invasif yang berlangsung sampai 20 tahunanan dari lesi *precursor* yang diakibatkan oleh HPV itu sendiri (Yuan *et al.*, 2021). Selain itu, terdapat faktor resiko lain (seperti faktor reproduksi dan seksual, faktor perilaku, dan lain-lain), untuk kanker serviks yang meliputi hubungan seksual pada usia muda (<16 tahun), sering berganti pasangan seksual, merokok, paritas tinggi, serta tingkat sosial ekonomi yang rendah (Ghebre *et al.*, 2017) dan (Roura *et al.*, 2014).

Menurut Zhang *et al.* (2020), terdapat sejumlah faktor yang dapat meningkatkan risiko terjadinya kanker serviks. Faktor-faktor tersebut di antaranya meliputi:

- Sexually transmitted infections (STI)
 Akibat infeksi yang ditularkan oleh penderita penyakit HPV, sehingga lesi serviks prakanker dan kanker bersifat onkogenik (sangat beresiko tinggi).
 Pada sebagian besar kasus kanker serviks terjadi adanya akibat dari infeksi dengan HPV tipe 16 dan 18.
- b. Human immunodeficiency virus (HIV)
 Risiko terkena infeksi dari tipe HPV risiko tinggi lebih tinggi pada wanita dengan HIV. Hasil penelitian tentang hubungan antara HIV dan kanker serviks menunjukkan tingkat infeksi HPV persisten yang lebih tinggi dengan beberapa virus onkogen, lebih banyak Pap smear yang abnormal, dan insiden CIN dan karsinoma serviks invasif yang lebih tinggi di antara orang penderita HIV.
- c. Reproductive and sexual factors
 Faktor yang berkaitan dengan berhubungan seksual yang kurang tepat,
 seperti banyaknya pasangan sehingga memiliki resiko lebih tinggi untuk
 tertularnya HPV dan serviks secara bersamaan.
- d. Oral contraceptive (OC)
 Pil KB diketahui termasuk salah satu faktor resiko kanker serviks. Hal ini diakibatkan dari penggunaan Pil KB dengan durasi yang lama atau dalam jangka panjang sekitar 5 tahun atau lebih dapat menggandakan resiko kanker.

2.2 Senyawa Organotimah

Senyawa organologam merupakan senyawa yang mengandung setidaknya satu atom karbon dari gugus organik yang terhubung langsung dengan logam pusat. Istilah ini umumnya digunakan secara fleksibel, dan senyawa dengan ikatan karbon ke fosfor, arsen, silikon, atau boron juga digolongkan dalam senyawa organologam. Namun, senyawa yang mengandung ikatan antara logam dan oksigen, belerang, nitrogen, atau halogen tidak termasuk dalam kategori tersebut. Misalnya, alkoksida seperti (C₃H₇O₄)Ti tidak dianggap sebagai senyawa organologam karena gugus organiknya berikatan dengan titanium melalui atom oksigen. Sebaliknya, senyawa (C₆H₅)Ti(OC₃H₇)₃ termasuk dalam senyawa organologam karena ada ikatan langsung antara karbon dalam gugus fenil dan logam titanium. Oleh karena itu, senyawa organologam dapat dipandang sebagai penghubung antara kimia organik dan anorganik (Cotton *and* Wilkinson, 1989).

Menurut Gora (2005), klasifikasi ikatan dalam senyawa organologam dapat dibedakan berdasarkan sifat interaksi antara logam dan ligan organik yang terikat padanya. Berdasarkan hal tersebut, terdapat tiga jenis ikatan pada senyawa organologam, di antaranya sebagai berikut:

- a. Senyawa ionik dari logam elektropositif
 Senyawa ini terbentuk ketika radikal organik berikatan dengan logam yang sangat elektropositif, seperti logam alkali atau alkali tanah. Senyawa-senyawa tersebut umumnya tidak stabil di udara, mudah terhidrolisis ketika terkena air, dan tidak larut dalam pelarut hidrokarbon. Stabilitas senyawa ini sangat dipengaruhi oleh kestabilan radikal organiknya.
 - b. Senyawa organologam dengan ikatan σ (sigma)
 Senyawa ini memiliki ikatan σ, yang merupakan ikatan dua pusat dua elektron, antara gugus organik dan atom logam yang kurang elektropositif.
 Umumnya, senyawa organologam dengan jenis ikatan ini memiliki ikatan kovalen sebagai ikatan utamanya, dan sifat kimianya ditentukan oleh karakteristik kimiawi karbon. Hal ini disebabkan oleh beberapa faktor, antara lain yaitu kemungkinan penggunaan orbital d yang lebih tinggi, seperti pada SiR4, yang tidak ditemukan pada CR4, kemampuan gugus alkil atau aril untuk menyumbangkan pasangan elektron bebas. keasaman Lewis

yang terkait dengan valensi kulit yang tidak penuh, seperti pada BR₂, atau koordinasi yang tidak jenuh seperti ZnR₂, serta adanya pengaruh perbedaan elektronegativitas antara ikatan logam-karbon (M-C) atau karbon-karbon (C-C).

c. Senyawa organologam dengan ikatan nonklasik Terdapat jenis ikatan logam pada karbon yang tidak dapat dijelaskan melalui ikatan pasangan elektron, kovalensi, atau ionik, yang dikenal sebagai senyawa organologam dengan ikatan nonklasik. Contohnya adalah gugus alkil berjembatan yang mencakup unsur-unsur seperti Li, Be, dan Al.

Senyawa organologam dengan ikatan nonklasik ini dibagi menjadi dua kategori:

- Senyawa yang terbentuk antara logam transisi dengan alkena, alkuna, benzena, dan senyawa organik tak jenuh lainnya serta sistem cincin seperti C₅H₅.
- 2. Senyawa yang memiliki gugus alkil sebagai penghubung

2.3 Timah (Sn)

Timah adalah unsur kimia yang dikenal dengan simbol Sn (dari bahasa Latin: *stannum*) dan memiliki nomor atom 50. Timah ini berupa logam berwarna putih keperakan yang mudah ditempa (*malleable*), tidak mudah teroksidasi di udara, sehingga tahan karat. Timah diperoleh terutama dari mineral *cassiterite* (SnO₂) yang merupakan bentuk oksidanya. Logam ini memiliki kekerasan rendah, berat jenis 7,3 g/cm³, serta konduktivitas panas dan listrik yang tinggi. Dalam kondisi normal (13–160°C), timah tampil mengkilap dan mudah dibentuk (Yulianti dkk., 2020). Dalam tabel periodik, timah termasuk dalam golongan IV A dan periode 5, bersama dengan karbon, silikon, germanium, dan timbal. Timah memiliki sifat keelektronegatifan yang lebih tinggi dibandingkan timbal, tetapi lebih elektropositif dibandingkan karbon, silikon, dan germanium (Dainith, 1990). Timah juga memiliki kemampuan larut didalam asam ataupun basa, dan senyawa oksidanya akan bereaksi dengan asam atau basa untuk membentuk garam.

Timah tidak menunjukkan reaktivitas terhadap oksigen jika dilapisi oleh lapisan oksida, serta tidak reaktif terhadap air pada suhu normal, meskipun hal ini dapat mempengaruhi kilauannya (Svehla, 1985).

Katalis dalam pembentukan timah umumnya dapat berupa timah oksida (SnO₂), paduan timah dengan logam lain seperti Pt/Sn, Pd/Sn, dan Ni/Sn, serta logam teremban timah oksida seperti Pt/SnO₂, PdSnO₂, dan Ni/SnO₂. Senyawa-senyawa timah ini dapat digunakan untuk mengakatalisis berbagai jenis reaksi. Seperti pada penelitian yang digunakan dalam pembentukan biodiesel, oksidasi gas karbon monoksida, dan dehidrogenasi n-heksana (Llorca *et al.*, 1996).

Timah dalam bentuk senyawanya memiliki tingkat oksidasi +2 dan +4, di mana tingkat oksidasi +4 lebih stabil dibandingkan +2. Pada tingkat oksidasi +4, timah memanfaatkan seluruh elektron valensinya, yaitu 5s² 5p², untuk membentuk ikatan, sedangkan pada tingkat oksidasi +2, timah hanya menggunakan elektron valensi 5p². Namun, perbedaan energi antara kedua tingkat oksidasi ini tergolong rendah (Cotton *and* Wilkinson, 1989).

2.4 Asam 4-Nitrobenzoat dan Asam 4-Klorobenzoat

Pada penelitian ini, digunakan asam 4-nitrobenzoat dan asam 4-klorobenzoat sebagai ligan. Asam 4-nitrobenzoat merupakan salah satu senyawa organik yang memiliki rumus molekul C₆H₄(COOH)NO₂, dengan berat molekul sebesar 167.12 g/mol, serta memiliki titik leleh sebesar 237°C. Asam 4-nitrobenzoat memiliki ciri spesifik berupa serbuk dengan berwarna putih sedikit kekuningan, kemungkinan bahan ini mampu digunakan diberbagai bidang industri dan farmasi seperti sebagai pewarna, kosmetik, dan juga obat-obatan. Senyawa tersebut sangat mudah larut dalam methanol dan dietil eter. Pada struktur asam 4-nitrobenzoat atom karbon (C) memiliki perbedaan keelektronegatifan dibandingkan atom nitrogen (N), yang menyebabkan distribusi elektron menjadi tidak simetris dan membentuk dipol. Struktur yang mengandung gugus N-basa dan karbonil dalam larutan dapat membentuk struktur siklik karena interaksi dipol-dipol. Dalam bentuk siklik ini, obat-obatan berinteraksi dengan reseptor analgesik. Namun, jika gugus C=O dihilangkan atau diganti dengan CH₂, aktivitas analgesik akan hilang, karena daya

tarik dipol dan kemampuan untuk membentuk siklik juga hilang, sehingga senyawa tidak dapat berinteraksi dengan reseptor secara efektif (Petra, 2012). Struktur senyawa asam 4-nitrobenzoat dapat ditunjukkan pada Gambar berikut:

Gambar 2. Senyawa asam 4-nitrobenzoat

Senyawa asam 4-klorobenzoat merupakan senyawa organik yang berbentuk bubuk berwarna putih dengan rumus kimia C₇H₅ClO₂, memiliki berat molekul sebesar 156,57 g/mol yang banyak digunakan sebagai pewarna, peptisida, antiseptik, dan pigmen. Asam 4-klorobenzoat juga memiliki pKa (derajat disosiasi) yakni = 4,76: 4,8, dan pH = 3,99 (Colipa, 2006). Struktur senyawa asam 4-klorobenzoat dapat ditunjukkan pada Gambar berikut :

Gambar 3. Senyawa asam 4-klorobenzoat

2.5 Senyawa Organotimah

Senyawa organotimah telah dikenal sejak tahun 1850, dan penggunaannya sebagai penstabil PVC secara komersial dimulai pada tahun 1940. Senyawa ini diketahui pada gugus organik akan paling sering berikatan dengan timah yang meliputi metil, butil, oktil, fenil, dan sikloheksil (Davies, 2004). Senyawa organotimah merupakan senyawa yang setidaknya memiliki satu atau lebih ikatan kovalen

antara atom karbon (C) dan logam timah (Sn). Kebanyakan senyawa ini dapat dianggap sebagai turunan dari R_nSn(IV)X₄-n (dengan n=1,2,3, atau 4) dan dikategorikan menjadi mono-, di-, tri-, dan tetra-organotimah(IV), tergantung pada Jumlah gugus alkil (R) atau aril (Ar) yang terikat (Pellerito *dan* Nagy, 2002).

Senyawa organotimah umumnya murni dari senyawa anthoropogenik selain metil timah yang kemungkinan dihasilkan melalui biometylasi dari suatu lingkungan. Senyawa organotimah mayoritas memiliki kedudukan oksidasi sebesar +4, dengan formulasi umum berupa R_nSnX_{4-n}, dimana R merupakan gugus alkil, atau aril (seperti butil, penil, oktil, metil, dan sebagainya), kemudian X adalah gugus anion (seperti klorida, fluorida, oksida, hidroksida, serta karboksilat atau tiolat), dan n ialah konstanta 1 sampai 4 (Asrial, 2014). Senyawa organotimah juga telah diidentifikasikan bahwa salah satu ligannnya mampu sebagai donor (O, O) yang dapat bertindak secara bidentat dengan senyawa organotimah(IV) untuk membentuk cincin khelat yang beranggota lima atau enam. Kemudian terdapat berbagai kegunaan dalam pemanfaatan senyawa oranotimah ini dalam ilmu kimia seperti hubungannya dengan interaksinya terhadap biomolekul lain, seperti kemampuannya berinteraksi terhadap karbohidrat, asam amino, dan peptida (Wong *and* Wollins, 1994).

Senyawa organotimah memiliki sifat stabilitas yang tinggi terhadap hidrolisis atau oksidasi dalam kondisi normal, meskipun terbakar akan terurai menjadi SnO₂, CO₂, dan H₂O. Akan tetapi, senyawa organotimah memiliki kecenderungan kurang mudah terhidrolisis dibandingkan dengan senyawa Si atau Ge yang terikat, dan ikatan Sn-O yang dapat bereaksi dengan larutan asam (Alama *et al.*, 2009). Kemampuan ikatan Sn-C untuk terputus oleh halogen atau reagen lain bervariasi tergantung pada jenis gugus organik yang ikatannya pada timah, dengan stabilitas yang meningkat dalam urutan sebagai berikut: Bu (paling stabil) < Pr < Et < Me < vinil < Ph < Bz < alil < CH₂CN < CH₂CO₂R (paling tidak stabil) (Van der weiji, 1981).

Pada senyawa organotimah(IV), hibridisasi sp³ pada orbital valensi yang menimbulkan ikatan berorientasi berbentuk tetrahedral. Senyawa organotimah(IV) dengan gugus keelektronegatif seperti organotimah halida, atau *pseudohalide* yang cenderung menggunakan orbital 5d yang kosong yang berfungsi untuk

memperluas bilangan koordinasi yang melebihi empat. Oleh karena itu, terbentuklah trigonal bipirimida sp³d dengan 5 geometri koordinasi atau enam oktahedral. Hal ini umumnya terdapat pada suatu kompleks organotimah (IV) (Ali *and* Yousif, 2016).

2.6 Senyawa Turunan Organotimah

Senyawa turunan organotimah(IV) terbentuk melalui pengikatan timah dan karbon. Memiliki geometri molekul senyawa dengan beberapa bentuk, seperti monomer, dimer, tangga oligomer, kubik, kupu-kupu, dan drum heksamer dengan geometri yang memiliki peran dalam aktivitasnya terhadap biologis (Khan *et al.*, 2020). Pendekatan sintesis yang tepat diperlukan dalam memperoleh senyawa turunan organotimah(IV) dengan struktur dan sifat yang diharapkan. Berbagai metode telah dikembangkan untuk meningkatkan efisiensi sintesis dan kemurnian senyawa. Beberapa metode sintesis yang umum digunakan antara lain sebagai berikut:

a. Metode Grignard

Senyawa yang digunakan berupa Senyawa tetraalkil, tetraaril, tetravinil, dan tetraetiltin yang dibuat dalam pelarut terkoordinasi, seperti dietil eter (Et₂O) atau tetrahydrofuran (THF) (Sander *et al.*, 2004). Skema pembentukannya dapat dilihat pada Persamaan 1 reaksi berikut :

$$SnCl4 + 4 RMgCl \xrightarrow{THR} R4Sn + 4 MgCl2$$
[R = aril / alkil](1)

b. Metode Wurtz

Reaksi alkil halida dengan logam alkali seperti natrium yang kemudian diikuti dengan penambahan stannic klorida yang akan menghasilkan tetraorganotin atau organotimah(IV).

$$SnCl_4 + 4 RCl$$
 $\xrightarrow{8Na}$ $3 R_4 Sn + 8 NaCl$ $[R = alkil / aril]$(2)

c. Metode alumunium alkil

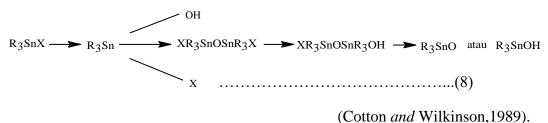
Senyawa organoalumunium juga dapat direaksikan dengan stannic klorida sehingga menghasilkan tetraorganotin. Reaksinya tanpa dilakukan adanya

pelarut. Penambahan zat pengompleksnya seperti eter yang dapat digunakan untuk efisiensi yang tinggi.

$$3 \operatorname{SnCl}_4 + 4 \operatorname{R}_3 \operatorname{Al} \xrightarrow{\operatorname{R2O}} 3 \operatorname{R}_4 \operatorname{Sn} + 4 \operatorname{AlCl}_3$$
[R = alkil / aril].....(3)

(Ali and Yousif, 2016).

Terdapat metode lain dalam pembuatan organotimah halida yaitu dengan melalui reaksi disproporsionasi tetraalkiltimah dengan timah(IV) klorida. Cara perolehannya yaitu dengan mengubah perbandingan material awal dari Persamaan (1), menjadi Persamaan (2) dan (3) seperti yang ditunjukkan pada reaksi berikut:


$$2 \text{ EtI} + \text{Sn Et}_2 \text{Sn} + \text{I}_2$$
.....(4)
 $3 \text{ R}_4 \text{Sn} + \text{SnCl}_4 4 \text{ R}_3 \text{SnCl}$(5)
 $\text{R}_4 \text{Sn} + \text{SnCl}_4 2 \text{ R}_2 \text{SnCl}_2$(6)

Senyawa awal atau induk yang digunakan berupa senyawa organotimah klorida, dimana senyawa induk (melepaskan klorida yang terikat pada Sn) yang direaksikan dengan logam halida lain yang sesuai seperti ditunjukkan pada Persamaan 4.

$$R_4SnCl_4-n + (4-n) MX R_4SnX_4-n + (4-n) MCl....(7)$$

(X = F, Br atau I; M = K, Na, NH₄⁺) (Wilkinson, 1982).

2.6.1 Senyawa Organotimah Hidroksida dan Oksida

Produk kompleks yang berasal dari hasil hidrolisis halida organotimah oleh trialkiltimah halida dan senyawa yang berikatan dengan R₃SnX, ini merupakan rute utama pada trialkilhalida oksida dan trialkiltimah hidroksida. Prinsip intermediet ditunjukkan pada reaksi berikut:

2.6.2 Senyawa Organotimah Karboksilat

Pada umumnya senyawa organotimah karboksilat dapat disintesis dengan melalui dua cara, diantaranya yaitu dari organotimah oksida atau organotimah hidroksida dengan asam karboksilat, atau dari organotimah halida dengan garam karboksilat. Metode yang umum digunakan dalam sintesis organotimah karboksilat adalah dengan menggunakan organotimah halida sebagai material awal. Organotimah halida kemudian akan direaksikan dengan garam karboksilat dalam pelarut yang sesuai, biasanya seperti aseton atau karbon tetraklorida. Adapun reaksi tersebut dapat ditunjukkan pada Persamaan 1 berikut:

$$R_2SnCl_4-n + (4-n) MOCOR \longrightarrow RnSn(OCOR)_4-n + (4-n) MCI_{\dots,(9)}$$

Reaksi esterifikasi dari asam karboksilat dengan organotimah oksida atau hidroksida dilakukan melalui dehidrasi azeotropik dari reaktan dalam toluena, seperti yang ditunjukkan pada Persamaan (9) dan (10) reaksi berikut:

$$R_{2}SnO + 2 R'COOH \longrightarrow R_{2}Sn(OCOR')_{2} + H_{2}O \qquad ... (10)$$

$$R_{3}SnOH + R'COOH \longrightarrow R_{3}SnOCOR' + H_{2}O \qquad ... (11)$$

(Cotton and Wilkinson, 1989).

Berikut adalah reaksi yang menunjukkan sintesis senyawa dibutiltimah(IV) di-(4-nitrobenzoat) dan dibutiltimah(IV) di-(4-klorobenzoat).

$$\begin{array}{c} \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\\ \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\\ \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\\ \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\\ \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\\ \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\\ \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\\ \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\\ \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\\ \text{CH}_3\text{CH}$$

Gambar 4. Sintesis senyawa dibutiltimah(IV) di(4-nitrobenzoat) dari senyawa dibutiltimah(IV) oksida dan asam 4-nitrobenzoat

$$\begin{array}{c} \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\\ \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\\ \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\\ \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\\ \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\\ \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\\ \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\\ \text{CH}_3\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\\ \text{CH}_3$$

Gambar 5. Sintesis senyawa dibutiltimah(IV) di(4-klorobenzoat) dari senyawa dibutiltimah(IV) oksida dan asam 4-klorobenzoat

2.7 Aplikasi Senyawa Organotimah

Hasil dari studi sintesis, karakterisasi pembentukan kompleks organotimah telah memiliki beberapa peranan penting dalam kegunaannya di kehidupan sehari-hari. Kompleks ini juga memiliki beragam aplikasi dalam industri sebagai katalis, pengawet kayu, bahan perlindungan tanaman, kaca untuk pelapis timah oksida (Gitlitz *et al.*, 1992), bahan antifouling sebagai cat untuk melindungi permukaan bawah air kapal dari serangan mikroorganisme (Omae, 2003), dapat pula dimanfaatkan sebagai senyawa penstabil PVC (Pereyre *et al.*, 1987). Selain itu senyawa organotimah(IV) dapat sebagai agen anti air khususnya senyawa mono-nbutil- dan mono-n-oktiltimah(IV) yang digunakan dalam tekstil katun, kertas dan kayu untuk memberikan karakter anti air (Jiang *et al.*, 2002).

Pada beberapa penelitian, senyawa organotimah(IV) diketahui memiliki aktivitas biologis yang cukup tinggi (Davies, 2004). Keaktifan biologis senyawa organotimah(IV) didasarkan pada sifat dasar dan jumlah gugus organik yang terikat pada atom pusat Sn sehingga mempengaruhi aktivitas terhadap karbohidrat, asam nukleat, dan protein (Davies *and* Smith, 1980). Aktivitas biologis lainnya di antaranya sebagai antijamur (Hadi *et al.*, 2008), antimikroba (Hadi *et al.*, 2018; Hadi *et al.*, 2021), antitumor (Mohan *et al.*, 1988; Hadi *and* Rilyanti, 2010), antibakteri (Maiti *et al.*, 2007), antikorosi (Hadi *et al.*, 2015).

2.8 Analisis Senyawa Organotimah

Pada penelitian ini, setelah memastikan bahwa senyawa dibutiltimah(IV) di-(4-nitrobenzoat) dan dibutiltimah(IV) di-(4-klorobenzoat) telah berhasil disintesis, maka penelitian akan dilanjutkan dengan melakukan pengujian kualitatif menggunakan spektrofotometri UV-*Vis*, FTIR, spektrofotometri ¹H-NMR dan ¹³C-NMR, serta analisis unsur C, H, dan N dengan *Microelemental analyzer*.

2.8.1 Analisis Spektrofotometri UV-Vis

Spektroskopi sinar UV-*Vis* melibatkan transisi elektronik yang terjadi akibat penyerapan radiasi UV dan cahaya tampak oleh senyawa yang dianalisis. Transisi ini umumnya terjadi antara orbital ikatan atau pasangan bebas dan orbital anti ikatan. Untuk mengeksitasi elektron dalam ikatan sigma, diperlukan energi tinggi, yang menyebabkan serapan pada jarak 120-200 nm, dikenal sebagai daerah *ultraviolet* hampa, di mana pengukuran sulit dilakukan karena harus bebas dari udara. Sebaliknya, serapan di atas 200 nm lebih mudah diukur dan memberikan informasi struktural yang lebih jelas.

Di atas 200 nm, terjadi eksitasi elektron dari orbital p, d, dan terutama sistem π terkonjugasi, yang lebih mudah diukur dan memberikan informasi lebih banyak. Kegunaan spektrofotometer UV-Vis terletak pada kemampuannya untuk mengukur jumlah ikatan rangkap atau konjugasi aromatik dalam molekul. Alat ini dapat membedakan antara diena terkonjugasi dan tidak terkonjugasi, serta antara diena dan triena. Letak serapan dipengaruhi oleh substituen, terutama yang menyebabkan perubahan dalam diena terkonjugasi dan senyawa karbonil (Sudjadi, 1985).

Spektrofotometri UV-Vis bertindak dengan adanya interaksi cahaya atau sinar terhadap panjang gelombang yang telah ditentukan terhadap materinya seperti molekul ataupun atom. yang berhubungan dengan electron valensinya. Sinarnya bisa berupa cahaya tampak (visible), cahaya tidak tampak (ultraviolet), dan cahaya infrared. Cahaya dari sumber bisa berupa radiasi elektromagnetik yang mana memiliki konsep kerja dengan berinteraksi antara cahaya atau radiasi elektromagnetik dan materi yang dapat terjadi secara emisi atau sering disebut

sebagai spektrofotoskopi emisi, absorpsi berupa spektroskopi absorpsi, dan hamburan berupa spektroskopi hamburan. Adapun proses kerja instrumen spektrofotometri UV-*Vis* dalam beroperasi yakni dengan berdasarkan interaksi absorpsi. Menurut Angraini dan Yanti (2021), secara umum, alat ini terdiri dari:

- a. Sumber cahaya: Menggunakan cahaya polikromatis dari lampu

 Tungsten/Wolfram untuk wilayah tampak (400-800 nm) dan lampu Deuterium untuk wilayah *ultraviolet* (0-400 nm).
- b. Monokromator: Berfungsi untuk memilih panjang gelombang tertentu.
- c. Kuvet/Sel sampel : Berbentuk persegi panjang dengan lebar 1 cm, memiliki permukaan yang rata dan sejajar optis, transparan, tahan terhadap bahan kimia, serta kuat dan sederhana.
- d. Sampel detektor: Menangkap sinar yang melewati.
- e. Pembacaan : Sistem yang mengubah sinyal listrik dari detektor menjadi angka transmitan atau absoransi, ditampilkan pada layar alat.

Pada saat mengidentifikasi seacara kualitatif senyawa organic yang berada dijarak sekitar UV-*Vis* maka akan jauh lebih terbatas dibandingkan dengan daerah inframerah, karena pita serapan di daerah UV-*Vis* cenderung lebih lebar dan kurang detail. Namun, beberapa gugus fungsional tertentu, seperti karbonil, nitro, dan sistem terkonjugasi, menunjukkan karakteristik terbaik yang dapat memberikan informasi berharga mengenai keberadaan gugus-gugus tersebut dalam molekul (Day *and* Underwood, 1998). Seperti yang dilaporkan dalam penelitian oleh Hadi *et al.* (2015) dan Nurimani (2013), nilai panjang gelombang maksimum (λmaks) dari spektrum UV-*Vis* untuk senyawa dibutiltimah(IV) menunjukkan adanya perbedaan nilai absorpsi tergantung pada gugus yang terikat pada pusat atom Sn. Data hasil analisis tersebut disajikan pada Tabel 1 berikut.

Tabel 1. λmaks dari spektrum UV-*Vis* senyawa dibutiltimah(IV)

No	Senyawa	$\lambda_{maks (nm)}$
1.	$[(n-C_4H_9)_2SnCl_2]$	210,7
2.	$[(n-C_4H_9)_2SnO]$	202,9
3.	$[(n-C_4H_9)_2Sn(p-C_6H_4(NO_2)COO)_2]$	202 dan 264

2.8.2 Analisis Spektrofotometri Infrared (IR)

Spektrofotometri inframerah (IR) adalah metode yang digunakan untuk mengamati interaksi molekul dengan radiasi elektromagnetik dalam rentang panjang gelombang 0,75-1000 μm atau bilangan gelombang 13.000-10 cm⁻¹, menggunakan spektrometer IR. Senyawa dengan ikatan kovalen dapat menyerap berbagai frekuensi radiasi inframerah, menyebabkan atom dalam molekul bergetar secara terus-menerus. Spektrum yang digunakan untuk menentukan struktur senyawa organik biasanya terletak antara 650-4.000 cm⁻¹ (15,4–2,5 μm). Puncak serapan umumnya dinyatakan dalam bilangan gelombang (cm⁻¹), meskipun sebagian kecil juga menggunakan panjang gelombang (μm) (Sudjadi, 1985).

Dalam sintesis senyawa organotimah(IV) karboksilat, perubahan spektrum IR dari senyawa awal, ligan, dan produk akhir digunakan untuk memutarkan reaksi. Fokus utama adalah munculnya puncak karbonil pada senyawa akhir, yang menunjukkan bahwa reaksi antara senyawa awal dan ligan asam karboksilat telah terjadi. Selain itu, karakteristik penyerapan gelombang IR dari organotimah karboksilat juga dapat diidentifikasi, seperti yang dapat dilihat pada Tabel 2 berikut:

Tabel 2. Serapan Khas IR untuk Organotimah Karboksilat

No.	Vibrasi Ikatan	Bilangan Gelombang (cm ⁻¹) (Bonire <i>et al.</i> , 1998)	
1.	Sn-O ulur	800 - 600	
2.	Sn-O-C ulur	1250 - 1000	
3.	CO2 simetri ulur	1500 - 1400	
4.	O-H ulur	3500 - 3100	
5.	C=O ulur	1760 - 1600	
6.	-NO2 ulur	1560 - 1515, 1385 - 1345	

2.8.3 Analisis Spektrofotometri ¹H-NMR dan ¹³C-NMR

Spektrometri NMR, atau resonansi magnet inti, berkaitan dengan sifat magnet dari inti atom. Terdapat dua jenis spektrometri NMR, yaitu ¹H-NMR dan ¹³C-NMR. Dari spektrum ¹H-NMR, dapat diidentifikasi berbagai lingkungan hidrogen dalam molekul serta jumlah atom hidrogen pada atom karbon tetangganya (Sudjadi, 1983). Sementara itu, spektrofotometri ¹³C-NMR memberikan informasi tentang lingkungan atom karbon tetangga, apakah berada dalam bentuk primer, sekunder, tersier, atau kuarterner.

Ketika inti atom dijelaskan dalam medan magnet, interaksi dengan medan magnet lokal mempengaruhi keadaan inti. Elektron yang berputar menciptakan medan magnet di sekitar inti. Jika medan magnet lokal berlawanan dengan medan eksternal, inti tersebut dianggap "terperisai". Inti yang terperisai memiliki kekuatan medan efektif lebih rendah dan beresonansi pada frekuensi yang lebih rendah. Setiap jenis inti dalam molekul akan memiliki frekuensi resonansi yang berbeda, yang dikenal sebagai geseran kimia. Nilai geseran kimia ini dinyatakan dalam satuan ppm.

Berdasarkan uraian mengenai prinsip kerja spektroskopi NMR, analisis terhadap lingkungan kimia atom dalam suatu senyawa dapat dilakukan dengan mengamati nilai pergeseran kimia yang dihasilkan. Kisaran nilai pergeseran kimia untuk berbagai jenis senyawa berdasarkan analisis spektroskopi NMR disajikan pada Tabel 3, yang diadaptasi dari Settle (1997).

Tabel 3. Nilai Geseran Kimia untuk 1 H dan 13 C-NMR

No.	Jenis Senyawa	1 _H (ppm)	13 _C (ppm)
1.	Alkana	0,5-0,3	5-35
2.	Alkana Termonosubtitusi	2-5	25-65
3.	Alkana Terdisubtitusi	3-7	20-75
4.	R-CH ₂ -NR ₂	2-3	42-70
5.	R-CH ₂ -SR	2-3	20-40
6.	R-CH ₂ -PR ₃	2,2-3,2	50-75
7.	R-CH ₂ -OH	3,5-4,5	50-75
8.	R-CH ₂ -NO ₂	4-4,6	70-85
9.	Alkena	4,5-7,5	100-150
10.	Aromatik	6-9	110-145
11.	Benzilik	2,2-2,8	18-30
12.	Asam	10-13	160-180
13.	Ester	-	160-175
14.	Hidroksil	4-6	-

2.8.4 Analisis Spektrofotometri microelemental analyzer

Prinsip dasar dari mikroelemental analisa adalah membakar sampel pada suhu tinggi. Produk hasil pembakaran tersebut berupa gas yang telah dimurnikan, kemudian dipisahkan berdasarkan komponen masing-masing dan dianalisis menggunakan detektor yang sesuai. Secara umum, untuk sampel yang telah diketahui jenisnya, beratnya dapat diperkirakan dengan menghitung berat setiap unsur yang diperlukan untuk mencapai nilai kalibrasi terendah atau tertinggi (Caprette, 2007).

Mikroanalisis adalah suatu metode yang dapat digunakan dalam menentukan kandungan unsur dalam suatu senyawa menggunakan alat *microelemental* analyzer Unsur-unsur yang umumnya dijelaskan meliputi karbon (C), hidrogen (H), nitrogen (N), dan sulfur (S), sehingga alat ini sering disebut penganalisis mikroelemen CHNS. Hasil dari mikroanalisis dibandingkan dengan perhitungan teoritis. Meskipun hasil yang diperoleh seringkali berbeda, biasanya dalam kisaran 1–5%, analisis ini tetap sangat berguna untuk menilai kemurnian sampel (*Costech Analytical Technologies*, 2011).

2.9 Toksisitas Organotimah

Toksisitas senyawa timah dipengaruhi oleh jenis gugus organik yang terikat padanya. Senyawa timah anorganik umumnya memiliki toksisitas rendah, sedangkan senyawa triorganotimah menunjukkan toksisitas tertinggi. Diorganotimah dan monoorganotimah memiliki toksisitas rendah, sementara tetraorganotimah juga rendah tetapi dapat terdekomposisi menjadi triorganotimah yang lebih toksik. Toksisitas juga bervariasi berdasarkan jenis gugus organik, dengan trietiltimah lebih toksik dibandingkan metil, propil, dan butil, sedangkan trioktiltimah memiliki toksisitas rendah.

2.10 Uji Antiproliferasi Terhadap Sel Kanker

Uji antiproliferasi merupakan suatu metode yang digunakan untuk menilai kemampuan senyawa dalam menghambat pertumbuhan sel, khususnya sel kanker. Metode ini biasanya menggunakan teknik MTT, yang mengukur viabilitas sel berdasarkan aktivitas mitokondria. Hasil pengujian dinyatakan dalam nilai IC50, yaitu konsentrasi yang dapat menyebabkan kematian 50% dari populasi sel. Selain itu, uji ini juga melibatkan pengamatan terhadap waktu inkubasi dan konsentrasi senyawa untuk memancarkan efek sitotoksik dan proliferatif terhadap sel yang ditargetkan (Ismaryani dkk., 2018).

Metode proliferasi dapat digunakan sebagai penentu laju proliferasi sel, dimana berguna dalam memberikan sebuah informasi mencakup prediktor respon, prognosis, agresivitas kanker individu dan dapat digunakan untuk memandu protokol pengobatan dalam praktik klinis serta untuk pengembaangan agen terpeutik (Beresford *et al.*, 2006).

2.10.1. Antiproliferasi

Antiproliferasi merupakan kemampuan suatu senyawa atau terapi kanker yang digunakan untuk menghambat pertumbuhan sel kanker atau menghambat pembelahan sel. Dimana senyawa dengan aktivitas antiproliferasi mampu mempengaruhi siklus hidup sel kanker, sehingga mengurangi jumlah sel kanker yang berkembang (Pasaribu dkk., 2016). Mekanisme dalam senyawa antiproliferasi dapat bekerja dengan menghentikan siklus sel dengan cara menginduksi siklus dalam penangkapan sel pada fase tertentu, sehingga akan mencegah terjadinya pembelahan. Kemudian dilanjutkan dengan menurunnya aktifitas enzim proliferasi, enzim akan terhambat akibat terdapat adanya keterlibatan dalam proses proliferasi tersebut (Rahayu dkk., 2012).

2.10.2. Antikanker

Memiliki kesamaan dengan antiproliferasi, dimana kemampuan suatu senyawa atau terapi yang secara langsung dapat mempengaruhi pertumbuhan sel. Namun antikanker lebih spesifik menargetkan sel untuk membunuh sel kanker dan berkemampuan untuk menghambat pertumbuhannya. Senyawa antikanker dapat berkerja dengan melalui berbagai mekanisme, yakni menginduksi sel, apoptosis, menghambat migrasi, serta adhesi sel kanker (Rahmawati dkk., 2023).

Kematian sel merupakan proses yang bertujuan dalam mematikan sel yang rusak. Jenis kematian selnya berupa apoptosis, dimana pada kematiannya telah terprogram dan dapat bekerja sebagai homeostatis (mempertahankan kondisi agar tetap stabil), serta mempertahankan sistem imun (Elmore, 2007).

Mekanisme apoptosis bisa melalui 2 jalur, diantaranya jalur ektrinsik dan intrinsik. Pada kedua mekanisme dalam jalur ini selanjutnya diinisiasi atau memulai proses apoptosis oleh suatu protein caspace. Pengaturan terjadinya apoptosis dalam jalur intrinsik dilakukan famili protein berupa bcl-2 yang diketahui bersifat antiapoptosis dan pro-apoptosis (Elmore, 2007). Setelah sel telah dinyatakan terinduksi maka terjadi penghambatan dalam migrasi sel. Namun, jika kerja apoptosis dan perbaikan sel belum berhasil, maka besar kemungkinan sel kanker dapat bermigrasi ke jaringan sekitar (Nguyen *et al.*, 2009).

Adhesi sel kanker ialah suatu interaksi antara sel-sel dengan sel-ECM (*extracellular matrix*) yang berfungsi untuk pertahanan struktur jaringan dan memberi kode atau sinyal sel untuk melakukan migrasi sel. Migrasi sel ini bertujuan guna meningkatkan respon imun dan perbaikan jaringan pada lokasi yang mengalami cidera, termasuknya merespon pantogen seperti tumor dan metastesis (Horwitz *and* Webb, 2003).

III. METODE PENELITIAN

3.1 Waktu dan Tempat

Pada penelitian ini telah dilakukan pada November 2024 – Februari 2025 di Laboratorium Kimia Anorganik dan Kimia Fisik, Jurusan Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Lampung. Analisis senyawa menggunakan spektrofotometer UV-*Vis* dilakukan di Laboratorium Kimia Anorganik dan Fisik FMIPA Universitas Lampung. Analisis senyawa menggunakan spektrometer *Fourier Transform - Infra Red* (FTIR) dilakukan di Laboratorium Instrumentasi FMIPA Universitas Islam Indonesia. Analisis unsur dengan menggunakan ¹H-NMR dan ¹³C-NMR dan analisa *microelemental analyzer* dilakukan di *School of Chemical and Food Technology*, Universitas Kebangsaan Malaysia. Sedangkan uji antiproliferasi sel HeLa dilakukan di Laboratorium Kimia Bahan Alam, Pusat Riset Teknologi Proses Radiasi BRIN Pasar Jum'at, Jakarta Selatan.

3.2. Alat dan Bahan

Alat- alat yang digunakan dalam sintesis senyawa adalah alat gelas, aerator, set refluks 250 mL, *hot plate stirrer*, desikator, labu ukur, termometer 0-100°C, spatula, dan pipet tetes. Instrumen yang digunakan dalam menganalisis senyawa, yaitu UV Shimadzu UV-245 *Spectrophotometer*, Bruker VERTEX 70 FT-IR, *Spetrocphotometer*, Bruker AV 600 MHz NMR *Spectrometer*, serta *Microelemental Analyzer* Fision EA 1108.

Alat- alat yang digunakan dalam uji antiproliferasi senyawa sebagai antikanker adalah Erlenmeyer, *indicator universal*, pipet volume, botol kultur, *incubator CO*, sentrifuga, vortex, *cryotube vials*, *hot plate stirrer*, mikroskop, *haemocytometer neubaurer improved*, *laminar air flow* dan *multiwell plate tissue culture*.

Bahan-bahan yang digunakan dalam sintesis pada penelitian ini yaitu dibutiltimah(IV) oksida, asam 4-nitrobenzoat, asam 4- klorobenzoat, metanol *p.a.* Bahan-bahan yang digunakan untuk uji antiproliferasi senyawa sebagai antikanker yaitu aquades, NaHCO₃, media *Dulbecco's Modified Eagle's Medium* (DMEM), aquabidest, *penicillin*, PBS, tripsin, *trypan blue*, sel Vero dan sel kanker HeLa (serviks).

3.3. Prosedur dan Penelitian

Tahap-tahap yang dilakukan dalam penelitian ini yaitu sintesis senyawa dibutiltimah(IV) di-(4-nitrobenzoat) dan dibutiltimah(IV) di-(4-klorobenzoat) dilakukan berdasarkan prosedur pada penelitian sebelumnya (Hadi and Rilyanti, 2010) yang diadopsi dari (Szorcsik *et al.*, 2002), karakterisasi hasil sintesis, serta uji proliferasi senyawa hasil sintesis dengan berdasarkan penelitian (Goy *et al.*, 2016; dan Susangka *et al.*, 2022). Adapun prosedur yang dilakukan dalam masingmasing tahapan sebagai berikut:

3.3.1 Sintesis dan Karakterisasi Senyawa Dibutiltimah(IV) di-(4-nitrobenzoat)

Sintesis senyawa dibutiltimah(IV) di-(4-nitrobenzoat), dilakukan dengan mengadopsi prosedur Hadi & Rilyanti, (2010). Menggunakan perbandingan 1: 2 mol, yaitu sebanyak 0,8812 g (3,54 x 10^{-3} mol) padatan dibutiltimah(IV) oksida [(C₄H₉)₂SnO], direaksikan dengan 1,1832 g (7,08 x 10^{-3} mol) padatan asam 4-nitrobenzoat [p-HOOCC₆H₄(NO₂)], dalam 10 mL pelarut metanol p.a., dan direfluks selama 4 jam dengan pemanas pada suhu \pm 60°C. Setelah reaksi sempurna, metanol p.a. diuapkan dan dikeringkan di dalam desikator sampai diperoleh padatan kering dan konstan.

Padatan yang diperoleh selanjutnya dianalisis menggunakan spektrofotometer UV-Vis, Fourier Transform-Infra Red (FTIR), spektrometer ¹H-NMR dan ¹³C-NMR, serta Microelemental analyzer. Uji antiproliferasi senyawa dibutiltimah(IV) di-(4nitrobenzoat) selanjutnya dilakukan terhadap sel kanker HeLa (serviks).

3.3.2 Sintesis dan Karakterisasi Senyawa Dibutiltimah(IV) di-(4-klorobenzoat)

Sintesis senyawa dibutiltimah(IV) di-(4-klorobenzoat), dilakukan dengan mengadopsi prosedur Hadi and Rilyanti, (2010). Menggunakan perbandingan 1: 2 mol, yaitu sebanyak 0,7468 g (3,00 x 10^{-3} mol) padatan dibutiltimah(IV) oksida [(C₄H₉)₂SnO], direaksikan dengan 0,9394 g (6,00 x 10^{-3} mol) padatan asam 4-klorobenzoat [p-HOOCC₆H₄(Cl)], dalam 10 mL pelarut metanol p.a., dan direfluks selama 4 jam dengan pemanas pada suhu \pm 60°C. Setelah reaksi sempurna, metanol p.a. diuapkan dan dikeringkan di dalam desikator sampai diperoleh kristal kering dan konstan.

Padatan yang diperoleh selanjutnya dianalisis menggunakan spektrofotometer UV-Vis, Fourier Transform-Infra Red (FTIR), spektrometer ¹H-NMR dan ¹³C-NMR, serta Microelemental analyzer. Uji antiproliferasi senyawa dibutiltimah(IV) di-(4klorobenzoat) selanjutnya dilakukan terhadap sel kanker HeLa (serviks).

3.3.3 Pengujian Antiproliferasi terhadap Sel Kanker HeLa (serviks)

Prosedur uji antiproliferasi terhadap sel HeLa dilakukan dengan mengadopsi prosedur yang dilakukan oleh Susanto *et al* (2021). Pengujian senyawa hasil sintesis dilakukan dengan metode pengamatan langsung, yaitu menghitung secara langsung sel yang masih hidup di bawah mikroskop. Kelebihan metode ini dibandingkan dengan metode lain adalah metode pengamatan langsung dapat memberikan hasil lebih cepat dan penggunan rendah bahan kimia tambahan. Adapun tahapan pengerjaan pengujian senyawa sebagai antikanker adalah sebagai berikut:

3.3.3.1 Persiapan Media

Pembuatan media dilakukan dengan melarutkan media *Dulbecco's Modified Eagle's Medium* (DMEM) seberat 10,4 g yang mengandung L-glutamin dalam 1 liter aquabidest. Kemudian ditambahkan 2,3 g NaHCO₃ supaya pH larutannya berkisar 7-8. Setelah itu, dihomogenkan dan di saring menggunakan filter.

3.3.3.2 Prosedur Kultur Sel

Prosedur kultur sel dilakukan dengan mengadopsi prosedur yang dilakukan oleh Rosdiana dan Hadisaputri (2016), sebanyak 10 mL media yang sudah di campur FBS 10% dimasukkan ke dalam botol kultur sel dan ditambahkan dengan 300 μ L penicillin. FBS berfungsi sebagai nutrisi untuk media, faktor pendukung dalam pertumbuhan dan metabolism embrionik. Kemudian penicillin yang berfungsi sebagai antibiotik untuk melawan infeksi bakteri.

Setelah itu, sel kanker HeLa disuspensikan ke dalam media dan diinkubasi selama 72 jam pada suhu 37°C dalam inkubator 5% CO₂. Inkubasi sel dilakukan selama 72 jam karena waktu yang optimum untuk pertumbuhan sel kanker. Periode 72 jam memberikan waktu yang cukup untuk sel-sel berkembang secara signifikan

3.3.3.3 Panen Kultur Sel

Panen kultur sel dilakukan dengan mengadopsi prosedur yang dilakukan oleh Rahardian dan Utami (2018). Panen kultur sel dilakukan dengan cara membuang media yang terdapat dalam botol kultur sel. Kemudian, di cuci dengan 5 mL PBS 10% untuk mencegah kontaminasi, ditambahkan 3 mL tripsin untuk melepaskan sel dan di inkubasi selama 10 menit.

Setelah selesai inkubasi tersebut, selanjutnya dipindahkan ke dalam tabung sentrifuse, lalu ditambahkan 3 mL media dan disenterifugasi selama 2x10 menit sampai terbentuk gumpalan. Setelah terbentuk gumpalan di buang media, ditambahkan dengan 5 mL media baru dan di vortex. Disimpan kultur sel dalam *cryotube vials* pada *freezer* supaya menjaga kestabilan sel.

3.3.3.4 Uji *In Vitro*

Prosedur uji *in vitro* sel HeLa dilakukan dengan 5 variasi dosis yaitu 0, 1, 2, 4, 8, dan 16 μg/mL. 1 mL media dimasukkan ke dalam *multi well plate tissue's culture* dalam setiap sumuran, lalu ditambahkan 100 μL sel, 30μL *penicillin*, dan 10 μL sampel senyawa per plat. Percobaan dilakukan triplo, selanjutnya plate di bungkus kertas untuk mencegah kontaminasi dan di inkubasi selama 72 jam pada suhu 37°C dalam inkubator 5% CO₂. Dilakukan hal yang sama terhadap sel Vero (sel normal) sebagai pembanding dengan variasi dosis 0, 8, 16, 32, 64, dan 128 μg/mL.

3.3.3.5 Penghitungan Sel

Penghitungan sel dilakukan menggunakan haemocytometer neubauer improved. Haemocytometer neubaurer improved merupakan alat yang digunakan untuk menghitung atau menentukan jumlah sel per satuan volume. Di dalam Haemocytometer terdapat sebuah ruang yang digunakan untuk menghitung sel tersebut. Suspensi sel dimasukkan ke dalam ruang dan harus memiliki konsentrasi yang sesuai atau dibuat secara kuantitatif, agar sel atau partikel lain tidak tumpang tindih satu sama lain di grid dan harus merata. Jumlah sel yang hidup digunakan untuk menentukan persentase inhibisi zat uji terhadap sel kanker HeLa (serviks).

Penghitungan sel dilakukan dengan membuang terlebih dahulu isi yang terdapat dalam plat. Setelah itu, di cuci dengan 400 μL PBS 10%, di cuci kembali dengan 100 μL tripsin dan diinkubasi selama 10 menit. Untuk membedakan antara sel hidup dengan sel mati, maka sebelum dilakukan penghitungan ditambahkan 20 μL larutan larutan *trypan blue* dan dihomogenkan. Campuran sampel uji yang telah diwarnai *trypan blue* dialirkan ke dalam *haemocytometer neubauer improved*.

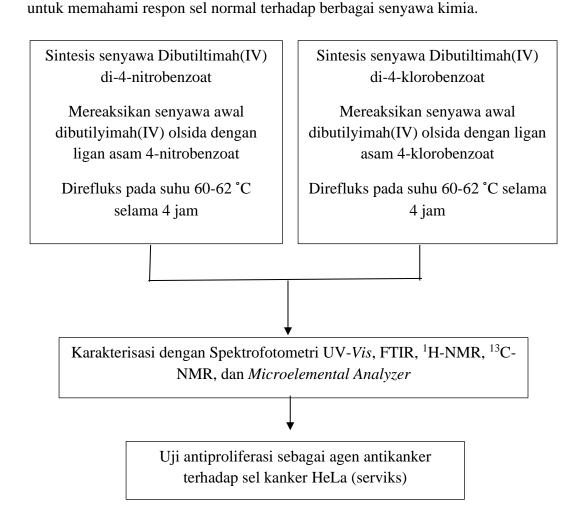
Setelah itu, jumlah sel yang masih hidup dihitung di bawah mikroskop dengan sistematis. Untuk menghindari duplikasi penghitungan, disarankan untuk fokus pada penghitungan sel di bagian atas dan kiri *haemocytometer*. Sel hidup terlihat sebagai bulatan bening dengan bintik biru inti sel di tengah bulatan, sedangkan sel mati terlihat sebagai bercak biru pekat yang bentuknya tidak teratur.

3.3.3.6 Uji Antiproliferasi

Uji antiproliferasi dilakukan dengan menghitung persentase nilai rata-rata jumlah sel yang masih hidup. Setelah itu, di hitung persentase penghambatan zat uji terhadap pertumbuhan sel kanker HeLa dengan Persamaan sebagai berikut:

% inhibisi =
$$(1 - \frac{A}{B}) \times 100\%$$

dimana, A: jumlah sel hidup dalam media yang mengandung zat uji


B: jumlah sel hidup dalam media yang tidak mengandung zat uji Selanjutnya data persentase inhibisi diplotkan ke tabel probit untuk memperoleh nilai probit. Kemudian di buat grafik antara log konsentrasi (x) dan probit (y) sehingga diperoleh persamaan regresi linier y = a + bx. Dengan memasukkan nilai y = 5 (probit dari 50%), maka diperoleh nilai x (log konsentrasi).

Nilai IC_{50} didapatkan dengan mengkonversi nilai log konsentrasi ke bentuk anti log. Nilai IC_{50} merupakan nilai konsentrasi yang menghasilkan hambatan perkembangbiakan sel kanker sebanyak 50% dan menunjukkan potensi ketoksikan suatu senyawa terhadap sel (Son & Anh, 2014). Aktivitas isolat dikatakan sangat aktif apabila nilai $IC_{50} < 4 \,\mu \text{g/mL}$ (Hadi dan Elianasari, 2018).

3.3.3.7 Uji Selektivitas

Uji selektivitas digunakan sebagai indikasi selektivitas sitotoksik (tingkat keamanan) dari suatu senyawa terhadap sel kanker. Salah satu cara untuk mengukur sejauh mana suatu senyawa bersifat selektif terhadap sel kanker tanpa merusak sel normal adalah dengan menghitung Indeks Selektivitas (IS) dengan rumus sebagai berikut:

 $IS = IC_{50}$ pada sel Vero / IC_{50} pada sel HeLa Jika nilai IS > 10, maka senyawa tersebut memiliki selektivitas yang tinggi (López, 2015). Pengujian IS sering dilakukan dengan menggunakan sel Vero

Gambar 6. Diagram alir penelitian

V. KESIMPULAN DAN SARAN

5.1 Kesimpulan

Berdasarkan kesimpulan dari pembahasan hasil penelitian ini, maka dapat disimpulkan beberapa hal berikut, diantaranya:

- 1. Diperoleh senyawa dibutiltimah(IV) di-(4-nitrobenzoat) dan dibutiltimah(IV) di-(4-klorobenzoat) berupa padatan berwarna putih dengan rendemen masing-masing yaitu sebesar 87,44% dan 85,53%.
- 2. Hasil karakterisasi menggunakan Spektrofotometer UV-*Vis*, FTIR,

 ¹H-NMR, dan ¹³C-NMR menunjukkan bahwa senyawa
 dibutiltimah(IV) di-(4-nitrobenzoat) dan dibutiltimah(IV) di-(4-klorobenzoat) telah berhasil disintesis.
- 3. Berdasarkan data hasil dari analisis unsur menggunakan *Microelemental Analyzer* dapat dinyatakan bahwa senyawa dibutiltimah(IV) di-(4-nitrobenzoat) dan dibutiltimah(IV) di-(4-klorobenzoat) dari hasil sintesis berada dalam keadaan murni, karena persentase antara hasil perhitungan teoritis dan hasil mikroanalisis diperoleh selisih kurang dari 1%.
- 4. Berdasarkan hasil uji antiproliferasi senyawa dibutiltimah(IV) di-(4-nitrobenzoat) dan dibutiltimah(IV) di-(4-klorobenzoat) terhadap sel HeLa, diperoleh nilai IC₅₀ masing-masing sebesar 3,90 dan 4,34 μg/mL. Hal ini menunjukkan bahwa kedua senyawa tersebut aktif dan berpotensi sebagai agen antikanker.

5. Berdasarkan hasil dari uji selektivitas senyawa dibutiltimah(IV) di-(4-nitrobenzoat) dan dibutiltimah(IV) di-(4-klorobenzoat) diperoleh nilai Indeks Selektivitas (*SI*) dengan masing-masing sebesar 9,33 dan 14,23. Hal tersebut dapat diartikan bahwa senyawa dibutiltimah(IV) di-(4-nitrobenzoat) dan dibutiltimah(IV) di-(4-klorobenzoat) cukup aman dan tidak beracun bagi sel normal.

5.2 Saran

Berdasarkan pembahasan yang telah dijelaskan diatas, didapatkan saran untuk penelitian selanjutnya yaitu perlu dilakukan sintesis senyawa organotimah(IV) lainnya dengan menggunakan variasi senyawa induk, seperti difeniltimah(IV) dan trifeniltimah(IV). Pemilihan ligan yang tepat juga perlu dipertimbangkan untuk memperoleh senyawa dengan aktivitas biologis yang lebih optimal, khususnya dalam pengembangan agen antikanker yang lebih selektif dan aman bagi sel normal.

DAFTAR PUSTAKA

- Agustianti, P. 2021. Hubungan Antara Berbagai Faktor Resiko Terhadap Kejadian Karsinoma Sel Skuamosa Serviks di RSPAD Gatot Soebroto Bulan Oktober Desember Tahun 2018, (skripsi). Universitas Pembangunan Nasional Veteran. Jakarta.
- Alama, A., Tasso, B., Novelli, F., and Sparatore, F. 2009. Organometallic Compounds in Oncology: Implications of Novel Organotins as Antitumor Agents. *Drug Discovery Today*. 14: 500–508.
- Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., and Walter, P. 2008. *Moleculer Biology of The Cell, Fifth Edition.* Garland Science. New York (US).
- Ali, M., and Yousif, E. 2016. Chemistry and Applications of Organotin(IV) Complexes: a Review. *Research Journal of Pharmaceutical, Biological and Chemical Sciences*. 7(5): 2614.
- American Cancer Society. 2019. *Breast Cancer: Treating Breast Cancer*. American Cancer Society, 1–120. https://www.cancer.org/cancer/breast-cancer/treatment.html.
- Angraini, N., dan Yanti, F. 2021. Penggunaan Spektrofotometer Uv-*Vis* untuk Analisis Nutrien Fosfat pada Sedimen dalam Rangka Pengembangan Modul Praktikum Oseanografi Kimia. *Jurnal Penelitian Sains*. 23(2): 78-83.
- Annissa, Suhartati, T., Yandri, and Hadi, S. 2017. Antibacterial Activity of Diphenyltin(IV) and Triphenyltin(IV) 3-Chlorobenzoate Against, *Pseudomonas aeruginosa* and *Bacillus subtilis*. *Oriental Journal of Chemistry*. 33 (3): 1133-1139.
- Ardhani, Z. A., Pasaribu, M. H., Prisnanda. R., Anggraeni, M. E., and Iqbal, R. M. 2024. Potential of Organometallic Complex Compounds as Anticancer Drugs: a Review. *Chempublish Journal*. 8(1): 29-41.
- Asrial. 2014. Senyawa Turunan Organotimah: Sistesis dan Struktur Kristal Bis (trimetil timah) Krokonat [(CH₃)₃Sn]₂C₅O₅ ₂H₂O. *Journal of the Indonesian Society of Integrated Chemistry*. 6(1): 1-8.
- Aziz, M. F. 2006. *Deteksi Dini Kanker, Skrining dan Deteksi Dini Kanker Serviks*. Fakultas Kedokteran Universitas Indonesia, eds Ramli. Jakarta.
- Beresford, M. J., Wilson, G. D., and Makris, A. 2006. Measuring proliferation in breast cancer: practicalities and applications. *Breast Cancer Research*. 8(6): 216.

- Bonire, J. J., Ayoko, G. A., Olurinola, P. F., Ehinmidu, J. O., Jalil, N. S., and Omachi, A. A. 1998. Synthesis and Antifungal Activity of Some Organotin(IV) Carboxylates. *Metal-Based Drugs*. 5 (4): 233-236.
- Burmeister, C. A., Khan, S. F., Schafer. G., Mbatani, N., Adams, T., Moodley, and Prince, J. S. 2022. Cervical Cancer Therapies: Current Challenges and Future Perspectives. *Journey Elsevier Tumour Virus Research*. 13(2): 1-14.
- Caprette, D. R. 2007. *Using a Caunting Chamber*. Lab Guides Rice University. Texas.
- Colipa. 2006. Scientific Committee Consumer Products Opinion on 4-Aminobenzoic Acid (PABA). European Commission. Eropa.
- Costech Analitical Technologies. 2011. *Elemental Combiustion System CHNS*. http://costechanalytical.com/2. Akses pada tanggal 01 Oktober 2024.
- Cotran, R. S., Kumar, V., and Collins, T. 2015. *Robbins and Cotran Pathologic Basis of Disease. 9th ed.* Elsevier. Philadelphia.
- Cotton, F. A. and Wilkinson, G. 1989. *Advance Inorganic Chemistry : a Aomprehensive Text*. Interscience Publications. New York.
- Cotton, F. A., and Wilkinson, G. 2007. Kimia Anorganik Dasar. Erlangga. Jakarta.
- Dainith, J. 1990. Kamus Lengkap Kimia. Erlangga. Jakarta.
- Davies, A. G. 2004. Organotin Chemistry. VCH Weinheim. Germany.
- Davies, A. G., and Smith, P. J. 1980. *Recent Advances in Organotin Chemistry*. Academic Press. England.
- Day, R. A., dan Underwood, A. L. 1998. *Analisis Kimia Kuantitatif Edisi Keenam*. Terjemahan oleh A.H. Pudjaatmaka. Erlangga. Jakarta.
- Diananda, R. 2007. Mengenal Seluk Beluk Kanker. Katahati. Yogyakarta.
- Elianasari., dan Hadi, S. 2018. Aktivitas in Vitro dan Studi Perbandingan Beberapa Senyawa Organotimah(IV) 4-hidroksibenzoat Terhadap sel kanker Leukimia, L-1210. *Jurnal Sains MIPA*. 18(1): 23-28.
- Elmore, S. 2007. Apoptosis: a Review of Programmed Cell Death. *Toxicologic Pathology*. 35(4):495–516.
- Emilia. 2010. Bebas Ancaman Kanker Serviks. Medpress. Yogyakarta.
- Ghebre, R. G., Grover, S., Xu, M. J., Chuang, L. T., and Simonds, H. 2017. Cervical Cancer Control in HIV-Infected Women: Past, Present and Future. *Journey from Elsevier Gynecologic Oncology Reports*. 21: 101–108.
- Gitlitz, M. H., Dirkx, R. E., and Russo, D. A. 1992. *Organtin Application*. American Chemical Society. Washington DC.
- Globocan. 2022. *Cancer Today, Global Cancer Observatory*. International Agency for Research on Cancer. Indonesian.

- Goy, R. C., Morais, S. T., and Assis, O. B. 2016. Evaluation of the antimicrobial activity of chitosan and its quarternized derivative on E. coli and S. aureus growth. *Revista Brasileira de Farmacognosia* . 26 : 122-127.
- Gora, W. B. 2005. Synthesis and Characterization of Organotin(IV) Complexes with Donor Ligands. Gomal University Dera Ismail Khan. Pakistan.
- Hadi, S., and Rilyanti, M. 2010. Synthesis and In Vitro Anticancer Activity of Some Organotin(IV) Benzoate Compounds. *Oriental Journal of Chemistry*. 26(3): 775–779.
- Hadi, S., Afriyani, H., Anggraini, W. D., Qudus, H. I., and Suhartati, T. 2015. Synthesis and Potency Study of Some Dibutyltin(IV) dinitrobenzoate compounds as Corrosion Inhibitor for Mild Steel HRP in DMSO-HC1 Solution. *Asian Journal of Chemistry*. 27(4): 1509–1512.
- Hadi, S., dan Afriyani, H. 2017. Studi Perbandingan Sintesis dan Karakterisasi Dua Senyawa Organitimah(IV) 3-Hidroksibenzoat. *Jurnal Ilmu Kimia dan Terapan*. 1(1): 26-31.
- Hadi, S., Hermawati, E., Noviany., Suhartati, T., and Yandri. 2018. Antibacterial Activity Test of Diphenyltin(IV) Dibenzoate and Triphenyltin(IV) Benzoate Compounds Against Bacillus Substilis and Pseudomonas Aeruginosa. *Asian Journal Microbiol Biotechnol Environ. Sciences*. 20(1): 113–119.
- Hadi, S., Irawan, B., and Efri. 2008. The Antifungal Activity Test of Some Organotimah(IV) Carboxylate. *Journal of Applied Sciences Research*. 4(11): 1521–1525.
- Hadi, S., Irianti, N. T., dan Noviany. 2022. Sintesis, Karakterisasi, dan Uji Aktivitas Antibakteri Senyawa Organitimah(IV) 4-Nitrobenzoat. *Jurnal penelitian Kimia*. 18(1): 19-29.
- Hadi, S., Lestari, S., Suhartati, T., Qudus, H. I., Rilyanti, M., Herasari, D., and Yandri. 2021. Synthesis and Comparative Study on the Antibacterial Activity Organotin(IV) 3-Hydroxybenzoate Compounds. *Pure and Applied Chemistry*. 93(5): 623–628.
- Hassanzadeh, F., Jafari, E., Shojaei, F., and Sadeghi-Aliabadi, H. 2021. Synthesis and Cytotoxic Activity Evaluation of Some New 1, 3, 4-oxadiazole, 1, 3, 4-thiadiazole and 1, 2, 4-triazole Derivatives Attached to Phthalimide. *Research in Pharmaceutical Sciences*. 16(6): 634-642.
- Hiraga. Y., Chaki. S., and Niwayama. S. 2017. ¹³C NMR Spectroscopic Studies of the Behaviors of Carbonyl Compounds in Various Solutions. *Journey Tetrahedron Letters*. 58(50): 4677-4681.
- Horwitz, R. and Webb, D. 2003. Cell Migration. Current Biology. 13(19). 756-759.
- Ismail, I.A., Riga, R., Suryani, O., Insani, M., Pernadi, N. L., dan Febriyanti, A. 2022. Analisis Spektrum ¹H-NMR: Penjelasan Sederhana. *International Journal of Academic Multidisciplinary Research (IJAMR)*. 6(12): 336-342.

- Ismaryani, A., Sakni., Setiawan, A., dan Triwani., 2018. Aktivitas Sitotoksik, Antiproliferasi dan Penginduksi Apoptoksis Daun Salung (Psychotria viridiflora Reinw. ex. Blume) terhadap Sel Kanker Serviks HeLa. *Jurnal Ilmu Kefarmasian Indonesia*. 16(2): 206-213.
- Jiang, X., Zhang, W., Zhong, Y., and Wang, S. 2002. Chemistry and Applications of Organotin(IV) Complexes. *Czech Chemical Communications*. 11: 1629-34.
- Khan, A., Parveen, S., Khalid, A., and Shafi, S. 2020. Kemajuan Terbaru dalam Potensi Antikanker Kompleks Fenilorganotin(IV). *Inorganica Chimica Acta*. 505: 1–43.
- Llorca, J., Homs, N., Fierro, J. G., Sales, J., and Piscina, P. R. 1996. Platinum—tin Catalysts Supported on Silica Highly Selective for n-Hexane Dehydrogenation. *Journal of Catalysis*. 166: 44–52.
- Lopez, V., Williams, P., and Larkin, D. 2015. Treatment-Related Symptom Severity and Occurrences Among Oncology Adults in Australia. *Asia-Pacific Journal of Oncology Nursing*. 2(3): 144-151.
- Maiti, A., Dewanjee, S., Mandal, S. C., and Annadurai, S. 2007. Exploration of Antimicrobial Potential of Methanol and Water Extract of Seeds of Swietenia Macrophylla (Family: *Meliaceae*), to Substantiate Folklore Claim. *Iranian Journal of Pharmacology and Therapeutics*. 6(1): 99–102.
- Mangan, Y. 2009. *Solusi Sehat Mencegah dan Mengatasi Kanker*. Agromedia Pustaka. Jakarta.
- Mohan, M., Gupta, M. P., Chandra, L., and Jha, N. K. 1988. Synthesis, Characterization and Antitumour Properties of Some Metal(II) Complexes of 2-Pyridinecarboxaldehyde 2'-Pyridylhydrazone and Related Compounds. *Inorganica Chimica Acta*. 151(1): 61–68.
- Mobbili, M., Romaldi, B., Sabbatini, G., Amici, A., Marcaccio, M., Galeazzi, R., Laudadio, E., Armeni, T., and Minnelli, C. 2023. Identification of Flavone Derivative Displaying a 40-Aminophenoxy Moiety as Potential Selective Anticancer Agent in NSCLC Tumor Cells. *Journey Mulecules*. 28(10): 2-13.
- Nguyen, D. X., Bos, P. D. and Massague, J. 2009. Metastasis: from Dissemination to Organ-specific Colonization. *Nature Reviews Cancer*. 9(4):274–284.
- Nurimani, A. S. 2013. Sintesis dan Karakterisasi serta Uji Pendahuluan Aktivitas Antikanker Beberapa Senyawa Organotimah(IV) 4-nitrobenzoat terhadap Sel Leukimia L-1210 (Skripsi). Universitas Lampung. Bandar Lampung.
- Omae, I. 2003. Organotin Antifouling Paints and Their Alternative. *Applied Organometallic Chemistry*. 17: 81-105.
- Padmi, A. 2008. *Uji Sitotoksik Ekstrak Etanol 70% Buah Kemukus (Piper Cubeba L.) Terhadap Sel HeLa*. (Skripsi). Jurusan Kimia Fakultas Farmasi UMS, Surakarta.

- Pallerito, C. 2006. Biological Activity Studies on Organotin(IV)n⁺ Complexes and Parent Compounds: Review. *Journal of Organometallic Chemistry*. 691(8): 1733-1747.
- Pasaribu, G., Iskandarsyah., dan Sagita, E. 2016. Uji Aktivitas Antiproliferasi Formula Liposom Ekstrak Etanol Kunyit (*Curcuma domestica*) Terhadap Sel Kanker Payudara T47D. *Pharmaceutical Sciences and Research*. 3(1): 45-59.
- Pellerito, L., and Nagy, L. 2002. Organotin(IV)n⁺ Complexes Formed With Biologically Active Ligands: Equilibrium and Structural Studies, and Some Biological Aspects. *Coordination Chemistry Reviews*. 224: 111 150.
- Pereyre, M., Quintard, J. P. and Rahm, A. 1987. *Tin in Organic Synthesis*. Buttersworths-Heinemann. Britania Raya.
- Petra, E. D. L. 2012. *Ikatan yang Terlibat pada Interaksi Obat-Resdaptor* .http://www.ocw.usu.ac.id/../fek_310_slide_ikatan_yang_terlibatpada_inter aksi. Diakses pada tanggal 28 September 2024.
- Rahardian, M. R. R., dan Utami, D. 2018. Uji Sitotoksik Antiproliferasi Ekstrak Eter Daun inahong (Andredera cordifolia (Tenore)Steen.) Terhadap Sel HeLa. *Media Farmasi Indonesia*. 13(1): 1287-1346.
- Rahayu, W. P., Achmad, A., dan Ekowati, H. 2012. Aktivitas Antiproliferatif Jintan Hitam (*Nigella sativa*) pada Sel Paru Tikus yang Diinduksi 7, 12-Dimetilbenz-[a] Antrasena (DMBA). *Makara Kesehatan*. 16(2): 53-54.
- Rahmawati, A. M., Anam, K., dan Sasikirana, W. 2023. Potential of Papaya Leaves (*Carica papaya L.*) as Anticancer. *Journal of Research in Pharmacy*. 3(1): 27-35.
- Rehman, S. U., Sarwar, T., Husain, M. A., Ishqi, H. M., and Tabish, M. 2015. Studying Non-Covalent Drug–DNA Interactions. *National Library of Medicine*. 576: 49-60.
- Riano, N. 2002. Reproduksi, Kontrasepsi, dan Keluarga Berencana. Kanisius Yogyakarta.
- Rosdiana, A., dan Hadisaputri, Y. E. 2016. Review Artikel: Studi Pustaka Tentang Prosedur Kultur Sel. *Jurnal Farmaka*. 14(1): 236-249.
- Roura, E., Castellsagué, X., Pawlita, M., Travier, N., Waterboer, T., Margall, N., Bosch, F. X., and de Sanjosé, S. 2014. Smoking as a Major Risk Factor For Cervical Cancer and Pre-cancer: Results From the EPIC Cohort. *International Journal of Cancer*. 135(2), 453–66.
- Sander, H. L., Deelman, B. J., and Koten, G. V. 2004. Synthetic Aspects of Tetraorganotins and Organotin(IV) Halides. *Chemistry A European Journal*. 10(12), 3006-3012.
- Settle, F. A. 1997. *Handbook of Instrumental Techniques for Analytical Chemistry*. Prentice-Hall, Inc. New Jersey.

- Sudjadi. 1983. Penentuan Struktur Senyawa Organik. Ghalia Indonesia. Jakarta.
- Sudjadi. 1985. Penentuan Struktur Senyawa Organik. Ghalia Indonesia. Jakarta.
- Suhartati, T. 2017. Dasar-Dasar Spektrofotometri UV-Vis dan Spektrometri Massa untuk Penentuan Struktur Senyawa Organik. AURA (CV. Anugrah Utama Raharja). Bandar Lampung. 106.
- Susangka, A. L., Hadi, S., Noviany., Kiswandono, A. A., Nurhasanah., and Pandiangan, K. D. 2022. Synthesis, Characterization, and Comparison of Disinfectant Bioactivity Test of Two Triphennyltin(IV) Compound). *Journal of the Turkish Chemical Society, Section A: Chemistry (JOTCSA)*. 9(4): 1047-1054.
- Susanto., Winarno, E. K., and Winarno, H. 2021. The Effect of Gamma Irradiation on Ethanolic Extract of Temulawak (Curcuma xanthorrhiza Roxb.) Against Human Cancer Cell Lines.. *Indonesian Journal of Nuclear Science and Technology*. 22(1): 10-15.
- Son, H.I. & Anh, N.P. 2014. Phytochemical composition, in vitro antioxidant and anticancer activities of quercetia from methanol extract of Asparagus cochinchinensis. *Academic Journal*. 7(46): 3360–3366.
- Svehla, G. 1985. *Vogel: Buku Teks Analisis Anorganik Kualitatif Makro dan Semimikro*. Diterjemahkan oleh Setiono dan A.H. Pudjaatmaka. PT Kalman Media Pustaka. Jakarta.
- Szorcsik, A., Nagy, L., Pellerito, L., Yamaguchi, T., and Yoshida, K. 2002. Preparation and Structural Studies of Organotin(IV) Complexes Formed With Organic Carboxylic Acids. *Journal of Radioanalytical and Nuclear Chemistry*. 256 (1): 3-10.
- Tim Medis. 2024. *Apa itu Metastasis, Proses, Gejala, dan pengobatannya*. Siloam Hospitals. https://www.siloamhospitals.com. Akses pada tanggal 07 Oktober 2024.
- Tim Promkes RSST. 2023. *Edisi Hari Kanker Sedunia* . UPTD Puskesmas Bantar. Tasikmalaya. https://www.puskesmas-bantar.tasikmalayakota.go.id. Akses pada tanggal 29 Agustus 2024.
- Ullah, H., Previtali, V., Mihigo, H. B., Twamley, B., Khawar, M., Javed, F., Waseem, A., Baker, R. J., and Rozas, I. 2019. Structure-Activity Relationships of New Organotin (IV) Anticancer Agents and Their Cytotoxicity Profile on HL-60, MCF-7 and HeLa Human Cancer Cell Lines. *European Journal of Medicinal Chemistry*. 181: 1-10.
- Van Der Weij, F.W. 1981. Kinetics and Mechanism of Urethane Formation Catalysed by Organotin Compound. *Journal of Polymer Science: Part A: Polymer Chemistry.* 19 (2): 381-388.
- Weerapreeyakul1, N., Nonpunya, A., Barusrux, S., Thitimetharoch, T., and Sripanidkulchai, B. 2012. Evaluation of the Anticancer Potential of Six Herbs Against a Hepatoma Cell Line. *Chinese Medicine*. 7(1): 7-15.

- Wilkinson, G. 1982. *Compreherensive Organometalic Chemistry*. International Tin Research Institute, Publication No. 618. Pergamon Press.
- Wong, C.Y., and Woollins, J. D. 1994. Bidentate Oxygen Donor Chelates of Silicon Germanium and Tin . Coordination Chemistry Reviews. 130: 175-241.
- Yuan, Y., Cai, X., Shen, F., and Ma, F. 2021. HPV Post-Infection Microenvironment and Cervical Cancer. *Journey Elsevier Cancer Letter*. 497: 243–254.
- Yulianti., Bani, B., dan Albana. 2020. Analisa Pertambangan Timah di Provinsi Kepulauan Bangka Belitung. *Jurnal Ekonomi*. 22(1): 54-62.
- Zhang, S., Xu, H., Zhang, L., and Qiao, Y. 2020. Cervical Cancer: Epidemiology, Risk Factors and Screening. *Chinese Journal of Cancer Research*. 32(6): 720-728.