
COMPARATIVE ANALYSIS OF OBJECT-RELATIONAL MAPPING

(ORM) AND SQL QUERY IN THE IMPLEMENTATION OF BOOKING

SERVICE API AT PT TUNAS DWIPA MATRA

(Undergraduate Thesis)

By

NADAA AZHAR

NPM 2017051057

FACULTY OF MATHEMATICS AND NATURAL SCIENCES

LAMPUNG UNIVERSITY

BANDAR LAMPUNG

2025

COMPARATIVE ANALYSIS OF OBJECT-RELATIONAL MAPPING

(ORM) AND SQL QUERY IN THE IMPLEMENTATION OF BOOKING

SERVICE API AT PT TUNAS DWIPA MATRA

By

NADAA AZHAR

NPM 2017051057

As

One of the requirements to attain a

Bachelor's degree in Computer Science

Within

The Computer Science Department,

on the Computer Science Bachelor's Program

FACULTY OF MATHEMATICS AND NATURAL SCIENCES

LAMPUNG UNIVERSITY

BANDAR LAMPUNG

2025

ABSTRACT

COMPARATIVE ANALYSIS OF OBJECT-RELATIONAL MAPPING

(ORM) AND SQL QUERY IN THE IMPLEMENTATION OF BOOKING

SERVICE API AT PT TUNAS DWIPA MATRA

By

Nadaa Azhar

Information technology plays a vital role across all industries. PT Tunas Dwipa

Matra recognizes this importance, understanding that an effective IT system is

crucial for business operations and customer service. This study examines the

performance of ORM and SQL queries in database operations, focusing on

execution speed and memory efficiency across datasets of 10.000, 50.000, and

100.000 records. From this research, ORM showed significantly faster execution

times, while maintaining comparable memory usage for both methods. Although,

as data volume increased to 100.000 records, SQL's execution time grew

substantially about 1,952s on average compared to ORM's more stable performance

about 0,037s on average, with slightly 0,2 MiB more memory requirements. The

study confirms ORM offers developer-friendly implementation and consistent

memory efficiency, while SQL provides better scalability for complex queries.

These findings suggest PT Tunas Dwipa Matra could optimize their system by using

ORM for routine operations and SQL for large-scale data processing, achieving

both performance efficiency and maintainability in their customer service

applications.

Keywords: Object Relational Mapping (ORM); SQL Query; Performance Testing;

Execution Speed; Memory Efficiency.

BIOGRAPHY

The researcher was born in Krui on October 14, 2002,

as the third of five children to the late Mr. Arhas and

Mrs. Identina Wati. Their educational journey began at

SD Negeri 1 Krui, where they completed elementary

education in 2014. They then progressed to SMP Negeri

2 Pesisir Tengah, graduating from junior high school in

2017. Continuing their studies at SMA Negeri 1 Pesisir

Tengah, they successfully finished senior high school in

2020. That same year, they matriculated into the Computer Science program at

the Faculty of Mathematics and Natural Sciences, University of Lampung, having

secured admission through the SBMPTN national selection process. Throughout

their university years, the individual actively participated in various academic and

extracurricular pursuits, such as.

1. Member of Secretariat Bureau of Himakom (Computer Science Student

Association) for the 2021/2022 term.

2. Secretary of Human Resource Development of KSE (Karya Salemba

Empat) for the 2021/2022 term.

3. Secretary of Secretariat Bureau of Himakom (Computer Science Student

Association) for the 2022/2023 term.

4. Secretary of Education, Research and Technology of KSE (Karya Salemba

Empat) for the 2022/2023 term.

5. Lecturer assistant for Logic and System Operation courses in the Computer

Science Department.

6. Awardee of Karya Salemba Empat Scholarship in 2022 and 2023.

7. Kampus Merdeka internship program at PT Tunas Dwipa Matra from

March to August 2023.

8. Translator in Field Trip of Agri Lestari Nusantara in 2023.

9. Volunteer of Busa Pustaka in 2024.

MOTTO

“Mohonlah pertolongan (kepada Allah) dengan sabar dan shalat. Sungguh, Allah

beserta orang-orang yang sabar.”

(Q.S. Al Baqarah [2:153])

DEDICATION

With heartfelt gratitude to Allah Subhanahu Wa Ta'ala, the Most Gracious and

Merciful, and blessings upon our beloved Prophet Muhammad Shallallahu 'Alaihi

Wasallam, I dedicate this work to those who matter most in my journey.

My dearest parents

and

My cherished family

To those with unwavering faith, endless patience, unconditional love, constant

prayers, and their support have guided my every step toward this accomplishment.

My lovely friends

and

Department of Computer Science

University of Lampung

I am sincerely grateful for their presence and the impact they've had on both my

education and personal development.

ACKNOWLEDGEMENT

With profound praise and gratitude to Allah Subhanahu Wa Ta'ala for His endless

blessings, I humbly present this thesis entitled "Comparative Analysis of Object-

Relational Mapping (ORM) and SQL Query in The Implementation of Booking

Service API at PT Tunas Dwipa Matra". This undergraduate thesis fulfills the

requirements for obtaining an undergraduate degree in Computer Science at the

Department of Computer Science, Faculty of Mathematics and Natural Sciences,

University of Lampung.

The journey of completing this thesis presented numerous challenges, both in

research and writing. Although, through assistance and the unwavering support of

many individuals, I was able to overcome these obstacles. Therefore, I extend my

deepest gratitude to:

1. My heartfelt gratitude goes to my parents, Alm. Ayah and Ibu, as well as my

siblings, Odang, Ingah, Amir, and Aqil. Their constant encouragement,

whether through material support, helping hands, or heartfelt prayers, has

been my source of strength throughout this journey.

2. My beloved nephews, Arshaka and Zio. Their radiant smiles and innocent

wonder have filled my heart with boundless happiness and warmth.

3. Mr. Dr. Eng. Heri Satria, S.Si., M.Si., as the Dean of the Faculty of

Mathematics and Natural Sciences.

4. Mr. Dwi Sakethi, S.Si., M.Kom., as the examiner and the Head of the

Computer Science Department for his thorough review, suggestions and

insightful feedback on this thesis.

iii

5. Mr. Dr. rer. nat. Akmal Junaidi, M.Sc., for his guidance and support as my

academic advisor.

6. Mr. Bambang Hermanto, S.Kom., M.Cs., for his role as the main supervisor

and lecturer, for providing invaluable opportunities, advice, criticism,

suggestions, assistance, and support throughout the thesis and study.

7. Mr. M. Iqbal Parabi, S.SI., M.T., as the second supervisor, for his critiques,

constructive feedback, and thoughtful suggestions were instrumental in

strengthening my thesis.

8. To all the lecturers for their profound expertise, unwavering dedication, and

genuine commitment to teaching have been instrumental in shaping my

intellectual growth and professional development.

9. To all the Computer Science Staff (Mrs. Nora, Mr. Nofal, Mr. Sam, and Mr.

Jay). Their dedication and support have greatly helped me finish this thesis.

10. To my thesis partner, M. Hanif Pratama. His support, guidance, suggestions

have been truly invaluable, making the process both productive and

enjoyable.

11. To my best friends, Renna and Nisa, for their encouragement and support that

have accompanied me on this journey and will continue to do so in the future.

12. To the Ihiiy members—Kayla, Karina, Dita, Dhavy, Mufid, Irfan, Rifqi,

Naufal, and Ega—for their support and camaraderie

13. To my high school friends, Gita, Riska, Shiva, and Nesi for always being there

with me.

14. To my junior school friends, Salma, Halimah, Angel, Ulik with their presence

will always comfort me.

15. To my lovely cats, Haru, Kira, Mao, Mila, Tobi and Boni. Their presence

brings so much joy and comfort into my life.

Lastly, I extend my gratitude to all my friends in the field of Computer Science.

TABLE OF CONTENTS

DEDICATION ... i
ACKNOWLEDGEMENT .. ii

TABLE OF CONTENTS .. v

TABLE OF TABLES ... vii

TABLE OF FIGURES ... ix

I. INTRODUCTION .. 1

1.1. Background ... 1

1.2 Problem Statements ... 2

1.3 Problem Constraints .. 3

1.4 Research Objectives .. 3

1.5 Research Advantages ... 4

II. LITERATURE REVIEW .. 5

2.1. Previous Research ... 5

2.2. Theoretical Framework Description .. 8

2.2.1. Database .. 8

2.2.2. Object Relational Mapping (ORM) .. 9

2.2.3. Structured Query Language (SQL) ... 10

2.2.4. Application Programming Interface (API)...................................... 10

2.2.5. Python ... 11

2.2.6. Framework .. 11

2.2.7. Odoo .. 12

2.2.8. Enterprise Resource Planning (ERP) .. 12

III. RESEARCH METHODOLOGY ... 14

3.1. Research Time and Place ... 14

3.2. Research Tools... 14

3.2.1. Hardware Tools ... 14

3.2.2. Software Tools .. 14

3.3. Research Stages ... 15

3.3.1. Problem Identification ... 16

vi

3.3.2. Literature Review .. 16

3.3.3. Data Collection.. 16

3.3.4. Performance Testing ... 17

IV. RESULT AND DISCUSSION ... 26

4.1. Result ... 26

4.1.1. Select Data for ‘dms.uang.titipan.customer’ Table 26

4.1.2. Update Data for ‘dms.account.invoice’ Table 31

4.1.3. Insert Data for ‘dms.booking.service’ Table 37

4.1.4. Visual Representation of Variable Differences in Each Table 46

4.2. System Testing Result ... 65

V. CONCLUSION AND RECOMMENDATION .. 67

5.1. Conclusion ... 67

5.2. Recommendation ... 68

REFERENCES .. 69

APPENDICES ... 72

TABLE OF TABLES

Table Page

1. Select Data 'dms.uang.titipan.customer' .. 22

2. Update Data 'dms.account.invoice' ... 23

3. Insert Data 'dms.booking.service'.. 24

4. System Testing Scenario ... 25

5. Query Testing Module ‘dms.uang.titipan.customer’... 27

6. Execution Result with 10,000 data on ‘dms.uang.titipan.customer’ 28

7. Execution Result with 50,000 data on ‘dms.uang.titipan.customer’ 29

8. Execution Result with 100,000 data on ‘dms.uang.titipan.customer’ 30

9. Query Testing Module 'dms.account.invoice' ... 32

10. Execution Result with 10,000 data on ‘dms.account.invoice’ 33

11. Execution Result with 50,000 data on ‘dms.account.invoice’ 34

12. Execution Result with 100,000 data on ‘dms.account.invoice’ 35

13. Query Testing Module 'dms.booking.service' ... 37

14. Execution Result with 10 data on ‘dms.booking.service’ 42

15. Execution Result with 50 data on ‘dms.booking.service’ 43

16. Execution Result with 100 data on ‘dms.booking.service’ 45

17. System Testing Result ... 65

TABLE OF FIGURES

Figure Page

1. API Illustration ... 11

2. Research Flowchart ... 15

3. Class Diagram ... 20

4. Chart of Runtime for 10,000 Data Entries of ‘dms.uang.titipan’ 47

5. Chart of Memory Usage for 10,000 Data Entries of ‘dms.uang.titipan’ 48

6. Chart of Runtime for 50,000 Data Entries of ‘dms.uang.titipan’ 49

7. Chart of Memory Usage for 50,000 Data Entries of ‘dms.uang.titipan’ 50

8. Chart of Runtime for 100,000 Data Entries of ‘dms.uang.titipan’ 51

9. Chart of Memory Usage for 100,000 Data Entries of ‘dms.uang.titipan’........ 52

10. Chart of Runtime for 10,000 Data Entries of ‘dms.account.invoice’ 53

11. Chart of Memory Usage for 10,000 Data Entries of ‘dms.account.invoice’ .. 54

12. Chart of Runtime for 50,000 Data Entries of ‘dms.account.invoice’ 55

13. Chart of Memory Usage for 50,000 Data Entries of ‘dms.account.invoice’ .. 56

14. Chart of Runtime for 100,000 Data Entries of ‘dms.account.invoice’ 57

15. Chart of Memory Usage for 100,000 Data Entries of ‘dms.account.invoice’ 58

16. Chart of Runtime for 10 Data Entries of ‘dms.booking.service’ 59

17. Chart of Memory Usage for 10 Data Entries of ‘dms.booking.service’ 60

18. Chart of Runtime for 50 Data Entries of ‘dms.booking.service’ 61

19. Chart of Memory Usage for 50 Data Entries of ‘dms.booking.service’ 62

20. Chart of Runtime for 100 Data Entries of ‘dms.booking.service’ 63

21. Chart of Memory Usage for 100 Data Entries of ‘dms.booking.service’ 64

22. Overview of Team Discussion .. 73

ix

23. Source Code for Fetching Data Button from dms.uang.titipan 74

24. Source Code for Fetching Data Button from dms.account.invoice 74

25. Source Code for Fetching Data Button from dms.booking.service 76

I. INTRODUCTION

1.1. Background

In this digital era, information technology has become a key element in

various aspects of life, including the service and reservation industry

(Pattinama et al., 2023). Companies in this sector, including PT Tunas Dwipa

Matra, have faced pressure to adopt the latest technology to meet the demands

of an increasingly competitive market and ensure better customer experience.

PT Tunas Dwipa Matra is committed to maintaining its competitiveness in the

market by adopting the latest technological innovations.

One crucial aspect of digital transformation is the use of Application

Programming Interface (API), which allows various applications and systems

to communicate and interact with each other efficiently (Filiana et al., 2022).

A study implementing API in the Odoo ERP system, specifically in the

Customer Relationship Management (CRM) module with Couchbase as an

offline storage solution, aims to manage and store customer data efficiently

(Permatasari & Ariyani, 2019). From this research, it can be observed that the

implementation of API is key to providing a fast, reliable, and user-friendly

Booking Service for PT Tunas Dwipa Matra customers.

In the development of a database-based application, such as the API in this

Booking Service, there is a debate regarding the technical approach to

managing the database. One of the main debates is between the use of Object

Relational Mapping (ORM) and SQL queries. ORM is a programming

2

technique that allows developers to interact with a relational database using

an object-oriented programming language. ORM provides mapping between

objects in the application code and tables in the database, enabling developers

to perform database operations using object-oriented syntax and concepts

(Gorodnichev et al., 2020). On the other hand, SQL queries are statements

written in Structured Query Language (SQL) used to retrieve data from a

relational database, allowing users to specify the desired data to be retrieved

based on certain conditions and criteria (Alshemaimri et al., 2021).

The choice between using ORM or SQL queries can have a significant impact

on application performance, scalability, and development complexity (Colley

et al., 2018). Therefore, in the context of implementing the Booking Service

API at PT Tunas Dwipa Matra, it is crucial to conduct an in-depth analysis of

the differences, advantages, and disadvantages of each approach.

This research aims to provide a comprehensive understanding of how the use

of ORM and SQL queries affects the implementation of the Booking Service

API at PT Tunas Dwipa Matra. With a deep understanding of the comparison

between these two approaches, PT Tunas Dwipa Matra can make informed

decisions in designing an optimal system, ultimately improving service

quality and operational efficiency.

Through this research, the author will analyze the performance and

development complexity of each approach. The results of this research will

serve as a strong foundation for PT Tunas Dwipa Matra in making the right

decisions regarding the technical approach to implementing their Booking

Service API.

1.2 Problem Statements

Based on the background description, the research problem formulation for

this study is as follows:

3

1. The use of Object-Relational Mapping (ORM) significantly affects the

implementation of the Booking Service API at PT Tunas Dwipa Matra.

2. The use of SQL queries has a notable impact on the implementation of

the Booking Service API at PT Tunas Dwipa Matra.

3. Choosing a technical approach, whether ORM or SQL queries,

significantly impacts the performance and operational efficiency of the

Booking Service at PT Tunas Dwipa Matra.

1.3 Problem Constraints

The constraints of this study are as follows:

1. The analysis is limited to comparing the use of Object Relational Mapping

(ORM) and SQL queries in the implementation of the Booking Service

API at PT Tunas Dwipa Matra.

2. The evaluation is focused on the existing system at PT Tunas Dwipa

Matra for the Booking Service, focusing in 'dms.uang.titipan.customer'

table, 'dms.account.invoice' table, 'dms.booking.service' table.

3. The research will evaluate the speed performance and memory usage of

the Booking Service API.

4. The research will be conducted on Mokita module.

5. The performance testing will be conducted in Python 2.7.

1.4 Research Objectives

The objective of this research is to analyze the comparison between the

utilization of Object Relational Mapping (ORM) and SQL queries in the

implementation of the Booking Service API at PT Tunas Dwipa Matra. The

primary focus of this study is to comprehend the impact of employing ORM

and SQL queries on the performance of the Booking Service system, identify

the strengths and weaknesses of each approach in terms of speed

performance, and memory usage of the Booking Service API.

4

1.5 Research Advantages

The benefits derived from this research are as follows:

1. For the author, this study provides a profound understanding of the

comparison between ORM and SQL queries, research experience

contributing to practical problem-solving, and the development of data

analysis skills and scientific communication.

2. For the company, this research can assist in selecting the appropriate

technology for the implementation of their Booking Service API,

optimizing operational efficiency, and enhancing the company's

competitiveness in the competitive service and reservation industry.

3. For practitioners, this research can offer practical guidance for

professionals involved in the development of database-based

applications.

II. LITERATURE REVIEW

2.1. Previous Research

Several previous studies used as references in this research are as follows:

2.1.1. Object Relational Mapping Framework Performance Impact

This research was conducted by Dr. V. Sivakumar, T. Balachander,

Logu, Ramu Jannali in the Turkish Journal of Computer and

Mathematics Education Vol. 12 No. 7 (2021). This research article

delves into the impact of various object-relational mapping

frameworks on the performance of relational queries. By comparing

8 different frameworks across 4 programming languages, the study

sheds light on the significant increase in query execution time when

utilizing an object-relational mapping framework (Sivakumar et al.,

2021).

The findings underscore the importance of considering database

performance when making decisions about incorporating such

frameworks, despite the potential lack of noticeable impact in most

applications. The article's exploration of the limitations in using only

select queries and a single database also highlights the need for

further research to delve into additional factors that could influence

the performance of object-relational mapping frameworks

(Sivakumar et al., 2021).

6

2.1.2. The Impact of Object-Relational Mapping Frameworks on

Relational Query Performance

This research was conducted by Derek Colley, Clare Stanier, Md

Asaduzzaman in the International Conference on Computing,

Electronics & Communications Engineering (iCCECE) (2018). The

research explores the impact of object-relational mapping (ORM)

frameworks on relational database query performance. It discusses

the negative performance consequences of ORM tools, providing

examples of suboptimal query performance patterns resulting from

their use (Colley et al., 2018).

Additionally, the research suggests potential solutions to mitigate the

performance impacts of ORMs and highlights the need for a

database-centric approach to query performance tuning within the

context of ORM frameworks. Furthermore, the article discusses the

incorporation of a multi-schema model into relational database

development as an alternative approach, emphasizing the limitations

of NoSQL data stores and proposing the further development and

augmentation of the relational model to address new challenges

(Colley et al., 2018).

2.1.3. Exploring Object-Relational Mapping (ORM) Systems and How

to Effectively Program a Data Access Model

This research was conducted by Mikhail Gorodnichev, Marina

Moseva, Ksenia Poly, Khizar Dzhabrailov, Rinat in the Journal of

Archaeology of Egypt/Egyptology Vol. 17(3) (2020). The research

explores the concept of Object-Relational Mapping (ORM) and its

application in software development. It delves into the challenges

posed by the semantic gap between object-oriented programming

and relational databases, and how ORM serves as a solution by

providing an abstraction layer that enables developers to work with

objects instead of tables. The study focuses on the Entity Framework

7

(EF) as an example of an ORM system and compares its

functionality to manually written SQL queries. It discusses the

advantages and drawbacks of ORM, including its impact on

application performance, and presents findings from tests comparing

EF and "pure" SQL operations (Gorodnichev et al., 2020).

The research also addresses the issue of performance optimization

when using ORM libraries, demonstrating that ORM systems can be

effectively utilized without significantly compromising application

performance. Overall, the research concludes that ORM offers a

convenient approach to working with relational databases,

simplifying application development and maintenance.

2.1.4. Data-Oriented Differential Testing of Object-Relational

Mapping Systems

This research was conducted by Thodoris Sotiropoulos, Stefanos

Chaliasos, Vaggelis Atlidakis, in the International Conference on

Software Engineering (ICSE) (2021). The research focuses on

proposing and implementing a data-oriented testing approach, using

a tool called CYNTHIA, for Object-Relational Mapping (ORM)

systems. The authors address the challenges associated with

differential testing of ORM systems, such as the lack of a common

specification and input language, non-deterministic query results,

DBMS-dependent results, and data generation. They also discuss the

effectiveness of the solver-based approach for data generation in

identifying mismatches between ORM outputs. The authors

emphasize the importance of the quality of inserted data in testing

ORM systems and highlight the potential of their differential testing

approach in improving the reliability and robustness of ORM

systems (Sotiropoulos et al., 2021).

8

2.1.5. Comparison of Eloquent ORM with Query Builder in Work

Management System (Case Study: Muhammadiyah Lamongan

Hospital)

This research was conducted by Febryan Akhdani and Danur

Wijayanto, in the SENATIK Vol. 7 (2021). The research paper

focuses on comparing the performance of Eloquent ORM and Query

Builder within the context of a Work Management System at

Muhammadiyah Lamongan Hospital. The study delves into various

aspects such as the execution time of queries, page access, memory

usage, and code readability to determine which method is more

suitable for the system. The methodology employed in the research

includes interviews, literature review, and testing, providing a

comprehensive understanding of the comparison (Akhdani &

Wijayanto, 2022).

2.2. Theoretical Framework Description

2.2.1. Database

A database is defined as a meticulously organized assembly of data

that is electronically stored and retrieved. Within the realm of server-

side web applications, it assumes a pivotal role, serving as an

indispensable component for the storage and systematic processing

of data generated or consumed by end users (Shao et al., 2020). In

this research, the database system used is PostgreSQL.

PostgreSQL, often referred to as Postgres, is an advanced open-

source Object-Relational Database Management System

(ORDBMS). It places a strong emphasis on extensibility, creativity,

and compatibility. As an open-source database system, PostgreSQL

provides a robust and flexible platform for managing relational

databases, allowing users to customize and extend its functionality

according to their specific needs. The system is designed to support

9

a wide range of applications and promotes a collaborative and

innovative approach to database management (Waruwu, 2019).

2.2.2. Object Relational Mapping (ORM)

An object-relational mapping (ORM) framework is a solution for the

problem that arises when trying to map objects in programming

languages to database tables. These frameworks provide a mapping

from the object layer (object classes) to the relational database

tables, allowing for an interface to generate SQL queries without the

need for the application to contain any SQL code or have SQL

capabilities (Sivakumar et al., 2021).

ORM tools significantly streamline the process of saving and

retrieving objects within relational databases, providing an

abstraction layer that allows developers to interact with database

content primarily through object-oriented programming (OOP)

entities instead of directly working with the database management

system (DBMS). This approach abstracts the technical details of the

DBMS, creating an interface that maps object-oriented structures,

like classes and attributes, directly to relational tables and fields. By

doing so, ORM reduces the complexity associated with database

interactions, relieving developers from the need to write extensive

SQL code for basic operations, such as inserts, updates, deletes, or

queries. Instead, developers can handle data operations using

familiar OOP principles, focusing more on application logic rather

than the intricacies of SQL syntax or DBMS-specific features

(Gorodnichev et al., 2020).

Alternatively, in brief, Object-Relational Mapping (ORM) defined

as software solutions designed to address the object-relational

impedance mismatch problem (Colley et al., 2018).

10

2.2.3. Structured Query Language (SQL)

Structured Query Language (SQL) refers to the standardized and

widespread language used for working with SQL databases. It is

utilized for executing complex queries, including a high number of

join operations, and provides users with a high level of efficiency for

storage and management of structured data. SQL is also chosen as

the uniform language in the newly developed architecture for

integrating different types of databases, and it is used for the

definition of mappers to translate SQL queries into concrete

languages used by specific databases that do not support the SQL

standard (Bjeladinovic et al., 2020).

Structured Query Language (SQL) is a widely standardized language

integral to managing SQL databases, particularly known for its

ability to handle complex queries and multiple join operations that

facilitate effective data organization and aggregation. SQL enables

users to query data from multiple tables simultaneously, an essential

function in relational databases where data is typically normalized to

minimize redundancy. SQL is also a suitable language for integrating

diverse database systems, as it can act as a common framework that

translates SQL queries into the specific syntax of non-SQL

databases, enhancing interoperability and operational efficiency

across hybrid architectures (Ishaq Jound, 2020).

2.2.4. Application Programming Interface (API)

API stands for Application Programming Interface, is a set of rules

and protocols that allows different software applications to

communicate with each other. APIs define the methods and data

formats that applications can use to request and exchange

information (Pattinama et al., 2023).

11

APIs have numerous applications in modern technology, facilitating

the connection of various services and applications Author use in our

daily lives. For instance, social media applications use APIs for

content sharing, while payment APIs enable online transactions,

among many other uses.

2.2.5. Python

Python stands as one of the most widely embraced programming

languages globally, boasting a history spanning over two decades.

Its prevalence is particularly pronounced in academic settings and

enjoys extensive support as a platform for contemporary

applications, notably in utilities, desktop applications, and web

applications. Recognized as an interpreted language, Python

prioritizes readability through its syntax while maintaining a

compact size. Renowned for its extensive array of libraries, Python

enables achieving more with concise code. The language's clean

syntax proves apt for managing databases or utilizing tables (Patil,

2020).

2.2.6. Framework

A framework is an extensive and integrated software development

platform meticulously designed to provide a well-organized and

Figure 1. API Illustration

12

unified environment. It comes equipped with a diverse array of tools,

empowering developers to efficiently build, organize, and oversee

the development of web applications. The framework serves as a

foundational structure that streamlines the development process,

facilitating the creation of robust and scalable web-based solutions

(Endra et al., 2021).

2.2.7. Odoo

Odoo stands as an open-source Enterprise Resource Planning (ERP)

software, presenting a multifaceted platform comprised of three

fundamental components: a PostgreSQL database serving as its

backend, an application server, and a web server. This

comprehensive system encompasses basic modules designed to

support various business functions, providing a foundation for

extensive customization to cater to specific organizational needs.

The PostgreSQL database serves as a robust and reliable backend,

while the application server and web server collectively ensure

seamless and efficient operations across the entire ERP ecosystem.

The flexibility inherent in Odoo allows businesses to tailor their ERP

solutions to match their unique requirements and operational

workflows (Nurkhafidoh & Ariyani, 2019).

2.2.8. Enterprise Resource Planning (ERP)

Enterprise Resource Planning (ERP) systems represent sophisticated

software solutions designed to integrate and synchronize

information across an organization's diverse departments.

Encompassing a wide array of modules, these systems efficiently

manage key facets of organizational functions, including

manufacturing, human resources, finance, and supply chain

management. By automating essential corporate activities, ERP

systems contribute to streamlining processes, expediting decision-

13

making processes, realizing cost reductions, and enhancing overall

managerial control (Sambe et al., 2019).

III. RESEARCH METHODOLOGY

3.1. Research Time and Place

The research will be conducted at PT. Tunas Dwipa Matra, located at Jl.

Pramuka Number 01, Rajabasa District, Bandar Lampung City, Lampung

Province 35144. This research will be conducted in the odd semester of the

Academic Year 2023/2024.

3.2. Research Tools

The hardware and software specifications used in this research are as follows:

3.2.1. Hardware Tools

The hardware used in this research is a laptop with the following

specifications:

a) System Manufacturer : MSI

b) System Model : MSI Modern 14 C11M

c) Processor : Intel Core i5-1155G7

d) RAM : 8.00 GB

e) System Type : 64 bits

f) Storage : SSD 512 GB

3.2.2. Software Tools

The software used in this research is as follows:

a) Operating System : Windows 11 Home

b) Integrated Development Environment : Visual Studio Code

c) Database Management System : PostgreSQL version 11

15

d) Framework : Odoo version 10

e) Programming Language : Python version 2.7

f) Version Control System : Git

g) Web Browser : Google Chrome

3.3. Research Stages

The research stages in this study are illustrated in Figure 1. The diagram

represents the flowchart of the research process, which is divided into four

main parts: problem identification, literature review, data collection, and

performance testing.

Figure 2. Research Flowchart

16

3.3.1. Problem Identification

The research addresses challenges in the booking service module of

PT Tunas Dwipa Matra, where the existing code for database

processing reveals inefficiencies. The core problem lies in deciding

between Object-Relational Mapping (ORM) and SQL Query

frameworks, aiming to identify the more effective framework for

executing the program within the booking service module. This

involves assessing performance bottlenecks, considering

development speed and maintenance, evaluating scalability,

examining user experience implications, ensuring seamless

integration, and verifying alignment with business objectives. The

research seeks to pinpoint specific issues affecting the current

system's effectiveness and determine the optimal framework choice

that aligns with both technical and business requirements.

3.3.2. Literature Review

A literature review involves gathering information from diverse

sources like journals, books, and relevant research. The main goal is

to cultivate a profound understanding of the research topic. This

comprehensive review aids in formulating essential components that

align with the forthcoming study, guiding the exploration of the

chosen subject. By delving into the existing literature, this research

can strategically determine its direction, identifying unexplored

areas that warrant closer examination. The literature review serves

as a valuable tool to gain insights into aspects that may not have been

previously investigated, ensuring a thorough and informed approach

to the research.

3.3.3. Data Collection

Data collection in this research is obtained from two sources:

literature review and interview.

a) Literature Review

17

Literature review is the first step in the data collection process.

In this stage, various information and data related to API,

booking service, and Odoo framework will be gathered,

including writings, photos, and electronic documents.

b) Observation

The next step in data collection for this research is observation.

Observation is conducted to gain a more precise understanding

of the current conditions of the booking service. This involves

studying the database structure in the system to be integrated.

3.3.4. Performance Testing

The comparison used in this research is obtained by comparing the

execution time between Object-Relational Mapping (ORM) and

SQL Query. Since ORM and SQL Query differ in terms of code and

data access programming techniques, a comparison is conducted

with speed performance and memory usage as the parameters.

a) Data Dictionary

A data dictionary is used to specify and view the tables that will

be utilized. In this booking service module, 18 tables from the

internal company system are employed. All the specified tables

will be used in creating data queries that will be sent to the API

applications, namely Motoran, and vice versa. The tables used

include:

1) The table "dms_booking_service" is used to store data

related to booking service.

2) The table "dms_booking_service_line" is used to store data

related to spare parts and service in the booking service

menu.

3) The table "dms_service_advisor" is used to store data

related to service advisors.

18

4) The table "dms_service_advisor_line" is used to store data

related to spare parts and service in the service advisor

menu.

5) The table "dms_service_order" is used to store data related

to service orders.

6) The table "dms_service_order_line" is used to store data

related to spare parts and service in the service order menu.

7) The table "res_partner" is used to store data related to

customers.

8) The table "res_branch" is used to store data related to

dealers.

9) The table "hr_employee" is used to store data related to

employees.

10) The table "product_product" is used to store data related to

service and spare part codes.

11) The table "product_template" is used to store data related to

the price, name, and description of each spare part and

service.

12) The table "dms_api_configuration" is used to store data

related to API configuration.

13) The table "dms_api_log" is used to store data related to logs

from received and sent APIs.

14) The table "stock_production_lot" is used to store data

related to vehicles, such as chassis numbers, engines, and

others.

15) The table "dms_account_invoice" is used to store data

related to overall customer invoices.

16) The table "dms_account_payment" is used to store data

related to notes or payments from customers.

17) The table "dms_account_payment_line" is used to store

data related to lists of invoice notes or customer payments.

19

18) The table "dms_uang_titipan_customer" is used to store

data related to customer down payment.

20

Figure 3. Class Diagram

21

b) Design of Performance Testing Comparison

At this stage, the testing design includes a comparison between

ORM and SQL Query on a specific function within the related

module. The required design elements are as follows:

1) Design Testing for Select Data 'dms.uang.titipan.customer'

In this section, the part to be tested is the use of a query to

create a new record in the 'dms.uang.titipan.customer' table.

22

Table 1. Select Data 'dms.uang.titipan.customer'

Syntax INSERT

ORM uang_titipan_obj =

request.env['dms.uang.titipan.customer'].suspend_security()

 create_titipan =

uang_titipan_obj.suspend_security().create({

 'uang_titipan' :

post.get('Amount',False),

 'model_name' : 'dms.booking.service',

 'customer_id' : customer_id.id,

 'branch_id' : branch_id,

 'division' : 'Sparepart',

 'description': customer_desc,

 'date' : datetime.now(),

 'booking_service_name' :

str(post.get('DmsBookingNumber','')),

 'payment_by':'motoran'

 })

Query

SQL

query = """

 INSERT INTO dms_uang_titipan_customer

(uang_titipan, model_name, customer_id, branch_id,

division, description, date, booking_service_name,

payment_by)

 VALUES ({uang_titipan},

'dms.booking.service', {customer_id}, {branch_id},

'Sparepart', '{description}', '{date}',

'{booking_service_name}', 'motoran')

 RETURNING id

 """

 query = query.format(uang_titipan =

post.get('Amount',FALSE), customer_id = customer_id.id,

branch_id = branch_id, description = customer_desc, DATE =

datetime.NOW(), booking_service_name =

str(post.get('DmsBookingNumber','')))

 request._cr.execute(query)

23

2) Design Testing for Update Data 'dms.account.invoice'

In this section, the part that will be tested is the use of a

query to retrieve data that meets several specified criteria

on the `invoice_titipan_obj` object from the

'dms.account.invoice' model.

Table 2. Update Data 'dms.account.invoice'

3) Design Testing for Insert Data 'dms.booking.service'

In this section, the part to be tested involves the use of a

query to write (update) several columns in the

`booking_service_obj` object from the

'dms.booking.service' model.

Syntax SELECT

ORM invoice_titipan_obj =

request.env['dms.account.invoice'].suspend_security().sea

rch(

 [('partner_id', '=', service_order.stnk_id.id),

 ('branch_id', '=', service_order.branch_id.id),

 ('state', '=', 'open'),

 ('type', '=', 'out_invoice'),

 ('model_name', '=', 'dms.uang.titipan.customer')])

Query

SQL

query = """

 SELECT * FROM dms_account_invoice

 WHERE partner_id = {} AND branch_id = {} AND state =

'open'

 AND type = 'out_invoice' AND model_name =

'dms.uang.titipan.customer'

""".format(service_order.stnk_id.id,

service_order.branch_id.id)

request._cr.execute(query)

invoice_titipan_data = request._cr.fetchall()

24

Table 3. Insert Data 'dms.booking.service'

c) System Testing Scenario

The query testing conducted in this study utilizes performance

testing and is followed by a comparative analysis of the test

results. The following are the scenarios for testing the use of

ORM and SQL Query in the Booking Service API. Performance

Syntax WRITE

ORM booking_service_obj.write({

 'date_service' : booking_date,

 'jam_service' : str(booking_time[0:2]),

 'menit_service' :

str(booking_time[3:5]),

 'service_pit_id' : pit_id,

 'state' : 'reschedule'

 })

Query

SQL

query = """

 UPDATE dms_booking_service

 SET date_service = '{booking_date}',

 jam_service = '{jam_service}',

 menit_service = '{menit_service}',

 service_pit_id = {service_pit_id},

 state = 'reschedule'

 WHERE id = {booking_service_id}

""".format(

 booking_date=booking_date,

 jam_service=booking_time[0:2],

 menit_service=booking_time[3:5],

 service_pit_id=pit_id,

 booking_service_id=booking_service_id

)

request._cr.execute(query)

25

testing will be conducted with a dataset of 10,000; 50,000; and

100,000 data entries under optimal internet network conditions.

Table 4. System Testing Scenario

List of

Tests
Description

Expected

Outcome

SELECT

Data

Retrieve data that meets

several specified criteria on

'dms.titipan.customer'

model.

Successfully

retrieve data that

meets the specified

criteria.

WRITE

Data

Write (update) object from

the 'dms.account.invoice’

model.

The object updates

successfully.

INSERT

Data

Create a new record in the

'dms.booking.service’

table.

Successfully create

a new record.

V. CONCLUSION AND RECOMMENDATION

5.1. Conclusion

The research on using ORM and SQL queries for the Booking Service API at

PT Tunas Dwipa Matra demonstrates that ORM offers significant advantages

in simplifying and optimizing development and improving maintainability.

ORM performs efficiently in standard operations like data retrieval and

updates, reducing complexity in the coding process and making it ideal for

routine tasks. Its built-in validation, security features, and ease of use make it

well-suited for scenarios where development speed and long-term

maintainability are priorities. However, SQL queries excel in complex

operations or performance-critical tasks, providing greater control over

execution and faster processing for specialized or large-scale operations.

In conclusion, ORM is a favourable choice for most tasks within the Booking

Service API, particularly for routine operations where ease of development

and security are key. While SQL remains advantageous for highly optimized

or complex queries, the overall findings suggest that ORM strikes a balance

between efficiency, resource usage, and maintainability. By leveraging the

strengths of both ORM and SQL, the implementation can achieve optimal

performance and scalability while ensuring a secure and maintainable system.

68

5.2. Recommendation

It is recommended that PT Tunas Dwipa Matra adopts a hybrid approach,

combining both ORM and SQL queries based on the specific needs of each

task. For routine operations such as data insertion, updates, and simpler

queries, ORM should be preferred for its simplicity and ease of maintenance.

However, for more complex or critical tasks, direct SQL queries should be

employed to improve speed and optimize resource usage.

REFERENCES

Akhdani, F., & Wijayanto, D. (2022). Comparison of Eloquent ORM with Query

Builder in Work Management System (Case Study: Muhammadiyah

Lamongan Hospital). Conference SENATIK STT Adisutjipto Yogyakarta, 7.

https://doi.org/10.28989/senatik.v7i0.449

Alshemaimri, B., Elmasri, R., Alsahfi, T., & Almotairi, M. (2021). A survey of

problematic database code fragments in software systems. Engineering

Reports, 3(10), e12441. https://doi.org/10.1002/eng2.12441

Bjeladinovic, S., Marjanovic, Z., & Babarogic, S. (2020). A proposal of architecture

for integration and uniform use of hybrid SQL/NoSQL database

components. Journal of Systems and Software, 168, 110633.

https://doi.org/10.1016/j.jss.2020.110633

Colley, D., Stanier, C., & Asaduzzaman, M. (2018). The Impact of Object-

Relational Mapping Frameworks on Relational Query Performance. 2018

International Conference on Computing, Electronics & Communications

Engineering (iCCECE), 47–52.

https://doi.org/10.1109/iCCECOME.2018.8659222

Endra, R. Y., Aprilinda, Y., Dharmawan, Y. Y., & Ramadhan, W. (2021). Analisis

Perbandingan Bahasa Pemrograman PHP Laravel dengan PHP Native pada

70

Pengembangan Website. EXPERT: Jurnal Manajemen Sistem Informasi dan

Teknologi, 11(1), 48. https://doi.org/10.36448/expert.v11i1.2012

Filiana, A., Rini, M. N. A., Prabawati, A. G., & Samat, R. A. (2022). Pengembangan

Rest API Untuk Informasi Pasar Tradisional di Kota Yogyakarta dengan

Metode Incremental. SINTECH (Science and Information Technology)

Journal, 5(1), 10–23. https://doi.org/10.31598/sintechjournal.v5i1.1060

Gorodnichev, M., Moseva, M., Poly, K., & Dzhabrailov, K. (2020). Exploring

Object-Relational Mapping (ORM) Systems and How to Effectively

Program A Data Access Model.

Ishaq Jound, H. H. (2020). Comparison of performance between Raw SQL and

Eloquent ORM in Laravel.

Nurkhafidoh, S., & Ariyani, N. F. (2019). Rancang Bangun API untuk Odoo ERP

pada Modul Sales. 8(2).

Patil, P. R. (2020). Smart Forest: An IoT Based Forest Safety And Conservation

System. 9(03).

Pattinama, Y. L., Susanti, I., Luhur, U. B., Raya, J. C., & Utara, P. (2023).

Implementasi Rest API Web Service Dengan Otentifikasi JSON Web Token

Untuk Aplikasi Properti.

Permatasari, R. D., & Ariyani, N. F. (2019). Rancang Bangun API untuk Odoo ERP

pada Modul CRM (Customer Relationship Management).

Sambe, T., Maag, S., & Cavalli, A. (2019). A Methodology for Enterprise Resource

Planning Automation Testing Application to the Open Source ERP-ODOO:

Proceedings of the 14th International Conference on Software Technologies,

407–415. https://doi.org/10.5220/0007923004070415

71

Shao, S., Qiu, Z., Yu, X., Yang, W., Jin, G., Xie, T., & Wu, X. (2020). Database-

Access Performance Antipatterns in Database-Backed Web Applications.

2020 IEEE International Conference on Software Maintenance and

Evolution (ICSME), 58–69.

https://doi.org/10.1109/ICSME46990.2020.00016

Sivakumar, D. V., Balachander, T., & Jannali, R. (2021). Turkish Journal of

Computer and Mathematics Education Vol.12 No. 7 (2021), 2516-2519

Research Article.

Sotiropoulos, T., Chaliasos, S., Atlidakis, V., Mitropoulos, D., & Spinellis, D.

(2021). Data-Oriented Differential Testing of Object-Relational Mapping

Systems. 2021 IEEE/ACM 43rd International Conference on Software

Engineering (ICSE), 1535–1547.

https://doi.org/10.1109/ICSE43902.2021.00137

Waruwu, T. S. (2019). Implementasi Postgresql Sebagai Sistem Manajemen Basis

Data Pada Pendaftaran Mahasiswa Baru Berbasis Web.

