PENGEMBANGAN MODUL KELENGKAPAN DOKUMEN YUDISIUM PADA SISTEM INFORMASI AKADEMIK TERPADU UNIVERSITAS LAMPUNG (SIAKADU) MENGGUNAKAN PHP DAN LATEX

(SKRIPSI)

Oleh Wirda Diana Nesywa 2117051059

FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS LAMPUNG BANDAR LAMPUNG

PENGEMBANGAN MODUL KELENGKAPAN DOKUMEN YUDISIUM PADA SISTEM INFORMASI AKADEMIK TERPADU UNIVERSITAS LAMPUNG (SIAKADU) MENGGUNAKAN PHP DAN LATEX

Oleh

WIRDA DIANA NESYWA

Skripsi

Sebagai Salah Satu Syarat untuk Mencapai Gelar SARJANA KOMPUTER

Pada

Jurusan Ilmu Komputer

Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Lampung

FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS LAMPUNG BANDAR LAMPUNG

2025

ABSTRAK

PENGEMBANGAN MODUL KELENGKAPAN DOKUMEN YUDISIUM PADA SISTEM INFORMASI AKADEMIK TERPADU UNIVERSITAS LAMPUNG (SIAKADU) MENGGUNAKAN PHP DAN LATEX

Oleh

WIRDA DIANA NESYWA

Universitas Lampung terus berupaya meningkatkan kualitas layanan akademik melalui pemanfaatan teknologi informasi. Namun, proses penyusunan dokumen yudisium seperti buku, slide, dan daftar nama masih dilakukan secara manual, menyebabkan ketergantungan pada tenaga administrasi, risiko kesalahan input, dan keterlambatan proses. Penelitian ini bertujuan untuk mengembangkan modul kelengkapan dokumen yudisium pada Sistem Informasi Akademik Terpadu Universitas Lampung (SIAKADU) menggunakan PHP dan LaTeX. Pengembangan sistem dilakukan dengan metode waterfall, dimulai dari tahap komunikasi, perencanaan, pemodelan, pembangunan, pengujian, hingga implementasi. Sistem ini memanfaatkan basis data PostgreSQL sebagai penyimpanan data dan menghasilkan dokumen yudisium secara otomatis dalam format profesional melalui integrasi dengan LaTeX. Hasil pengujian alpha dan beta menunjukkan bahwa sistem mampu meningkatkan efisiensi kerja, mengurangi kesalahan input data, serta menghasilkan dokumen yudisium yang akurat dan terstruktur. Sistem ini dapat menjadi solusi digital yang mendukung proses administrasi akademik yang lebih cepat, akurat, dan terintegrasi di lingkungan FMIPA Universitas Lampung.

Kata Kunci: SIAKADU, dokumen yudisium, PHP, LaTeX, PostgreSQL, waterfall.

ABSTRACT

DEVELOPMENT OF A GRADUATION DOCUMENT COMPLETION MODULE IN THE INTEGRATED ACADEMIC INFORMATION SYSTEM OF THE UNIVERSITY OF LAMPUNG (SIAKADU) USING PHP AND LATEX

By

WIRDA DIANA NESYWA

The University of Lampung continues to improve the quality of its academic services through the use of information technology. However, the preparation of graduation documents—such as the graduation book, slides, and name list—is still conducted manually, leading to dependency on administrative staff, data input errors, and delays. This research aims to develop a module for the preparation of graduation documents in the Integrated Academic Information System of the University of Lampung (SIAKADU) using PHP and LaTeX. The system development follows the waterfall model, starting from communication, planning, modeling, construction, testing, and deployment stages. The system utilizes PostgreSQL as the database and integrates LaTeX to automatically generate professionally formatted graduation documents. Alpha and beta testing results show that the system improves administrative efficiency, reduces data input errors, and produces accurate and well-structured documents. This system is expected to serve as a digital solution that supports faster, more accurate, and integrated academic administration within the Faculty of Mathematics and Natural Sciences at the University of Lampung.

Keywords: SIAKADU, graduation documents, PHP, LaTeX, PostgreSQL, waterfall.

Judul Skripsi LAM

M: PENGEMBANGAN MODUL KELENGKAPAN **SISTEM** YUDISIUM PADA DOKUMEN **TERPADU** INFORMASI **AKADEMIK** (SIAKADU) **UNIVERSITAS** LAMPUNG MENGGUNAKAN PHP DAN LATEX

Nama Mahasiswa

Nomor Pokok Mahasiswa

RSITAS LAMPUNG UNIVERSITAS LAMPUNG UNIVERSITAS

Program Studi AMP

Jurusan TAS LAMPI

AMPUNG

LAMPUNG

Fakultas TAS LAMP

: Wirda Diana Nesywa

V: 2117051059

: S1 Ilmu Komputer

: Ilmu Komputer

: Matematika dan Ilmu Pengetahuan Alam

MENYETUJUI

1. Komisi Pembimbing

Yunda Heningtyas, M.Kom.

NIP. 198901082019032014

Mengetahui.

2. Ketua Jurusan Ilmu Komputer

3. Ketua Prodi Ilmu Komputer

LAMPUNG UNIVERSITAS LAMPUN LAMPUNG UNIVERSITAS LAMPUN

LAMPUNG UNIVERSITAS LAMPUNG UNIVERSITAS LAMPUNG UNIVERSITAS LAMPUNG UNIVERSITAS

LAMPUNG UNIVERSITAS LAMPUNG UNIVERSITAS LAMPUNG UNIVERSITAS LAMPUNG UNIVERSITAS

Tristiyanto, Ph.D.

NIP. 198104142005011001/PUNG UNI

AMPUNG UNI

LAMPUNG UNI

LAMPUNG UNIT

AMPUNG UNI

1. Tim Penguji

KetuaSITAS LAMPI

: Dwi Sakethi, S.Si., M.Kom.

Sekretaris Penguji

: Yunda Heningtyas, M.Kom.

Bukan Pembimbing

: Bambang Hermanto, S.Kom., M.C

2. Dekan Fakultas Matematika dan Ilmu Pengetahuan Alam

NIP. 197110012005011002

Tanggal Lulus Ujian Skripsi: 19 Juni 2025

SITAS LAMPUNG UNIVERSITAS LAMPUNG UNIVERSITAS SITAS LAMPUNG UNIVERSITAS LAMPUNG UNIVERSITAS SITAS LAMPUNG UNIVERSITAS LAMPUNG UNIVERSITAS

SITAS LAMPUNG UNIVERSITAS LAMPUNG SITAS LAMPUNG UNIVERSITAS LAMPUNG

AMPUNG UNIT

PERNYATAAN

Saya yang bertanda tangan di bawah ini:

Nama: Wirda Diana Nesywa

NPM: 2117051059

Menyatakan bahwa skripsi saya yang berjudul "Pengembangan Modul Kelengkapan Dokumen Yudisium Pada Sistem Informasi Akademik Universitas Lampung (SIAKADU) Menggunakan PHP dan LaTeX" merupakan karya saya sendiri dan bukan karya orang lain. Semua tulisan yang tertuang di skripsi ini telah mengikuti kaidah penulisan karya ilmiah Universitas Lampung. Apabila di kemudian hari terbukti skripsi saya merupakan hasil penjiplakan atau dibuat orang lain, maka saya bersedia menerima sanksi berupa pencabutan gelar yang saya terima.

Bandar Lampung, 7 Agustus 2025

Wirda Diana Nesywa NPM, 2117051059

RIWAYAT HIDUP

Lahir di Bandar Lampung pada hari Jum'at, 13 Desember 2002. Anak pertama dari lima bersaudara, dari Bapak Sahrurrasdi dan Ibu Ristiyana. Menyelesaikan Pendidikan di SDN 2 Rawa Laut (TELADAN) Bandar lampung pada tahun 2015, kemudian menyelesaikan Pendidikan menengah pertama di Daar El Qolam Islamic Boarding School Tangerang pada tahun 2018 dan lulus dari Pendidikan menengah atas di Daar El Qolam Islamic Boarding School Tangerang pada tahun 2021.

Pada tahun 2021, terdaftar sebagai mahasiswa jurusan Ilmu Komputer fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Lampung melalui jalur SBMPTN. Kegiatan-kegiatan yang dilakukan selama menjadi mahasiswa yaitu sebagai berikut :

- Menjadi anggota Bidang Kesekertariatan Himpunan Mahasiswa Ilmu Komputer periode 2022/2023.
- 2. Menjadi anggota bidang Internal Himpunan Mahasiswa Ilmu Komputer periode 2023/2024.
- 3. Menjadi Asisten Dosen mata kuliah Sistem Pakar di Jurusan Ilmu Komputer pada tahun ajaran Ganjil 2024.
- Melaksanakan Kerja Praktik Pada Bulan November Februari 2023 di PELINDO Panjang.
- Melaksanakan Kuliah Kerja Nyata di Desa Rajabasa lama 2 LAMPUNG Timur Pada Tahun 2024.

мото

" Jadikanlah sabar dan sholat sebagai penolongmu. Dan sesungguhnya yang demikian itu sungguh berat, kecuali bagi orang-orang yang khusyuk "

(Al – Baqarah ayat 45)

"Sesungguhnya bersama kesulitan ada kemudahan "

(Al – Insyirah ayat 6)

"It was never about being the fastest.. only about never giving up "

(Nesy)

PERSEMBAHAN

Alhamdulillahirobbil'alamin

Puja dan puji Syukur tercurahkan kepada Allah Subhanahu Wa Ta'alaa atas segala Rahmat dan Karunia-Nya sehingga saya dapat menyelesaikan skripsi ini.

Shalawat serta salam selalu tercurahkan kepada Nabi Muhammad SAW.

Kupersembahkan karya ini kepada:

Keluarga Tercinta

Abah, Mamah, Adik-adiku

Yang senantiasa memberikan yang terbaik dan do'a terbaik yang selalu menyertaiku. Kuucapkan terimakasi yang sebesar besarnya kepada Abah dan Mamah karena telah mendidik dan membesarkanku dengan cara yang dipenuhi kasih saying, dukungan, dan pengorbanan. Kupersembahkan semua ini untuk kalian. Tanpa kalian, semua ini tidak akan terwujud. Setiap Langkah yang kuambil adalah hasil dari cinta dan kerja keras kalian.

Seluruh Keluarga Besar Ilmu Komputer 2021

Yang selalu memberikan motivasi dan dukungan.

Almamater Tercinta, Universitas lampung dan Jurusan Ilmu Komputer

Tempat menimba ilmu, untuk menjadi bekal hidup dunia dan akhirat.

SANWACANA

Puji dan syukur penulis panjatkan ke hadirat Allah SWT atas segala limpahan rahmat, taufik, dan hidayah-Nya, sehingga penulis dapat menyelesaikan skripsi ini dengan judul "Pengembangan Modul Kelengkapan Dokumen Yudisium Pada Sistem Informasi Akademik Terpadu Universitas Lampung Menggunakan PHP dan LaTeX" sebagai salah satu syarat untuk memperoleh gelar Sarjana pada Program Studi Ilmu Komputer, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Lampung.

Skripsi ini adalah bukti perjalanan panjang yang tidak mudah. Ada proses yang senyap, ada lelah yang tak terlihat, namun setiap langkah selalu disertai keyakinan bahwa usaha yang tulus tidak akan sia-sia. Di balik halaman-halaman ini, tersimpan banyak pelajaran, pengorbanan, serta doa yang senantiasa menyertai.

Dengan segala kerendahan hati, penulis mengucapkan terima kasih yang sebesarbesarnya kepada:

- 1. Allah Subhanahu Wa Ta'ala yang telah memberikan nikmat Kesehatan dan kemampuan untuk menyelesaikan skripsi ini.
- Ayahanda tercinta Sahrurrasdi, ibundan tercinta Ristiyana, adik adikku Nayla Safira, Muhammad Raisa Al-Ghiyats, Ahmad Kays El – Fayyadh, dan Khansa Zahira serta keluarga besar Bani El – Syihab yang selalu memberikan Do'a serta dukungan yang tiada hentinya dengan penuh kasih sayang.
- 3. Bapak Dr. Eng. Heri Satria, S.Si., M.Si. selaku Dekan FMIPA Universitas Lampung.

- 4. Bapak Dwi Sakethi, S.Si., M.Kom. selaku Dosen Pembimbing Utama dan Ketua Jurusan Ilmu Komputer yang telah memberikan arahan, ide, motivasi, kritik serta arahan dan saran kepada penulis sehingga dapat menyelesaikan skripsi ini dengan baik.
- 5. Ibu Yunda Heningtyas, M.Kom. sebagai Dosen Pembimbing 2 dan Sekertaris Jurusan Ilmu Komputer yang telah memberikan masukan yang bermanfaat dalam perbaikan skripsi ini.
- 6. Bapak Bambang Hermanto, S.Kom., M.Cs. sebagai Dosen Pembahas yang telah memberikan masukan yang bermanfaat dalam perbaikan skripsi ini dan medukung peningkatan akademik penulis.
- 7. Bapak Tristiyanto, Ph.D. Selaku Ketua Program Studi Ilmu Komputer.
- 8. Ibu Anie Rose Irawati, S.T., M.Cs. selaku Dosen Pembimbing Akademik yang telah memberikan arahan, ide, motivasi, dan dukungan akademik penulis.
- 9. Bapak dan Ibu Dosen Jurusan Ilmu Komputer FMIPA Universitas Lampung yang telah memberikan ilmu dan pengalaman dalam hidup untuk menjadi lebih baik.
- 10. Ibu Ade Nora Maela, Bang Zainuddin dan Mas Nofal yang telah membantu segala urusan administrasi penulis di Jurusan Ilmu Komputer.
- 11. Keluarga Besar Ilmu Komputer 2021 yang tidak dapat penulis sebutkan satu persatu.
- 12. Viona Septiana selaku sahabat dari dari penulis yang selalu memberikan support dan motivasi kepada penulis.
- 13. Seluruh pihak yang terlibat dalam proses penelitian skripsi ini yang tidak dapat penulis sebutkan satu persatu.

Bandar Lampung, 7 Agustus 2025

Wirda Diana Nesywa NPM. 2117051059

DAFTAR ISI

	Н	alaman
DAFTAR G	GAMBAR	xi
DAFTAR T	TABEL	xii
DAFTAR K	KODE PROGRAM	xii
I. PENDA	AHULUAN	1
	tar Belakang	
	musan Masalah	
	tasan Masalah	
	juan	
J	anfaat	
-	AUAN PUSTAKA	_
	nelitian Terdahulu	
2.1.1.	Pengembangan Sistem Informasi Akademik	
2.1.1.	Implementasi Information Schema	
2.1.2.	Rancangan Sistem Informasi	
	aian Tinjauan Pustaka	
2.2. 018	Sistem Informasi Akademik	
2.2.1.		/
2.2.2.	Sistem Informasi Akademik Terpadu Universitas Lampung (SIAKADU)	8
2.2.3.	Yudisium	
2.2.4.	PostgreSQL	
2.2.5.	PHP	
2.2.6.	LaTeX	11
2.2.7.	MiKTeX	12
2.2.8.	Visual Studio Code (VS Code)	13
2.2.9.	APACHE	
2.2.11.	Unified Modelling Language (UML)	
2.2.12.	Alpha Testing	
2.2.13.	•	1.5

2.2.14.	Skala Likert	18
2.2.15.	Waterfall Method	18
III. MET	ODE PENELITIAN	25
3.1. Wa	aktu dan Tempat	25
3.2. Tal	hapan Penelitian	25
3.2.1.	Literatur Study	26
3.2.2.	Communication	27
3.2.3.	Planning	32
3.2.4.	Modelling	35
3.2.5.	Construction	48
3.2.6.	Deployment	50
4.1. Ga	mbaran Umum Sistem	52
4.2. Ha	sil Implementasi	52
4.2.1.	Implementasi Pengolahan Data	52
4.2.2.	Antarmuka Sistem	55
4.3. Per	ngujian Sistem	59
4.3.1.	Alpha Testing	59
4.3.2.	Beta Testing	60
4.3.3.	Analisis Hasil	62
4.4. Per	mbahasan	63
5.1. Sir	npulan	65
5.2. San	ran	65
DAFTAR P	USTAKA	67

DAFTAR GAMBAR

Gambar	Halaman
1. Tahapan Metode Waterfall	19
$2.\ Alur\ penelitian\ pembuatan\ modul\ kelengkapan\ dokumen\ yudisium.\ .$	26
3. Contoh buku yudisium	29
4. Contoh slide yudusium.	29
5. Contoh daftar nama yudisium.	30
6. Use Case Diagram modul kelengkapan dokumen yudisium	31
7. Entity Relationship Diagram Dokumen Yudisium	38
8. Activity Diagram login	39
9. Activity diagram pilih sub menu yudisium.	40
10. Activity diagram generate buku yudisium.	42
11. Activity diagram generate slide yudisium	43
12. Activity diagram generate daftar nama yudisium.	44
13. Halaman <i>login</i> SIAKADU.	45
14. Layout fitur generate	46
15. Layout file LaTeX.	46
16. <i>Layout</i> buku yudisium pada MiKTeX	47
17. Layout slide yudisium pada MiKTeX.	47
18. <i>Layout</i> daftar nama yudisium pada MiKTeX	48
19. Tampilan halaman <i>login</i> SIAKADU.	56
20. Tampilan halaman fitur-fitur SIAKADU.	57
21. Tampilan halaman pilih periode yudisium	57
22. Tampilan halaman kode LaTeX.	58
23. Tampilan buku yudisium.	59
24. Tampilan <i>slide</i> yudisium.	59
25. Tampilan daftar nama yudisium pada MiKTeX	60

DAFTAR TABEL

Tabel	Halaman
1.Komponen Use Case Diagram	14
2.Komponen Use Case Diagram	16
3.Komponen Activity Diagram	
4. Skala Likert	19
5. Waktu Penelitian Menggunakan Gantt Chart	26
6. Jadwal kerja	
7 Hasil Evaluasi Responden Terhadap Sistem	61
8. Hasil evaluasi responden terhadap sistem.	64
9. Rata-rata skor <i>beta testing</i>	65

DAFTAR KODE PROGRAM

Kode Program	Halaman
1. Koneksi database dan query	53
2. Struktur dokumen LaTeX	54

I. PENDAHULUAN

1.1. Latar Belakang

Universitas Lampung merupakan salah satu perguruan tinggi ternama di Indonesia yang terus berupaya meningkatkan kualitas layanan akademik melalui pemanfaatan teknologi informasi. Salah satu bentuk implementasi transformasi digital yang dilakukan adalah pengembangan Sistem Informasi Akademik Terpadu Universitas Lampung (SIAKADU). SIAKADU berfungsi untuk pengelolaan berbagai proses akademik seperti pendaftaran mata kuliah, pengisian Kartu Rencana Studi (KRS), hingga pencatatan nilai mahasiswa (Ardiansyah *et al.*, 2021). Meskipun SIAKADU telah memberikan kontribusi besar terhadap pengelolaan data akademik, beberapa fitur pendukung masih belum optimal, termasuk pada aspek penyusunan kelengkapan dokumen yudisium, seperti buku yudisium, *slide* yudisium, dan daftar nama yudisium.

Saat ini, proses pembuatan dokumen yudisium di Fakultas Matematika dan Ilmu Pengetahuan Alam (FMIPA) Universitas Lampung masih dilakukan secara manual. Data kelulusan mahasiswa diperoleh dari SIAKADU dan Google Form, lalu dipindahkan ke dalam Microsoft Excel untuk disusun menjadi dokumen melalui perangkat lunak AutoCAD. Prosedur ini mengandung beberapa kendala, seperti ketergantungan pada satu orang admin yang memahami teknis Spreadsheet, risiko kesalahan dalam *input* data, serta keterlambatan dalam penyelesaian dokumen akibat proses yang panjang dan berulang. Kondisi tersebut menunjukkan adanya kebutuhan untuk merancang dan mengembangkan sistem pendukung yang dapat mempermudah dan mempercepat proses penyusunan kelengkapan dokumen yudisium, dengan pendekatan teknologi yang relevan dan tepat. Salah satu pendekatan yang potensial adalah penerapan basis data dengan

PostgreSQL untuk menyimpan dan mengelola data mahasiswa yang telah lulus. PostgreSQL dipilih karena kemampuannya dalam menangani dataset besar secara efisien, sebagaimana dijelaskan oleh Praba dan Safitri (2020), serta fleksibilitasnya dalam integrasi sistem sebagaimana diuraikan oleh Waruwu (2019).

Sistem yang dikembangkan akan mengintegrasikan teknologi pemrograman PHP dengan LaTeX melalui MiKTeX. dokumen yang dapat disusun secara langsung dari data yang tersedia di *database*, dengan format dan struktur yang konsisten. LaTeX dikenal sebagai alat penyusun dokumen ilmiah yang mampu menghasilkan keluaran profesional, sehingga sangat cocok digunakan untuk buku yudisium dan dokumen resmi lainnya. Penelitian ini dibatasi pada pengembangan modul kelengkapan dokumen yudisium yang mencakup buku yudisium, *slide* yudisium, dan daftar nama yudisium dalam format Microsoft Word. Modul ini dikembangkan berdasarkan data mahasiswa yang telah lulus sidang skripsi di lingkungan FMIPA Universitas Lampung. Walaupun data diambil dari sistem secara langsung, validasi akhir tetap menjadi tanggung jawab pihak administrasi akademik fakultas.

Dengan adanya sistem ini, dapat tercapai efisiensi dalam pengelolaan dokumen yudisium, mempermudah beban kerja administratif, serta meningkatkan akurasi dan konsistensi data. Hal ini selaras dengan tujuan pengembangan sistem informasi akademik modern yang tidak hanya berorientasi pada digitalisasi data, tetapi juga pada peningkatan kualitas layanan pendidikan tinggi secara menyeluruh.

1.2. Rumusan Masalah

Rumusan masalah dari penelitian ini adalah:

a. Merancang dan mengembangkan modul kelengkapan dokumen yudisium dengan memanfaatkan teknologi yang tepat guna mendukung efisiensi dalam proses administrasi akademik.

- b. Menyusun data mahasiswa yang telah lulus agar modul kelengkapan dokumen yudisium dapat dihasilkan secara lebih terstruktur dan efisien.
- c. Mengembangkan modul kelengkapan dokumen yudisium yang mampu meminimalkan kesalahan *input* data serta mempercepat proses pembuatannya di Universitas Lampung.

1.3. Batasan Masalah

Batasan masalah dari penelitian ini antara lain adalah sebagai berikut :

- a. Pengembangan modul ini berfokus pada pembuatan buku yudisium, slide yudisium, dan daftar nama yudisium.
- Modul ini mencakup data mahasiswa Fakultas Matematika dan Ilmu
 Pengetahuan Alam yang telah lulus sidang skripsi.
- c. Proses validasi data tetap dilakukan oleh admin fakultas, meskipun data diambil secara langsung dari SIAKADU.

1.4. Tujuan

Tujuan dari penelitian ini adalah, antara lain sebagai berikut :

- a. Mengembangkan kelengkapan dokumen yudisium pada SIAKADU berdasarkan data mahasiswa yang telah lulus.
- b. Mempercepat dan mempermudah proses penyusunan data kelulusan mahasiswa dalam pembuatan modul kelengkapan dokumen yudisium.
- c. Mengurangi potensi kesalahan *input* data dalam pembuatan buku yudisium.

1.5. Manfaat

Manfaat dari penelitian ini adalah:

a. Meningkatkan efisiensi administrasi di Universitas Lampung dengan mempercepat pembuatan modul kelengkapan dokumen yudisium.

- b. Mengurangi beban kerja manual bagi staf administrasi dengan sistem yang mempermudah pengelolaan data kelulusan mahasiswa.
- c. Meningkatkan akurasi data dengan sistem yang meminimalkan kesalahan *input* dan memastikan konsistensi dokumen yudisium.

II. TINJAUAN PUSTAKA

2.1. Penelitian Terdahulu

Beberapa penelitian terdahulu yang digunakan sebagai refrensi dalam penelitian ini adalah sebagai berikut.

2.1.1. Pengembangan Sistem Informasi Akademik untuk Bagian Keuangan dan Pengolahan Nilai Yudisium

Penelitian ini dilakukan oleh Muhammad Azka Ramadhan et al., tahun 2021. Penelitian ini bertujuan untuk merancang sistem informasi akademik berbasis web guna mengatasi kendala dalam pengelolaan keuangan dan nilai yudisium di lingkungan Politeknik Kampar. Saat itu, permasalahan utama terletak pada proses pengolahan data akademik yang masih bersifat manual, khususnya dalam hal pengisian nilai, rekapitulasi hasil studi, serta proses pembayaran yang dilakukan berulang kali menggunakan Microsoft Excel. Sistem tersebut dikembangkan dengan pendekatan waterfall, menggunakan bahasa pemrograman PHP dan basis data MySQL melalui framework Codeigniter. Hasil akhirnya adalah sistem akademik terintegrasi yang dapat meningkatkan efisiensi kerja staf, menurunkan risiko kesalahan input, dan mempercepat pengolahan data secara keseluruhan. Walaupun tidak menggunakan LaTeX atau PostgreSQL, penelitian ini relevan dengan penelitian yang dilakukan penulis karena sama-sama fokus pada pengelolaan data yudisium dan pengembangan sistem akademik yang efisien dan terstruktur. (Ramadhan et al., 2021).

2.1.2. Implementasi *Information Schema Database* Pada PostgreSQL Untuk Pembuatan Tabel Informasi Dengan Menggunakan Phyton di PT XYZ

Penelitian ini dilakukan oleh Dimas Aji Bayu dan Yerymia Alfa Susetyo tahun 2022. Penelitian ini membahas tentang implementasi information schema pada database PostgreSQL untuk mempermudah proses pembuatan tabel informasi di PT XYZ. Latar belakang penelitian ini didasari oleh kebutuhan migrasi aplikasi dari Oracle Forms yang dianggap sudah usang dan tidak efisien. Proses migrasi memerlukan waktu lama karena jumlah form yang banyak dan keterbatasan sumber daya manusia. Untuk mengatasi hal ini, PT XYZ mengembangkan sebuah library yang memanfaatkan information schema untuk mengotomatisasi pembuatan form di website. Dengan menggunakan Python, penelitian ini menunjukkan bagaimana metadata seperti nama kolom, tipe data, constraints, dan relasi antar tabel dapat diakses dengan lebih efisien. Hasil dari penelitian ini mempercepat proses migrasi form dan mengurangi kebutuhan penulisan kode secara berulang. Selain itu, penelitian ini menunjukkan bahwa PostgreSQL, dengan sifatnya yang open-source dan didukung komunitas besar, sangat efektif untuk pengembangan sistem informasi berbasis web (Prasetyo & Susetyo, 2022).

2.1.3. Rancangan Sistem Informasi Akademik Berbasis *Web*Menggunakan PHP dan MySQL

Penelitian ini dilakukan oleh Ira Zulfa dan Rizki Wanda tahun 2023. Penelitian ini difokuskan pada perancangan dan implementasi sistem informasi akademik berbasis web di MAN 2 Aceh Tengah sebagai solusi atas sistem pengelolaan data akademik yang sebelumnya masih dijalankan secara manual. Permasalahan utama yang diidentifikasi adalah ketidakteraturan dalam manajemen data siswa, termasuk data nilai, kehadiran, dan aspek administrasi akademik lainnya, yang

berdampak pada keterlambatan dan kurangnya ketepatan dalam pelayanan pendidikan. Sistem dirancang menggunakan bahasa pemrograman PHP dan basis data MySQL, dengan pendekatan pengembangan bertahap yang menyesuaikan kebutuhan pengguna serta mempertimbangkan kemudahan operasional. Hasil penelitian menunjukkan bahwa sistem ini berhasil meningkatkan efisiensi pengelolaan data akademik, mengurangi beban kerja manual staf, serta mempercepat dan memperakurat akses terhadap informasi siswa. Meskipun penelitian ini tidak menggunakan LaTeX maupun PostgreSQL, namun tetap relevan dengan skripsi ini karena mengedepankan aspek digitalisasi, otomatisasi, dan efisiensi sistem informasi akademik. Selain itu, pendekatan pengembangan sistem web yang digunakan mencerminkan penerapan sistem informasi yang responsif terhadap kebutuhan institusi pendidikan. (Zulfa & Wanda, 2023).

2.2. Uraian Tinjauan Pustaka

Berikut ini merupakan teori-teori yang memiliki keterkaitan dengan penelitian yang akan dilakukan.

2.2.1. Sistem Informasi Akademik

Sistem Informasi Akademik (SIA) adalah sebuah perangkat lunak yang dikembangkan untuk membantu dalam penyajian dan pengelolaan data administrasi akademik. Melalui penerapan sistem ini, proses administratif dalam dunia akademik dapat berjalan lebih efisien, sehingga akses terhadap informasi menjadi lebih cepat dan mudah (Satoto *et al.*, 2008). Pada dasarnya, sistem informasi akademik merupakan hasil rancangan manusia yang ditujukan untuk menangani data serta informasi yang berkaitan dengan aktivitas akademik dalam suatu lembaga pendidikan. Sistem ini dapat diterapkan di berbagai jenjang pendidikan, baik pada institusi formal maupun non-formal, mulai dari tingkat dasar hingga perguruan tinggi. (Irwansyah, 2018).

2.2.2. Sistem Informasi Akademik Terpadu Universitas Lampung (SIAKADU)

SIAKAD (Sistem Informasi Akademik Terpadu) adalah sistem yang diterapkan di perguruan tinggi untuk mendukung pengelolaan administrasi akademik secara daring. Universitas Lampung telah menggunakan sistem ini sejak tahun 2000, memungkinkan sivitas akademika untuk mengakses berbagai layanan akademik secara online. Melalui SIAKAD, pengguna dapat melakukan berbagai aktivitas akademik seperti pendaftaran mahasiswa baru, pembuatan kurikulum, penyusunan jadwal kuliah, pengisian Kartu Rencana Studi (KRS), pencatatan nilai, serta pengelolaan data mahasiswa dan dosen. Sistem ini juga berperan sebagai alat pendukung analisis data dalam pengambilan keputusan akademik. Dengan sistem basis data terpusat, SIAKAD memastikan keakuratan dan real-time dalam pengolahan data, sehingga mengurangi kemungkinan duplikasi. Implementasi SIAKAD di Universitas Lampung bertujuan untuk meningkatkan efisiensi, ketepatan waktu, serta kualitas layanan akademik yang diterima mahasiswa dan seluruh sivitas akademika (Fihartini, 2015). Sistem Akademik Terpadu Universitas Lampung (SIAKADU) adalah sebuah sistem yang dirancang untuk mendukung pengelolaan berbagai aktivitas akademik di Universitas Lampung (Putri, 2023).

2.2.3. Yudisium

Yudisium merupakan tahapan akademik yang melibatkan penetapan nilai serta kelulusan mahasiswa berdasarkan seluruh proses akademik yang telah diselesaikan. Proses ini juga mencakup pengumuman hasil penilaian kepada mahasiswa sebagai evaluasi akhir dari semua mata kuliah yang diikuti. Selain itu, yudisium menetapkan nilai pada transkrip akademik dan memberikan keputusan terkait kelulusan mahasiswa setelah menempuh masa studi tertentu. Keputusan tersebut ditetapkan oleh fakultas atau pejabat berwenang melalui hasil rapat yudisium (Rumagit, 2015).

Yudisium adalah tahapan akhir dalam proses akademik yang berperan penting dalam menentukan kelulusan seorang mahasiswa. Proses ini melibatkan penilaian dan pengesahan terhadap seluruh hasil belajar yang telah dicapai oleh mahasiswa selama masa perkuliahan. dalam yudisium, nilai dari setiap mata kuliah yang telah ditempuh akan dievaluasi secara menyeluruh untuk memastikan bahwa mahasiswa telah memenuhi semua persyaratn akademik yang diteteapkan oleh program studi atau universitas (Nurliana & Esabella, 2020).

2.2.4. PostgreSQL

PostgreSQL adalah salah satu solusi alternatif untuk pengguna database yang mendukung berbagai *platform* dan bebas lisensi. Sebagai *database* server yang handal, PostgreSQL menawarkan berbagai fitur pendukung menjadikannya ideal untuk digunakan sebagai penyimpanan aplikasi sistem informasi. Dikembangkan oleh *University* of California di Berkeley Computer Science Department, PostgreSQL bersifat open source, yang memungkinkan pengembangannya sesuai dengan kebutuhan pengguna. Sebagai ORDBMS (Object Relational Database Management System), PostgreSQL memiliki banyak kemampuan yang setara dengan database komersial lainnya, seperti dukungan terhadap perintah SQL, yang memudahkan administrator database dalam berinteraksi dengan database ini, terutama dalam manipulasi data seperti insert, update, dan delete (Munawaroh, 2019). Kemampuan PostgreSQL untuk memodifikasi perintah select dengan berbagai klausa membuatnya lebih fleksibel dalam melakukan query terhadap data dari tabel. Kemampuan manajemen *user* juga memastikan tingkat keamanan data yang lebih baik, karena administrator dapat mengatur akses user sesuai hak dan wewenangnya, bahkan memungkinkan pengaturan akses ke kolom-kolom tertentu dalam tabel. PostgreSQL juga mendukung pembuatan function, stored procedure, dan trigger, yang meningkatkan performa aplikasi dengan memproses business rules di server, sehingga aplikasi di klien menjadi lebih ringan dan dapat dianggap sebagai aplikasi thin client. Seiring dengan

berkembangnya berbagai bahasa pemrograman, PostgreSQL mendukung penyimpanan data untuk banyak bahasa pemrograman, baik yang berbasis *desktop* seperti Java dan Gambas, maupun yang berbasis *web* seperti *Python, PHP, Java Server Pages,* dan *Perl* (Munawaroh, 2019).

Berikut adalah beberapa contoh *query* yang digunakan dalam pembuatan buku yudisium :

a. SELECT

Perintah ini dipakai untuk menentukan kolom-kolom yang akan diambil dari *database*.

b. FROM

Perintah ini menentukan tabel utama dan tabel tambahan.

c. WHERE

Perintah ini digunakan untuk menyaring data mahasiswa yang akan diambil.

d. ORDER BY

Perintah ini digunakan untuk mengatur urutan data yang akan keluar.

2.2.5. PHP

PHP, singkatan dari Hypertext Preprocessor, merupakan bahasa pemrograman sumber terbuka yang dirancang khusus untuk pengembangan aplikasi web dan dapat diintegrasikan langsung ke dalam halaman HTML. Bahasa ini memiliki sintax yang mirip dengan C, Java, dan Perl, serta dikenal cukup mudah untuk dipelajari. Sebagai bahasa scripting yang dieksekusi di sisi server, PHP memproses permintaan data pada server terlebih dahulu sebelum mengirimkan hasilnya ke pengguna dalam bentuk HTML yang ditampilkan di browser (Firman et al., 2020).

PHP merupakan bahasa pemrograman sisi *server* yang terhubung langsung dengan HTML dan biasa digunakan untuk menghasilkan halaman *web* yang interaktif. Fungsinya mencakup penerimaan, pemrosesan, dan penyajian data secara dinamis di situs *web*. Data yang

diterima akan diproses oleh *server database*, lalu ditampilkan kepada pengguna melalui tampilan *browser* (Hidayat *et al.*, 2019).Berikut merupakan beberapa *script* LaTeX yang digunakan dalam pengembangan modul buku yudisium :

a. Echo

Dalam kode PHP yang digunakan, perintah echo berfungsi untuk mencetak teks dalam format LaTeX agar dapat dikonversi menjadi dokumen yang dapat dikompilasi. Setiap perintah echo mencetak baris kode LaTeX yang diperlukan untuk membentuk struktur dokumen. Echo juga digunakan untuk mencetak data lulusan yang diambil dari *database* PostgreSQL.

b.

Elemen ini digunakan setelah tiap echo untuk memastikan bahwa setiap baris LaTeX yang dicetak dan ditampilkan dengan rapi di *browser*.

c. \$link = pg connect(\$string koneksi);

Fungsi pg_connect() menerima sebuah *string* yang berisi informasi koneksi, seperti *host, port*, nama *database, username*, dan *password*. Jika koneksi berhasil, fungsi ini akan mengembalikan *resource* koneksi yang disimpan dalam *variable* \$link, yang nantinya dapat digunakan untuk menjalankan *query* ke *database*.

2.2.6. LaTeX

LaTeX adalah sebuah perangkat pengolah kata (*word processor*) yang dikembangkan oleh Donald E Knuth pada Mei 1977. Awalnya, LaTeX dirancang untuk pembuatan dokumentasi teknis yang melibatkan simbol-simbol matematika. Namun, seiring waktu, penggunaannya meluas untuk membuat artikel dan buku non-teknis (Aji & Syah, 2020).

LaTeX adalah sistem *mark up* atau bahasa penyiapan dokumen yang digunakan oleh perangkat lunak. Ini adalah program komputer yang dirancang untuk menghasilkan *typesetting* dokumen, termasuk

penulisan rumus matematika. LaTeX memungkinkan pengguna untuk melakukan *typesetting* dan mencetak dokumen dengan kualitas tipografi terbaik (Arfinanti, 2018).

Berikut adalah beberapa perintah LaTeX yang digunakan dalam penelitian ini (Prastyo, 2022):

a. \usepackage{graphic}

Perintah ini dipakai untuk menyisipkan gambar ke dalam dokumen menggunakan perintah \includegraphics{}.

b. \begin{document} ... \end{document}

Perintah ini adalah isi utama dokumen maka segala sesuatu yang ada dalam dokumen akan ditampilkan dalam hasil akhir.

c. \newpage

Perintah ini dipakai untuk pindah halaman, teks yang ditulis setelah perintah ini aka nada di halaman baru.

d. \documentclass{beamer}

Kode ini digunakan untuk membuat *slide* presentasi dalam LaTeX.

2.2.7. MiKTeX

MiKTeX adalah salah satu distribusi TeX/LaTeX yang dirancang untuk sistem operasi Windows. MiKTeX memungkinkan pengguna untuk menyusun dokumen teknis dan ilmiah dengan control tipografi tinggi, terutama yang mengandung formula matematika, tabel, dan kutipan ilmiah. Distribusi ini bersifat *open-source* dan mengikuti standar struktur direktori TeX. MiKTeX menyediakan banyak *template* siap pakai yang dapat digunakan untuk membuat jurnal, laporan, atau presentasi. Pengguna juga dapat mengunggah *file* sendiri atau memulai proyek baru dari awal. *Platform* ini memudahkan pengguna yang ingin menggunakan LaTeX tanpa repot instalasi dan membantu menghasilkan dokumen yang rapi dan professional (Schenk, 2000).

2.2.8. Visual Studio Code

Visual Studio Code adalah aplikasi *editor* kode *open-source* yang dikembangkan oleh Microsoft untuk *platform* Windows, Linux, dan MacOS. *Editor* ini mempermudah penulisan kode dengan mendukung berbagai bahasa pemrograman, seperti C++, C#, Java, Python, PHP, dan Go. Salah satu keunggulannya adalah kemampuannya mendeteksi jenis bahasa pemrograman yang digunakan, sekaligus memberikan pewarnaan sintaks yang sesuai untuk mempermudah pembacaan kode. Selain itu, Visual Studio Code sudah terintegrasi dengan GitHub, memungkinkan pengelolaan repositori langsung dari *editor*. Fitur lainnya mencakup kemampuan untuk menambahkan ekstensi, yang memungkinkan pengembang memperluas fungsionalitas *editor* sesuai kebutuhan (Ramdhan & Nufriana, 2019).

2.2.9. APACHE

Apache merupakan perangkat lunak web server yang berperan dalam memproses permintaan dan respons HTTP, serta mencatat berbagai informasi secara mendetail sebagai bagian dari fungsi utamanya. Web server ini dikenal ringan, bersifat modular, mendukung standar protokol HTTP, dan banyak digunakan oleh berbagai kalangan (Sungkar et al., 2020).

Apache HTTP dikembangkan oleh Apache Software Foundation sebagai proyek *open-source* yang bertujuan menyediakan *server* HTTP yang aman, efisien, dan mudah dikembangkan, serta mampu berjalan di berbagai sistem operasi modern seperti UNIX dan Windows. Pertama kali dirilis pada tahun 1995 dan mulai populer sejak April 1996, Apache HTTP mampu bekerja di berbagai *platform* seperti Windows 9x/NT/2000/XP/Vista, maupun sistem berbasis Unix dan Linux. Perangkat lunak ini merupakan hasil pengembangan dari NCSA HTTPd, yang merupakan *web server* pendahulunya (Jiwandono, 2021).

2.2.10. Unified Modelling Language (UML)

Unified Modelling Language (UML) merupakan bahasa pemodelan grafis yang menjadi standar dalam mendesain sistem berbasis

pendekatan objek. Standar ini dikembangkan oleh Object Management Group (OMG) dan pertama kali dikenalkan oleh Grady Booch dan James Rumbaugh pada akhir tahun 1994, yang kemudian dilanjutkan bersama Ivar Jacobson dari *Object Oriented Development*. UML mulai digunakan secara luas sebagai alat bantu pemodelan sistem sejak tahun 1996, termasuk oleh perusahaan seperti IBM dan i-Logix (Hamas & Immaduddin, 2019).

UML merupakan bahasa visual yang dirancang untuk menggambarkan, menjelaskan, mengembangkan, dan mendokumentasikan sistem perangkat lunak berbasis objek. Walaupun bukan merupakan bahasa pemrograman, model UML dapat diintegrasikan atau dikonversi ke dalam bahasa pemrograman berorientasi objek seperti Java. Dengan demikian, UML berfungsi sebagai jembatan antara rancangan sistem dan implementasi kode program (Nugroho *et al.*, 2017). Jenis-jenis diagram UML adalah sebagai berikut.

2.2.10.1. Entity Relationship Diagram (ERD)

Entity Relationship Diagram (ERD) merupakan sebuah representasi visual yang digunakan dalam perancangan basis data untuk menggambarkan keterkaitan antara entitas atau objek serta atributatribut yang dimilikinya. Dengan kata lain, ERD berfungsi sebagai model konseptual yang menjelaskan hubungan antar data dalam sistem basis data, berdasarkan entitas-entitas utama yang saling berelasi (Akbar & Haryanti, 2021).

2.2.10.2. Use Case Diagram

Use case diagram adalah salah satu jenis diagram dari Unified Model Language (UML) yang menunjukkan interaksi antara sistem dan aktor. Diagram ini juga menggambarkan jenis hubungan atau interaksi antara pengguna sistem dengan sistem tersebut (Hengki & Suprawiro, 2017). Komponen-komponen usecase diagram ditunjukan pada Tabel 1.

Tabel 1.Komponen Use Case Diagram (Sukamto & Shalahuddin, 2016).

No	Simbol	Nama	Keterangan
1		Use Case	Merupakan representasi dari serangkaian langkah yang dilakukan oleh sistem guna menghasilkan output tertentu yang memiliki nilai fungsional bagi aktor.
2	Nama Aktor	Actor	Menggambarkan peran yang dijalankan oleh pengguna saat berinteraksi dengan suatu <i>use case</i> . Aktor dalam hal ini dapat berupa individu, proses, sistem eksternal, atau perangkat lain yang memiliki hubungan komunikasi dengan <i>use case</i> tersebut.
3		Association	Berfungsi sebagai penghubung antara satu objek dengan objek lainnya, baik dalam bentuk hubungan struktural maupun interaksi komunikasi antara aktor dan <i>use case</i> .
4	─	Generalization	Merupakan relasi di mana objek turunan (descendent) mewarisi perilaku dan struktur data dari objek induk (ancestor) dalam suatu hierarki umumkhusus.
5	< <include>></include>	Include	Menyatakan suatu <i>use case</i> sepenuhnya merupakan bagian dari fungsionalitas yang dimiliki oleh <i>use case</i> lain.
6	∢ < <extend>></extend>	Extend	Menunjukkan bahwa suatu use case merupakan perluasan opsional dari use case utama. Use case ini hanya dijalankan jika kondisi tertentu terpenuhi, dan bersifat tambahan terhadap fungsionalitas utama. Relasi extend digunakan untuk menyatakan perilaku alternatif atau tambahan.

2.2.10.3. Activity Diagram

Activity Diagram adalah sebuah diagram alur kerja yang menggambarkan berbagai aktivitas yang dilakukan oleh pengguna atau sistem, termasuk pihak yang bertanggung jawab atas setiap aktivitas, serta urutan aliran dari aktivitas-aktivitas tersebut (Hengki & Suprawiro, 2017). Komponen-komponen activity diagram ditunjukan pada Tabel 2.

Tabel 2. Komponen Activity Diagram (Sukamto & Shalahuddin, 2016).

No	Gambar	Nama	Keterangan
1		Activity	suatu aktivitas dalam alur kerja, di mana setiap komponen dalam antarmuka saling berinteraksi satu sama lain.
2		Action	Keadaan dalam sistem yang merepresentasikan pelaksanaan atau proses dari suatu tindakan tertentu.
3	•	Initial State	titik awal dari jalannya suatu alur proses dalam <i>activity diagram</i> , dan dalam satu <i>activity</i> diagram hanya terdapat satu <i>initial state</i> .
4		Final State	titik akhir dari sebuah alur aktivitas dalam <i>activity diagram</i> , dan dalam satu <i>activity diagram</i> memiliki lebih dari satu <i>final state</i> .
5		Join	kondisi di mana beberapa jalur aktivitas digabungkan menjadi satu alur proses pada titik tertentu dalam diagram.
6		Fork	alur aktivitas yang pada titik tertentu bercabang menjadi beberapa jalur proses secara paralel.
7	\Diamond	Decision	merepresentasikan kondisi bercabang, alur proses dapat mengikuti lebih dari satu jalur tergantung pada hasil evaluasi kondisi tertentu.

8. Merge Merge berperan dalam menyatukan kembali jalur alur kerja yang sebelumnya terbagi akibat percabangan pada elemen

Decision.

Tabel 2. Komponen Activity Diagram (Sukamto & Shalahuddin, 2016).

2.2.11. Alpha Testing

Alpha Testing merupakan proses pengujian yang dilakukan untuk memastikan bahwa aplikasi dapat berfungsi dengan baik tanpa mengalami gangguan seperti bug atau error. Proses ini dilakukan melalui beberapa tahapan, dimulai dengan penyusunan skenario pengujian, kemudian dilanjutkan dengan pelaksanaan test case berdasarkan skenario yang telah disusun (Hakim *et al.*, 2024).

Pengujian perangkat lunak adalah proses yang dilakukan untuk mengevaluasi suatu sistem perangkat lunak guna memastikan bahwa sistem tersebut berfungsi sesuai dengan harapan dan memiliki kualitas yang memadai (Wijaya *et al.*, 2024).

2.2.12. Beta Testing

Beta Testing merupakan tahap pengujian yang melibatkan pihak ketiga atau pengguna eksternal. Proses pengujian ini dilakukan melalui beberapa langkah, dimulai dengan penyusunan kuesioner yang kemudian dibagikan kepada responden. Seluruh responden diminta memberikan tanggapan, yang dianalisis menggunakan angket dengan skala Likert (Hakim et al., 2024).

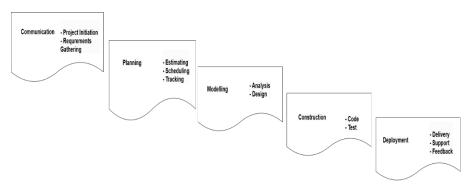
Beta testing adalah pengujian yang dilakukan secara langsung dalam lingkungan nyata, yaitu menyebarkan kuesioner kepada pengguna dan hasilnya dianalisis untuk menarik Kesimpulan mengenai penilaian terhadap aplikasi (Wijaya et al., 2024).

2.2.13. Skala Likert

Skala Likert merupakan skala yang dikembangkan oleh Rensis Likert pada tahun 1932 dengan tujuan menciptakan skala yang lebih mudah dirancang namun tetap memiliki tingkat reliabilitas setara dengan Skala Guttman dan Skala Thurstone. Skala ini terdiri dari serangkaian pernyataan yang mencerminkan sikap tertentu, baik positif maupun negatif. Dalam penggunaannya, Skala Likert biasanya memiliki lima kategori respons untuk setiap pernyataan, yaitu sangat setuju (SS), setuju (S), tidak tahu (TT), tidak setuju (ST), dan sangat tidak setuju (STS) (Widyastuti, 2022). Tabel skala likert dapat dilihat pada Tabel 3. Dan untuk tabel skor presentase jawaban dapat dilihat pada Tabel 3.

Tabel 3. Skala Likert (Wijaya et al., 2024).

No	Keterangan	Skor
1	Sangat Setuju (SS)	5
2	Setuju (S)	4
3	Ragu-ragu (RR)	3
4	Tidak Setuju (TS)	2
5	Sangat Tidak Setuju (STS)	1


Tabel 4. Skor presentase jawaban (Wijaya et al., 2024).

% Jumlah Skor	Kriteria
20,00%-36,00%	Tidak Baik
36,01%-52,00%	Kurang Baik
52,01%-68,00%	Cukup
68,01%-84,00%	Baik
84,01%-100%	Sangat baik

2.2.14. Waterfall Method

Dalam pembuatan buku yudisium pada Sistem Akademik Terpadu (SIAKADU) Universitas Lampung, digunakan Metode *Waterfall* sebagai pendekatan dalam pengembangan perangkat lunak. Metode

Waterfall atau model linier sekuansial, adalah pendekatan yang sistematis dan berurutan dalam pengembangan perangkat lunak. Proses ini dimulai dengan pengumpulan kebutuhan pelanggan, kemudian dilanjutkan dengan perencanaan, pemodelan, konstruksi, dan penyebaran, hingga pemeliharaan perangkat lunak yang telah selesai. Model ini paling sesuai diterapkan pada proyek yang kebutuhan awalnya sudah dipahami dengan jelas dan stabil, sehingga dapat diselesaikan dalam urutan yang terstruktur (Pressman & Maxim, 2020). Metode Waterfall terdiri dari beberapa tahapan yang dapat dilihat pada Gambar 1.

Gambar 1. Tahapan Metode Waterfall (Pressman & Maxim, 2020).

Penjelasan dari tahapan-tahapan metode *waterfall* berdasarkan Pressman & Maxim (2020) adalah sebagai berikut.

2.2.14.1. Communication

Tahapan Communication dalam model waterfall mencakup kegiatan awal untuk memulai proyek perangkat lunak. Pada tahap ini, pengembang berkomunikasi dengan pelanggan dan pemangku kepentingan untuk mendefinisikan tujuan perangkat lunak secara keseluruhan. Selain itu, tahap komunikasi bertujuan untuk mengidentifikasi persyaratan yang sudah diketahui dan menentukan area yang membutuhkan klarifikasi lebih lanjut. Komunikasi yang efektif sangat penting agar pengembang dapat memahami sepenuhnya kebutuhan yang diperlukan dan menyusun gambaran yang jelas tentang apa yang harus dicapai

dalam proyek tersebut. Tahap ini juga memastikan pemahaman yang sama antara pengembang dan pelanggan tentang ruang lingkup proyek.

a. Project Initiation (inisiasi proyek)

Pada tahap ini, fokusnya adalah memahami alasan proyek diperlukan dan mendefinisikan tujuan proyek secara garis besar serta mengumpulkan dan menentukan ruang lingkup proyek.

b. Requirements Gathering (Pengumpulan Kebutuhan)

Pada tahap ini, melibatkan identifikasi kebutuhan fungsional dan nonfungsional dari berbagai pemangku kepentingan, Langkah ini mencakup negosiasi kebutuhan, menghasilkan dokumen spesifikasi, dan prioritas.

2.2.14.2. Planning

Tahap perencanaan (*Planning*) dalam model *waterfall* merupakan langkah yang sangat penting untuk menyusun strategi pengembangan perangkat lunak. Pada tahap ini, tim pengembang melakukan estimasi terhadap pekerjaan yang akan dilakukan, sumber daya yang diperlukan, serta waktu yang dibutuhkan untuk menyelesaikan proyek secara keseluruhan. Proses ini memastikan bahwa setiap aspek pengembangan dapat dijadwalkan dan dikelola dengan baik. Selain itu, dalam tahap perencanaan ini, pengembang juga Menyusun jadwal yang lebih rinci yang mencakup tugas-tugas rekayasa perangkat lunak yang perlu diselesaikan. Dengan demikian, tahap perencanaan berfungsi sebagai pedoman yang memberikan arahan yang jelas dan terstruktur selama proses pengembangan perangkat lunak.

a. Estimating (Perkiraan)

Menyediakan estimasi waktu dan sumber daya yang diperlukan berdasarkan ruang lingkup dan kompleksitas proyek.

b. Schedulling (Penjadwalan)

Tahap *scheduling* merupakan proses penyusunan jadwal kerja yang terstruktur dan sistematis untuk seluruh aktivitas pengembangan modul, berdasarkan urutan logis metode *Waterfall*. Pada tahap ini, pengembang menggunakan pendekatan *Work Breakdown Structure* (WBS) dengan cara memecah proyek menjadi unit-unit aktivitas yang lebih kecil dan dapat dikontrol. Setiap aktivitas diberikan estimasi waktu pelaksanaan, tanggal mulai, serta tanggal selesai. Tujuannya adalah agar setiap proses pengembangan dapat dikelola secara efektif dan tidak saling tumpang tindih (Soeparyanto *et al.*, 2024).

c. Tracking (Pemantauan)

Pemantauan dilakukan untuk memastikan bahwa setiap tahap berjalan sesuai rencana.

2.2.14.3. *Modelling*

Tahap Modelling dalam waterfall merupakan langkah untuk menggambarkan secara teknis bagaimana sistem perangkat lunak akan berfungsi. Pada tahap ini, pengembang membuat berbagai model yang menggambarkan aspek-aspek sistem, seperti bagaimana sistem akan berinteraksi dengan pengguna dan komponen lainnya. Model-model ini membantu tim pengembang memahami fitur-fitur yang dibutuhkan dan memastikan bahwa sistem yang akan dibangun dapat memenuhi kebutuhan yang telah dikomunikasikan sebelumnya. Proses pemodelan ini melibatkan penggunaan teknik-teknik seperti Use Case Diagram, Diagram Activity, dan perancangan antarmuka yang memberikan gambaran jelas tentang bagaimana sistem akan beroperasi dan berfungsi dalam skenario. Hasil dari tahap ini menjadi dasar untuk perancangan sistem yang lebih rinci di tahap selanjutnya.

a. Analysis (Analisis)

Tujuannya adalah menganalisis kebutuhan perangkat lunak untuk menghasilkan model yang jelas dan terstruktur.

b. Design (Desain)

Proses desain menciptakan representasi arsitektur perangkat lunak yang mencakup elemen-elemen seperti *Use Case Diagram, Activity Diagram,* Desain antarmuka.

2.2.14.4. Construction

Tahap Construction dalam metode waterfall merupakan fase di mana perangkat lunak benar-benar dibangun melalui proses pengkodean dan pengujian. Pada tahap ini, pengembang menerjemahkan desain perangkat lunak yang telah dibuat ke dalam bentuk kode program menggunakan bahasa pemrograman yang sesuai. Setelah itu, dilakukan pengujian unit untuk memastikan bahwa setiap komponen perangkat lunak bekerja dengan benar, diikuti dengan pengujian integrasi untuk memastikan bahwa komponen-komponen tersebut berfungsi secara harmonis ketika digabungkan. Tahap ini sangat penting kerena memastikan bahwa perangkat lunak yang dihasilkan dapat diandalkan, sesuai dengan desain, dan memenuhi kebutuhan pengguna seperti yang telah ditentukan pada tahap sebelumnya. Dengan demikian, Tahap Construction menjadi inti dari proses pengembangan perangkat lunak yang menghasilkan sistem ini.

a. Coding (Pengkodean)

Kebutuhan yang telah dianalisis dan dirancang diterjemahkan ke dalam kode. *Coding* adalah Langkah pertama untuk mengimplementasikan Solusi teknis.

b. Testing (Pengujian)

Pengujian dilakukan untuk memastikan bahwa perangkat lunak yang dikembangkan telah berfungsi sesuai dengan kebutuhan dan spesifikasi yang telah ditentukan. Dalam penelitian ini, metode pengujian yang digunakan terdiri dari dua tahap, yaitu *Alpha Testing* dan *Beta Testing*. *Alpha Testing* merupakan bentuk pengujian internal yang dilakukan oleh pengembang untuk

mengevaluasi aspek teknis sistem secara menyeluruh. Pengujian ini mencakup proses pengambilan data dari database SIAKADU, pengolahan data menggunakan bahasa pemrograman PHP, serta pembuatan dokumen LaTeX untuk menghasilkan buku yudisium, slide yudisium, dan daftar nama yudisium. Tujuan dari pengujian ini adalah untuk mengidentifikasi dan memperbaiki kesalahan fungsional agar sistem dapat berjalan stabil sebelum digunakan oleh pengguna akhir. Sementara itu, Beta Testing dilakukan oleh pengguna akhir, yaitu admin fakultas, guna menilai sejauh mana sistem dapat digunakan secara efektif dalam kondisi nyata. Pengujian ini mencakup aspek kemudahan penggunaan, kelengkapan fitur, dan kesesuaian sistem dengan alur kerja aktual dalam proses pengolahan data hingga pembuatan dokumen yudisium. Penilaian dilakukan melalui kuesioner yang disusun menggunakan skala Likert untuk mengukur tingkat kepuasan dan penerimaan pengguna terhadap sistem yang telah dikembangkan.

2.2.14.5. *Deployment*

Tahap *Deployment* dalam model *waterfall* merupakan Langkah terakhir yang berfokus pada pengiriman perangkat lunak kepada pengguna akhir. Pada tahap ini, perangkat lunak yang telah selesai dibangun didistribusikan, diinstal, dan disesuaikan dengan lingkungan kerja pengguna. Selain itu, tahap ini juga mencakup pelatihan pengguna, penyediaan dokumentasi pendukung, serta dukungan teknis awal untuk memastikan perangkat lunak berfungsi sesuai kebutuhan. Pengembang juga mengumpulkan umpan balik dari pengguna untuk mendeteksi kemungkinan masalah dan menentukan area yang memerlukan perbaikan atau peningkatan di masa mendatang.

a. Delivery (Penyerahan)

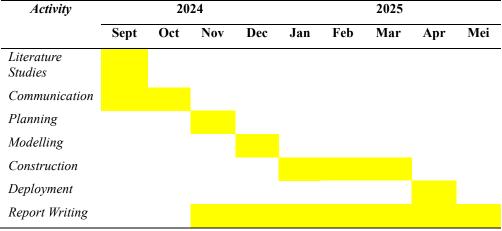
Perangkat lunak yang sudah diselesaikan diserahkan kepada pengguna akhir untuk digunakan.

b. Feedback (Umpan Balik)

Setelah perangkat lunak digunakan, masukan dari pengguna dikumpulkan untuk meningkatkan fungsionalitas atau memperbaiki kekurangan.

c. Support (Dukungan)

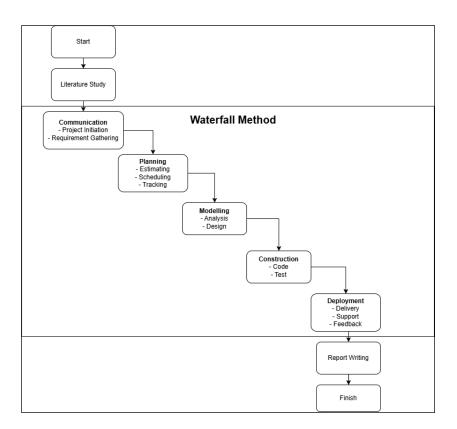
Memberikan dukungan teknis seperti perawatan perangkat lunak, perbaikan bug, atau peningkatan sistem sesuai kebutuhan pengguna


III. METODE PENELITIAN

3.1. Waktu dan Tempat

Penelitian ini dilaksanakan pada bulan September 2024 sampai dengan bulan Mei 2025 di Laboratorium Komputasi Jurusan Ilmu Komputer, FMIPA, Universitas Lampung beralamat di Jalan Prof. Dr. Soemantri Brojonegoro No.1, Bandar Lampung. Jadwal Penelitian dapat dilihat pada Tabel 5.

Tabel 5. Waktu Penelitian Menggunakan Gantt Chart.


Activity 2024

3.2. Tahapan Penelitian

Tahapan penelitian merupakan Langkah-langkah yang dilakukan peneliti dalam melakukan penelitian. Alur penelitian pengembangan modul kelengkapan dokumen yudisium terdiri dari 8 tahapan, yaitu start, literature study, communication, planning, modelling, construction, deployment dan finish. Alur penelitian ini dimulai dengan literature study untuk memahami teori terkait. Selanjutnya adalah pada tahap communication, dilakukan pengumpulan kebutuhan sistem. Tahap planning mencakup estimasi waktu

dan penjadwalan. Tahap selanjutnya adalah *modelling*, yang berfokus pada analisis dan perancangan sistem. Tahap *construction* melibatkan pengkodean dan pengujian untuk memastikan sistem berjalan dengan baik. Setelah itu, sistem masuk ke tahap *deployment*, yaitu pengiriman, dukungan teknis, dan pengumpulan umpan balik. Akhirnya, penelitian ini mencapai tahap *finish*. Yaitu modul siap digunakan dan dikembangkan lebih lanjut sesuai kebutuhan. Alur pembuatan modul kelengkapan dokumen yudisium dapat dilihat pada Gambar 2.

Gambar 2. Alur penelitian pembuatan modul kelengkapan dokumen yudisium.

3.2.1. Literatur Study

Studi literatur pada penelitian ini dilakukan untuk memperoleh pemahaman yang mendalam terkait teori, konsep, dan metode yang mendukung pengembangan modul kelengkapan dokumen yudisium pada Sistem Informasi Akademik Terpadu Universitas Lampung (SIAKADU). Selain itu, penelitian ini juga mengkaji metode

pengembangan perangkat lunak, khususnya metode *waterfall*. Metode ini dipilih karena alurnya yang terstruktur dan jelas, sehingga setiap tahapan dilakukan secara sistematis. Dengan mengacu pada studi literatur tersebut, penelitian dapat memberikan *opsi* yang dapat digunakan untuk membantu admin fakultas dalam proses pembuatan modul kelengkapan dokumen yudisium.

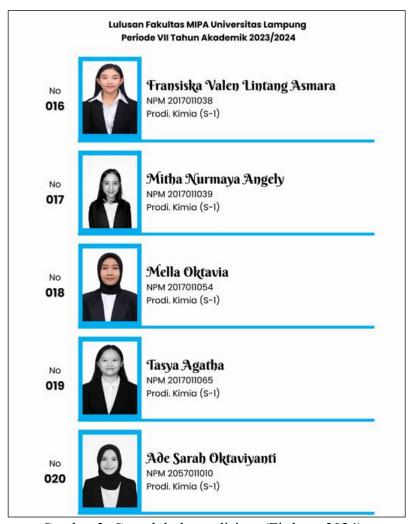
3.2.2. Communication

Pada tahap *communication*, proses dimulai dengan mengidentifikasi kebutuhan untuk pengembangan modul kelengkapan dokumen yudisium pada SIAKADU. Pengembang berkomunikasi dengan admin fakultas untuk mendefinisikan tujuan modul secara keseluruhan. Komunikasi bertujuan untuk memahami kebutuhan fungsional dan nonfungsional. Kebutuhan fungsional meliputi pengambilan data mahasiswa, pemrosesan data yudisium, dan pembuatan dokumen. Kebutuhan nonfungsional meliputi kecepatan, keamanan, dan kemudahan penggunaan. Tahapan ini bertujuan untuk memastikan bahwa pengembang dan pengguna memiliki pemahaman yang seragam terhadap ruang lingkup, batasan, dan ekspektasi sistem yang akan dibangun. Tahapan ini dibagi menjadi dua sub-tahapan, yaitu *project initiation* dan *requirement gathering*.

3.2.2.1. Project Initiation

Tahap *project initiation* dilakukan untuk memahami alasan utama pengembangan modul kelengkapan dokumen yudisium. Pada tahap ini, ruang lingkup proyek didefinisikan, termasuk menentukan fitur-fitur utama yang akan dikembangkan, yaitu 3 fitur *generate*. Inisiasi proyek ini diperlukan untuk meningkatkan efisiensi proses manual yang selama ini memakan waktu lama dan rentan terhadap kesalahan. Selain itu, langkah ini bertujuan untuk memastikan standarisasi dokumen sesuai dengan kebijakan akademik Unila. Modul juga diintegrasikan ke dalam SIAKADU agar data mahasiswa dapat langsung diproses tanpa input manual, sehingga memudahkan pengguna. Dengan pemahaman yang

jelas, risiko kesalahan implementasi dapat diminimalkan dan pengembangan modul dapat berjalan sesuai kebutuhan.


3.2.2.2.Requirement Gathering

Tahap requirement gathering merupakan proses awal yang penting dalam pengembangan modul kelengkapan dokumen yudisium pada Sistem Informasi Akademik Terpadu Universitas Lampung (SIAKADU). Tahap ini bertujuan untuk mengidentifikasi kebutuhan sistem agar sesuai dengan kebutuhan pengguna, dalam hal ini adalah admin fakultas yang bertugas menyusun dokumen yudisium. Pengembang melakukan komunikasi langsung dengan admin melalui diskusi dan observasi terhadap proses kerja yang selama ini dilakukan secara manual. Pada proses ini, gambaran fitur-fitur yang dibutuhkan dalam sistem di antaranya adalah akses login khusus untuk admin, pemilihan periode yudisium, pengambilan data mahasiswa yang telah lulus sidang skripsi dari database SIAKADU, serta pembuatan dokumen yudisium. Selain itu, pengembang juga mempertimbangkan kebutuhan nonfungsional seperti keamanan akses dengan autentikasi, kecepatan pemrosesan data, dan kemudahan antarmuka agar sistem mudah digunakan oleh admin.

Dokumen spesifikasi kebutuhan disusun berdasarkan hasil komunikasi tersebut, sebagai acuan dalam proses pengembangan. Dalam pembahasan bersama admin, diketahui bahwa terdapat tiga jenis dokumen utama yang rutin disusun setiap pelaksanaan yudisium, yaitu buku yudisium, slide yudisium, dan daftar nama yudisium. Buku yudisium memuat informasi penting seperti nama, foto, NPM, dan program studi mahasiswa yang telah lulus. Dokumen ini bersifat resmi dan digunakan dalam pelaporan akademik, sehingga memerlukan susunan data yang rapi, konsisten, serta sesuai dengan format standar fakultas. Sementara itu, slide yudisium digunakan sebagai media presentasi saat acara yudisium berlangsung, dan daftar nama yudisium biasanya dipakai untuk keperluan administratif internal. Ketiga jenis

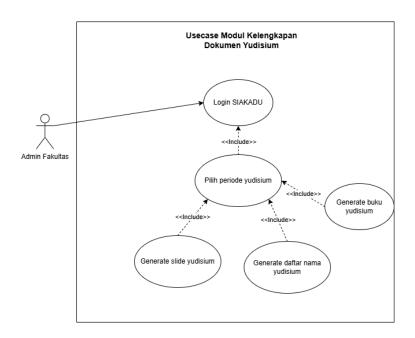
dokumen ini menjadi acuan utama dalam merancang keluaran sistem, baik dari segi struktur data, tata letak, maupun isi yang ditampilkan.

Dengan adanya proses pengumpulan kebutuhan ini, pengembangan sistem dapat berjalan lebih terarah, karena seluruh fitur dan fungsionalitas yang dibangun mengacu pada kebutuhan riil yang dihadapi oleh pengguna.Contoh gambar buku yudisium dapat dilihat pada Gambar 3.

Gambar 3. Contoh buku yudisium (Firdaus, 2024).

Kemudian untuk *slide* yudisium yang digunakan dalam pelaksanaan prosesi yudisium. *Slide* ini menampilkan informasi mahasiswa secara visual, seperti nama lengkap, NIM, Jurusan, foto, dan IPK mahasiswa.

Format disusun dalam Microsoft PowerPoint menggunakan *template* visual yang telah ditentukan oleh fakultas. Untuk contoh *slide* yudusium dapat dilihat pada Gambar 4. Dan daftar nama yudisium yang berisi nama, NPM, dan program studi. Untuk contoh daftar nama yudisium dapat dilihat pada Gambar 5.



Gambar 4. Contoh slide yudusium (Fauzan, 2024).

Lulusan Fakultas MIPA Universitas Lampung Periode VII Tahun Akademik 2024/2025 1. Wirda Diana Nesywa (Ilmu Komputer) 2. Shela Rana Kezyah (Ilmu Komputer) 3. Viona Septiana (Biologi) 4. Muhammad Hussein (Matematika) 5. Susan chinta (Kimia) 6. Hushila yulian (Fisika) 7. Rena angela(Matematika) 8. Meida azzahra (Biologi) 9. Faradiba(Kimia) 10. Raisa Alghiyats (FIsika)

Gambar 5. Contoh daftar nama yudisium.

Dibuat *use case diagram* untuk memetakan interaksi antara pengguna dan sistem. *Use case diagram* ini membantu menggambarkan skenario utama, yaitu admin fakultas mengambil data mahasiswa, memproses data yudisium, hingga menghasilkan modul kelengkapan dokumen yudisium yang terdiri dari buku yudisium, *slide* yudisium, dan daftar nama yudisium. *Use case diagram* pembuatan modul kelengkapan dokumen yudisium dapat dilihat pada Gambar 6.

Gambar 6. Use Case Diagram modul kelengkapan dokumen yudisium.

Gambar 6 merupakan alur aktivitas aktor dalam mengembangkan modul untuk melengkapi proses yudisium, yang mencakup pembuatan buku yudisium, slide yudisium, dan daftar yudisium sebagai fitur tambahan pada website SIAKADU. Aktor yang berperan dalam alur ini adalah Admin Fakultas. Proses diawali dengan login ke dalam sistem SIAKADU menggunakan akun dengan hak akses admin, yang memungkinkan penyusunan kelengkapan yudisium. Selanjutnya, admin dapat memilih fitur yang ingin digunakan, yaitu generate buku yudisium, slide yudisium, atau daftar nama yudisium, serta menentukan

periode yudisium yang diinginkan. Setelah itu, sistem akan memproses permintaan dan menghasilkan dokumen akhir dalam format yang telah ditentukan.

3.2.3. Planning

Tahap *Planning* dari metode *waterfall* bertujuan untuk menyusun strategi pengembangan modul kelengkapan dokumen yudisium pada SIAKADU. Pada tahap ini, pengembang melakukan estimasi waktu, sumber daya, dan kebutuhan teknis yang diperlukan untuk menyelesaikan proyek. Proses ini memastikan semua aktivitas pengembangan dapat direncanakan dan dikelola dengan baik. Selain itu, penjadwalan tugas juga dilakukan agar setiap aktivitas berjalan sesuai prioritas dan waktu yang telah ditentukan. Dalam tahap *planning* terdapat 3 sub-tahap lainnya yaitu, tahap *estimating*, *scheduling*, dan *tracking*.

3.2.3.1. *Estimating*

Tahap *estimating* dilakukan dengan mempertimbangkan ruang lingkup proyek dan kompleksitas modul. Subjeknya yaitu waktu yang diperlukan untuk pengolahan data yudisium, seperti pengambilan, pengolahan, dan penyimpanan data mahasiswa dari *database* SIAKADU, hingga pengembangan fitur utama, seperti fitur *generate*. Penelitian ini dilakukan dengan menggunakan berbagai alat yang mendukung pelaksanaannya. Berikut ini adalah spesifikasi perangkat keras dan lunak yang digunakan selama penelitian:

a. Perangkat Keras berupa: Laptop spesifikasi *processor Core(TM)* i5-1135G7, RAM 4 GB.

b. Perangkat Lunak

- Windows 11 *home single language* 64-bit : berfungsi sebagai sistem operasi utama untuk mengelola perangkat keras komputer, menjalankan aplikasi, serta menyediakan antarmuka pengguna yang memudahkan interaksi dengan perangkat.

- Web Browser: digunakan untuk mengakses dan menjelajahi situs web.
- *Visual studio code* : merupakan *editor* kode sumber yang digunakan untuk pengembangan perangkat lunak.
- PostgresSQL: merupakan Database Management System
 (DBMS) yang digunakan untuk menyimpan, mengelola, dan memanipulasi data
- Web Server APACHE: web server yang digunakan untuk melayani permintaan HTTP dan mengirimkan konten web.
- PHP: Bahasa pemrograman yang berjalan di sisi server (server-side) dan digunakan untuk mengembangkan aplikasi web dinamis.
- MiKTeX LaTeX : aplikasi TEX untuk menulis, mengedit, dan mengelola dokumen ilmiah dengan format LaTeX.

Data yang digunakan dalam penelitian ini berasal dari *database* SIAKADU. Subjek berupa *file* ZIP dengan ukuran *file* 440 mb. *Database* SIAKADU menyimpan berbagai informasi akademik yang meliputi data mahasiswa, data yudisium, data nilai di Universitas Lampung. Data ini diambil dan diolah untuk keperluan pengembangan modul kelengkapan dokumen yudisium, sehingga hasilnya dapat sesuai dengan kebutuhan sistem dan mempermudah proses akademik, khususnya dalam pengelolaan data yudisium. Penggunaan data dari SIAKADU juga mampu memberikan hasil yang akurat dan relevan untuk mendukung keberhasilan penelitian ini.

3.2.3.2.Scheduling

Tahap *scheduling* merupakan proses penyusunan jadwal kerja yang terstruktur dan sistematis untuk seluruh aktivitas pengembangan modul, berdasarkan urutan logis metode *Waterfall*. Penyusunan jadwal ini mempertimbangkan urutan tahapan *Waterfall*, yakni *Communication*, *Planning*, *Modeling*, *Construction*, *Testing*, *Deployment*, hingga *Documentation*. Untuk memastikan proyek berjalan lancar, pengembang juga menyisipkan *buffer time* sebagai cadangan waktu jika

terjadi kendala teknis seperti keterlambatan pengambilan data, kegagalan integrasi LaTeX, atau masalah saat pengujian. Penjadwalan dilakukan dengan mengacu pada kalender akademik dan waktu pelaksanaan proyek secara riil, yaitu dimulai pada bulan September 2024 dan direncanakan selesai pada Mei 2025. Jadwal ini dibuat dalam format bulanan untuk memberikan gambaran lebih rinci mengenai alokasi waktu setiap aktivitas pengembangan. Jadwal kerja secara lengkap ditampilkan pada Tabel 6.

Tabel 6. Jadwal kerja.

No	Aktivitas	Sub-aktivitas Rinci	Waktu	Bulan
1	Communication	-Wawancara dengan admin - Identifikasi kebutuhan - Use case	2 Minggu	Sept 2024 (Minggu 3– 4)
2	Planning	- Estimasi waktu & alat - Rencana kerja dan tracking	1 Minggu	Okt 2024 (Minggu 1)
3	Modelling	-Desain antarmuka - diagram activity	2 Minggu	Okt 2024 (Minggu 2– 3)
4	Construction	 Coding modul Koneksi database Fitur generate dokumen integrasi sistem dan LaTeX 	5 Minggu	Nov 2024 (full)
5	Testing	- Uji fungsionalitas dan validasi dokumen	2 Minggu	Des 2024 (Minggu 2– 3)
6	Deployment	- Implementasi ke SIAKADU dev - Uji bersama admin	1 Minggu	Jan 2025 (Minggu 1)
7	Documentation	- Dokumentasi sistem dan penyesuaian	2 Minggu	Jan 2025 (Minggu 2– 3)
8	Revisi & Penyempurnaan	- Revisi hasil uji coba - Finalisasi fitur	2 Minggu	Feb 2025 (Minggu 1– 2)
9	Penyusunan Skripsi	- Bab 4: Implementasi - Lampiran hasil sistem	4 Minggu	Maret 2025 (full)
10	Buffer Time (Cadangan)	- Waktu untuk troubleshooting, kendala teknis, atau konsultasi	4 Minggu	April 2025

Tabel 6. Jadwal kerja.

No	Aktivitas	Sub-aktivitas Rinci	Waktu	Bulan
11	Finalisasi & Sidang	- Penyusunan presentasi sidang - Uji coba akhir	4 Minggu	Mei 2025 (awal)

3.2.3.1.Scheduling

Proses *tracking* dilakukan secara terstruktur melalui evaluasi mingguan dan pencatatan perubahan keputusan teknis selama proses pengembangan. Setiap akhir minggu, pengembang melakukan *review* progres untuk membandingkan realisasi dengan jadwal awal, serta mencatat hambatan teknis yang memengaruhi penyelesaian tugas. Bila ditemukan deviasi terhadap jadwal, maka dilakukan penyesuaian *timeline* dengan menyertakan alasan, seperti kendala teknis atau kebutuhan penyesuaian fitur. Selain itu, setiap keputusan teknis penting, seperti perubahan desain antarmuka, pemilihan metode pemrosesan data, dan pengaturan format output, didokumentasikan untuk memastikan konsistensi dan akuntabilitas selama proses pengembangan berlangsung.

3.2.4. Modelling

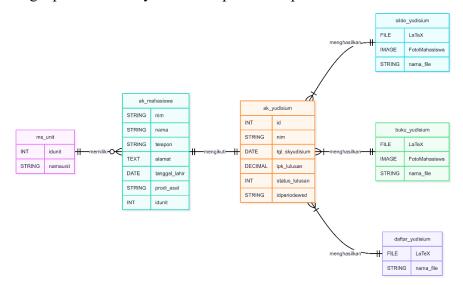
Tahap *modelling* bertujuan untuk menciptakan gambaran detail dan terstruktur dari modul kelengkapan dokumen yudisium. Pada tahap ini, pengembang fokus untuk merancang dan memvisualisasikan bagaimana sistem akan bekerja, termasuk alur data dan interaksi pengguna dengan sistem. Proses ini membantu memastikan bahwa modul yang dikembangkan sesuai dengan kebutuhan yang telah ditentukan. Tahap *modelling* terdapat 2 sub-tahap lainnya yaitu, tahap *analysis* dan tahap *design*.

3.2.4.1. *Analysis*

Tahap analisis dilakukan untuk mengkaji kebutuhan perangkat lunak secara mendalam. Analisis ini mencakup pembuatan *Entity Relationship Diagram* (ERD) dan *Activity Diagram*. Proses ini mencerminkan cara pengambilan data mahasiswa dari basis data SIAKADU dan pengolahannya menjadi dokumen yudisium dalam format LaTeX. Hasil dari tahap analisis ini adalah pemahaman yang jelas mengenai alur sistem, termasuk struktur relasi antar tabel serta aliran data dari proses *input* hingga menghasilkan dokumen yudisium sebagai *output*.

a. Entity Relationship Diagram

Entity relationship Diagram (ERD) merupakan diagram yang menggambarkan hubungan antar entitas dalam basis data yang digunakan oleh sistem. ERD membantu dalam merancang struktur basis data agar sesuai dengan kebutuhan sistem, serta memastikan integritas data dan efisiensi dalam pengembilan informasi. Pada sistem ini terdapat beberapa entitas utama yang saling berelasi, yaitu:

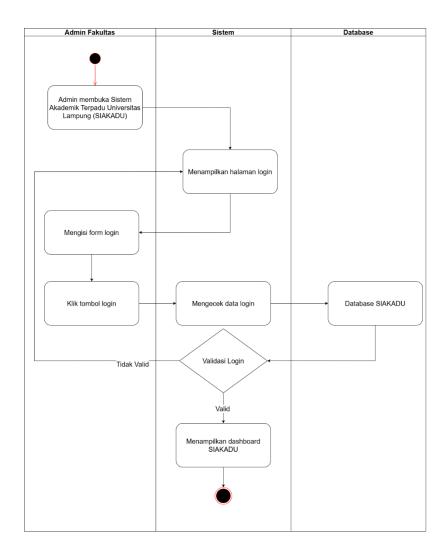

- Subjek ms_unit
 Subjek menyimpan data unit atau jurusan di FMIPA, terdiri dari idunit sebagai primary key dan namaunit sebagai nama unit.
- Subjek ak_mahasiswa
 Subjek menyimpan informasi mahasiswa seperti nim, nama, telepon, alamat, tanggal_lahir, dan prodi_asal. Entitas ini memiliki relasi memiliki ke ms_unit berdasarkan field idunit.
- Subjek ak_yudisium
 Subjek menyimpan data proses yudisium mahasiswa seperti id,
 nim, tgl_skyudisium, ipk_lulusan, status_lulusan, dan
 idperiodewsd. Entitas ini memiliki relasi mengikuti ke
 ak mahasiswa melalui field nim.
- Subjek slide_yudisium, buku_yudisium, dan daftar_yudisium Ketiga subjek ini merepresentasikan *output* dokumen yang dihasilkan sistem, yaitu:

- slide_yudisium: Berisi *file* LaTeX dan foto untuk kebutuhan presentasi yudisium.
- buku_yudisium: Berisi *file* LaTeX dan foto untuk buku yudisium.
- daftar_yudisium: Berisi *file* LaTeX berisi daftar nama mahasiswa yudisium.

Relasi antar entitas digambarkan dengan jelas dalam ERD untuk menggambarkan alur data antar tabel. Berikut ini adalah jenis relasi yang digunakan:

- One to One (1:1): antara ak_mahasiswa dan ak_yudisium, menunjukkan bahwa setiap mahasiswa hanya memiliki satu data yudisium dalam satu periode tertentu.
- One to Many (1:N): antara ms_unit dan ak_mahasiswa, menunjukkan bahwa satu unit dapat memiliki lebih dari satu mahasiswa.

Dengan adanya ERD ini, struktur basis data dapat dirancang dengan baik sehingga sistem dapat melakukan penyimpanan, pengolahan, dan pengambilan data secara efisien dan konsisten. Untuk ERD modul kelengkapan dokumen yudisium dapat dilihat pada Gambar 7.



Gambar 7. Entity Relationship Diagram Dokumen Yudisium.

b. Activity Diagram

Activity Diagram digunakan untuk menggambarkan alur kerja atau urutan aktivitas dalam sebuah sistem atau proses. Sistem ini memiliki lima activity diagram, yaitu activity diagram login Sistem Informasi Akademik Terpadu Universitas Lampung (SIAKADU), Activity diagram pilih submenu yudisium, Activity diagram generate buku yudisium, activity diagram generate slide yudisium, dan activity diagram generate daftar nama yudisium. Pada activity diagram login Sistem Akademik Terpadu Universitas Lampung (SIAKADU) admin membuka SIAKADU kemudian sistem akan menampilkan halaman login SIAKADU. admin mengisi form login dan klik tombol login kemudian diproses pada database SIAKADU. Jika proses login berhasil, maka sistem menampilkan dashboard SIAKADU. Namun jika login belum berhasil atau tidak valid, sistem akan kembali ke halaman awal login agar admin login kembali dengan benar. Untuk tampilan activity diagram login Sistem Akademik Terpadu (SIAKADU) dapat dilihat di Gambar 8.

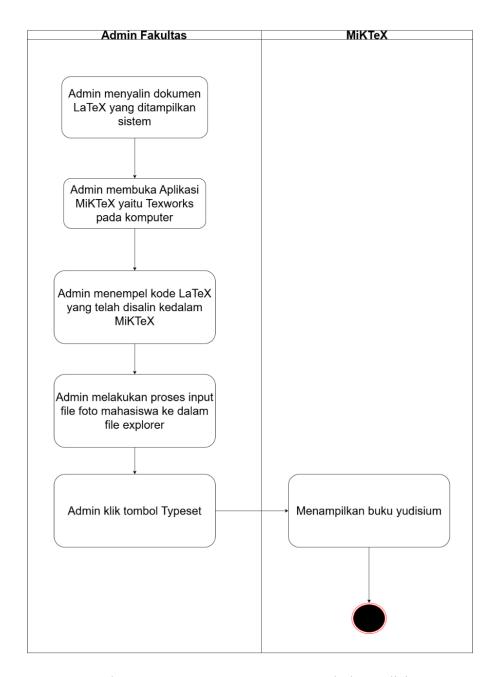
Pada *Activity Diagram* pilih *sub* menu yudisium, Proses diawali dengan admin fakultas yang memilih menu perkuliahan pada *Navigasi Bar* SIAKADU sebagai langkah awal untuk mengakses fitur pembuatan dokumen yudisium. Setelah itu, sistem menampilkan submenu yang tersedia di dalam menu tersebut, yaitu *Buku Yudisium*, *Slide Yudisium*, dan *Daftar Nama Yudisium*. Admin kemudian memilih salah satu submenu sesuai dengan dokumen yang ingin dibuat. Setelah admin menentukan pilihan submenu, sistem menampilkan halaman pilih periode yudisium. Langkah ini penting untuk memastikan bahwa data mahasiswa yang akan diproses berasal dari periode yudisium yang benar. Admin memasukkan atau memilih periode yudisium yang diinginkan melalui antarmuka sistem.

Gambar 8. Activity Diagram login.

Setelah *input* periode diberikan, sistem akan melakukan proses pengecekan data pada database SIAKADU. Proses pengecekan ini mencakup verifikasi ketersediaan data mahasiswa yang lulus pada periode tersebut, memastikan data bersih dari duplikasi, serta memvalidasi kelengkapan atribut yang dibutuhkan untuk pembuatan dokumen. Jika data dinyatakan valid, sistem melanjutkan ke langkah berikutnya yaitu menyusun dokumen LaTeX sesuai dengan submenu yang dipilih sebelumnya. Dokumen ini dapat berupa buku yudisium lengkap dengan foto dan data mahasiswa, slide presentasi untuk acara yudisium, atau daftar nama sederhana sesuai kebutuhan admin fakultas. Hasil akhir dari proses ini adalah file dokumen LaTeX yang terstruktur rapi, konsisten dengan format fakultas, dan siap untuk diunduh atau

Admin Fakultas Sistem menampilkan sub-Memilih menu perkuliahan pada Navbar SIAKADU menu yang ada pada menu perkuliahan Memilih Sub Menu Pilih Sub Menu Buku Yudisium Slide Yudisium Sudah Pilih sub Daftar Nama Yudisiur Menampilkan tampilan pilih periode Memilih Periode Sistem mengecek data Database SIAKADU Menampilkan dokumen LaTeX

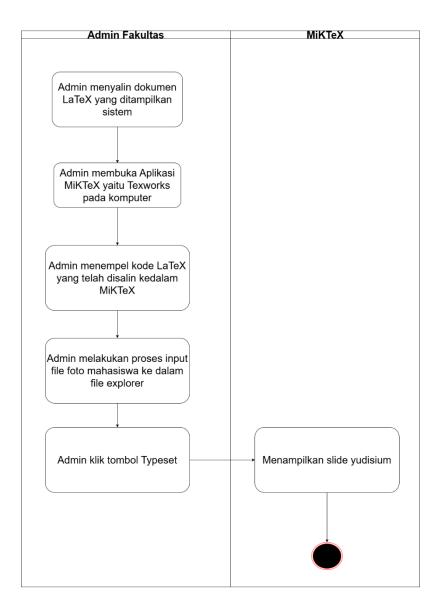
dicetak. Untuk tampilan *Activity diagram* pilih submenu yudisium dapat dilihat pada Gambar 9.


Gambar 9. Activity diagram pilih submenu yudisium.

Kemudian pada *Activity Diagram generate* buku yudisium, proses dimulai ketika admin memilih fitur *generate* buku yudisium pada antarmuka modul di sistem. Setelah itu, sistem akan menampilkan

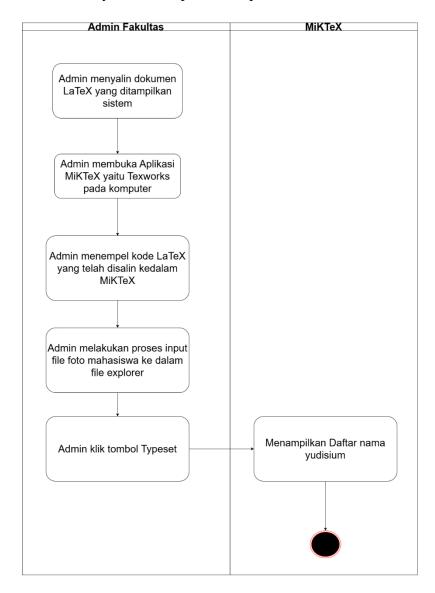
output berupa kode LaTeX yang telah di-generate berdasarkan data yudisium dan biodata mahasiswa dari database SIAKADU. Admin kemudian menyalin seluruh kode LaTeX tersebut dan membuka aplikasi MiKTeX melalui editor TeXworks yang telah terinstal di perangkat komputer. Di dalam aplikasi tersebut, admin menempelkan kode LaTeX ke dalam editor dokumen yang kosong.

Setelah kode berhasil ditempel, admin melakukan *input* tambahan berupa foto mahasiswa yang dimasukkan ke dalam direktori *file* (*file explorer*) sesuai dengan *path* gambar yang telah didefinisikan dalam struktur LaTeX. Langkah ini penting untuk memastikan bahwa setiap identitas mahasiswa dalam buku yudisium ditampilkan lengkap dengan foto. Setelah proses *input* selesai, admin menekan tombol "*Typeset*" di TeXworks untuk memulai proses kompilasi. Jika tidak terjadi *error* pada struktur kode, maka sistem akan secara otomatis menampilkan dokumen *final* berupa file PDF buku yudisium, yang siap untuk dicetak atau diunggah. Alur aktivitas ini digambarkan secara lengkap dalam Gambar 10.


Selanjutnya, pada *Activity Diagram generate slide* yudisium, alur proses yang dilakukan oleh admin serupa dengan proses sebelumnya, namun dengan perbedaan pada struktur konten dan *layout* dokumen LaTeX yang ditampilkan. Setelah admin memilih fitur *generate slide* yudisium di sistem, maka sistem akan menampilkan kode LaTeX khusus untuk pembuatan presentasi *slide*. Kode ini berisi elemen-elemen yang telah disesuaikan dengan format visual *slide*.

Gambar 10. Activity Diagram generate buku yudisium.

Pada Activity Diagram generate slide yudisium, admin terlebih dahulu menyalin kode LaTeX yang telah disiapkan oleh sistem, kemudian membuka aplikasi MiKTeX TeXworks. Setelah aplikasi terbuka, admin menempelkan kode tersebut ke dalam dokumen baru. Selanjutnya, admin memasukkan file foto mahasiswa ke dalam folder gambar agar dapat diproses dengan benar oleh compiler LaTeX. Setelah seluruh data dan file pendukung dipastikan sesuai, admin menekan tombol Typeset untuk melakukan proses kompilasi. Proses ini menghasilkan file

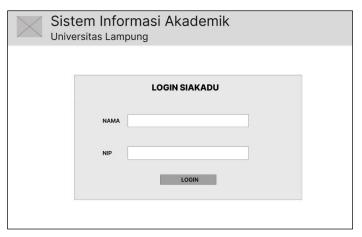

presentasi dalam format PDF yang berisi informasi mahasiswa secara *slide-by-slide* sesuai kebutuhan acara yudisium. Alur lengkap dari proses ini dapat dilihat pada Gambar 11.

Gambar 11. Activity Diagram generate slide yudisium.

Kemudian pada *Activity Diagram generate* daftar nama yudisium, admin menyalin dokumen LaTeX yang ditampilkan sistem, kemudian admin membuka aplikasi MiKTeX yaitu TeXworks pada perangkat komputer. Lalu admin menempel kode LaTeX yang telah disalin ke dalam MiKTeX. Lalu admin melakukan proses *input* foto mahasiswa ke

dalam *file explorer* kemudian admin *klik* tombol *typeset*, lalu MiKTeX akan menampilkan *slide* yudisium. Tampilan *Activity diagram generate* daftar nama yudisium dapat dilihat pada Gambar 12.

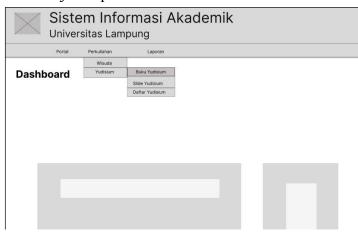
Gambar 12. Activity Diagram generate daftar nama yudisium.


3.2.4.2.*Design*

Tahap *design* bertujuan untuk menciptakan mode visual dari sistem yang akan dikembangkan. Desain ini dibuat menggunakan *tools* Figma. Aktivitas yang dibuat pada tahap ini adalah membuat desain antarmuka. Subjek yaitu membuat *prototipe* tampilan modul yang *user friendly*, sehingga pengguna dapat dengan mudah memahami fungsi-fungsi yang

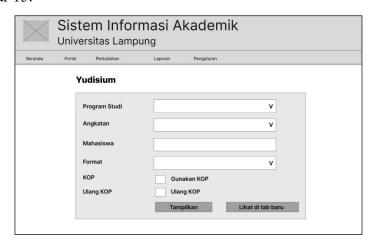
tersedia. Desain ini mencakup tata letak, tombol, dan navigasi antarmuka untuk mempermudah pengelolaan data yudisium.

a. Layout Halaman Login SIAKADU


Layout ini menampilkan halaman saat *login* di SIAKADU untuk tampilan halaman *login* dapat dilihat paga Gambar 13.

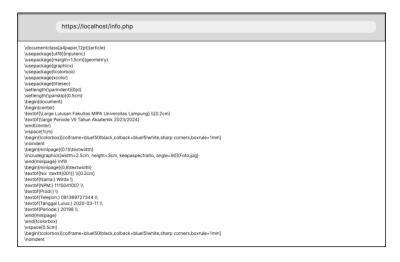
Gambar 13. Halaman login SIAKADU.

b. Layout Halaman fitur-fitur SIAKADU.


Layout ini menampilkan tampilan dashboard admin fakultas pada Sistem Akademik Terpadu (SIAKADU). Dashboard admin fakultas menampilkan menu dan submenu. Menu perkuliahan yang terdapat di Navigasi Bar, kemudian menu yudisium yaitu buku yudisium, slide yudisium, dan Daftar nama yudisium Layout halaman menu awal SIAKADU ditunjukan pada Gambar 14.

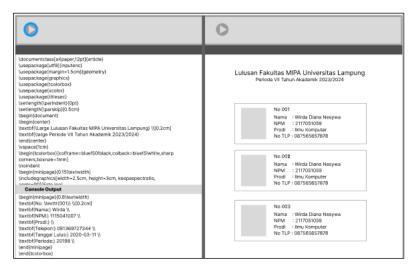
Gambar 14. Halaman fitur awal SIAKADU.

c. Layout Halaman fitur generate


Layout ini menampilkan halaman saat menu pilih periode sebelum generate dokumen yudisium (buku yudisium, slide yudisium dan daftar nama yudisium). Layout halaman fitur generate dapat dilihat pada Gambar 15.

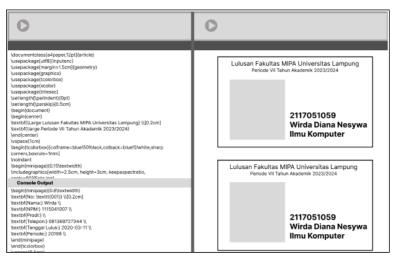
Gambar 15. Layout fitur generate.

d. Layout hasil kode LaTeX.


Layout ini menampilkan halaman kode LaTeX yang telah dibuat oleh pengembang. Halaman ini merupakan hasil dari database yang telah diproses dan menghasilkan file LaTeX. Kode LaTeX ini akan di copy paste oleh admin fakultas ke dalam MiKTeX dan hasil compile akan menghasilkan buku yudisium. Layout file LaTeX ditunjukan pada Gambar 16.

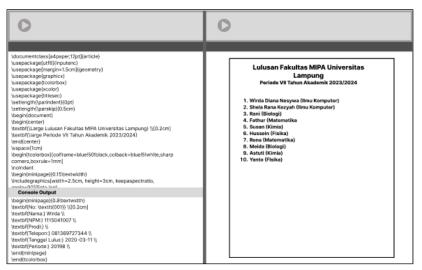
Gambar 16. Layout file LaTeX.

e. Layout menampilkan buku yudisium pada MiKTeX


Layout ini menampilkan tampilan pada MiKTeX, yaitu setelah admin fakultas copy paste file LaTeX dan meng-compile file tersebut ke dalam MiKTeX. Layout menampilkan buku yudisium ditunjukan pada Gambar 17.

Gambar 17. Layout buku yudisium pada MiKTeX.

f. Layout menampilkan slide yudisium pada MiKTeX


Layout ini menampilkan halaman slide yudisium pada MiKTeX, yaitu setelah admin fakultas copy paste file LaTeX dan meng-compile file tersebut ke dalam MiKTeX. Layout menampilkan slide yudisium ditunjukan pada Gambar 18.

Gambar 18. *Layout* slide yudisium pada MiKTeX.

g. Layout daftar nama yudisium pada MiKTeX

Layout ini menampilkan halaman daftar nama yudisium yang telah dibuka melalui aplikasi MiKTeX. Proses ini dimulai ketika admin fakultas menyalin *file* LaTeX yang telah disiapkan, kemudian melakukan kompilasi *file* tersebut menggunakan MiKTeX. Setelah proses kompilasi berhasil, sistem akan menampilkan daftar nama mahasiswa yudisium yang nantinya akan dibacakan oleh pembawa acara pada saat pelaksanaan yudisium. Layout menampilkan daftar nama yudisium ditunjukan pada Gambar 19.

Gambar 19. *Layout* daftar nama yudisium pada MiKTeX.

3.2.5. Construction

Tahap *construction* adalah tahap modul pembuatan buku yudisium diimplementasikan berdasarkan desain teknis yang telah dibuat sebelumnya. Pada tahap ini, desain dan analisis yang sudah dirancang diterjemahkan menjadi kode program sehingga modul dapat berfungsi sesuai kebutuhan. Tahap ini terdiri dari dua sub-tahap, yaitu pengkodean (*coding*) dan pengujian (*testing*).

3.2.5.1.*Coding*

Pada tahap ini, kebutuhan modul yang telah dianalisis mulai diterapkan dalam bentuk kode program. Proses *coding* dilakukan secara bertahap, dimulai dari pengolahan data yudisium. Langkah pertama adalah

membuat format tabel buku yudisium menggunakan Overleaf LaTeX. Setelah format dianggap sesuai, pengembang mengambil data mahasiswa dari *database* SIAKADU yang berbasis PostgreSQL. Koneksi ke *database* dilakukan terlebih dahulu, kemudian dilanjutkan dengan *query* SQL untuk mengambil data seperti nama mahasiswa, NPM, program studi, dan nomor telepon. Data yang berhasil diambil selanjutnya diproses dan disusun menggunakan bahasa pemrograman PHP. *Output* dari proses ini berupa *file* LaTeX yang kemudian disalin ke dalam aplikasi MiKTeX untuk menghasilkan buku yudisium dalam format PDF.

3.2.5.2.*Testing*

Pengujian terhadap sistem dilakukan melalui dua tahap, yaitu alpha testing dan beta testing, untuk memastikan bahwa sistem telah memenuhi kebutuhan dan harapan pengguna. Alpha testing dilakukan oleh pengembang setelah proses pengembangan selesai, dengan tujuan untuk mengevaluasi aspek teknis dan fungsionalitas sistem secara menyeluruh. Setelah sistem dinyatakan stabil secara teknis, dilanjutkan dengan beta testing yang melibatkan pengguna akhir, yaitu admin fakultas yang bertugas dalam pengelolaan data yudisium dan pembuatan dokumen yudisium di Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Lampung. Pada tahap ini, dilakukan uji penerimaan sistem menggunakan kuesioner evaluasi yang disusun dalam bentuk pernyataan tertutup dengan skala Likert 5 poin. Nilai 1 menunjukkan sangat tidak setuju dan nilai 5 menunjukkan sangat setuju terhadap pernyataan yang diberikan. Pengukuran kualitas perangkat lunak dalam penelitian ini dihitung berdasarkan persentase skor aktual terhadap skor ideal, dengan rumus sebagai berikut:

% Skor aktual =
$$\frac{Skor\ Aktual}{Skor\ Ideal} \times 100\%$$

Keterangan:

- Skor aktual merupakan pilihan dari semua responden dari kuesioner yang telah diberikan
- Skor ideal diasumsikan bahwa semua responden memilih skor tertinggi dari semua jawaban

Hasil pengujian ini menjadi dasar dalam menyimpulkan tingkat penerimaan sistem oleh pengguna, serta memberikan gambaran aspek mana saja yang perlu ditingkatkan untuk pengembangan sistem selanjutnya.

3.2.6. Deployment

Tahap deployment adalah Ketika modul yang telah selesai diuji diimplementasikan ke dalam sistem kerja nyata. Pada penelitian ini, modul pembuatan modul kelengkapan dokumen yudisium diintegrasikan ke dalam Sistem Akademik Terpadu Universitas Lampung (SIAKADU) dan diserahkan kepada pengguna untuk digunakan secara langsung, tahap ini bertujuan untuk memastikan modul berjalan dengan baik dan memenuhi kebutuhan pengguna. Tahap ini terdiri dari tiga bagian, yaitu delivery, support, dan feedback.

3.2.6.1. *Delivery*

Modul diserahkan kepada admin fakultas. Kemudian dilakukan pelatihan singkat kepada admin fakultas untuk memastikan *user* memahami cara kerja modul, termasuk bagaimana cara mengoperasikan fitur-fitur utama. Pelatihan ini juga mencakup simulasi penggunaan modul pada skenario yang mungkin terjadi dalam kegiatan operasional. Hal ini bertujuan untuk meminimalkan kesalahan dalam penggunaan serta meningkatkan efisiensi kerja pengguna.

3.2.6.2. *Support*

Dukungan teknis disediakan untuk memastikan kelancaran penggunaan modul. Jika terjadi masalah teknis, seperti *bug* atau kendala dalam pengoperasian, tim pengembang bertanggung jawab untuk memberikan

solusi dengan cepat. Proses ini bertujuan untuk menjaga keandalan modul dan memastikan moduk dapat berfungsi optimal sesuai kebutuhan pengguna.

3.2.6.3. *Feedback*

Setelah pengguna akhir mengoperasikan dan menguji modul kelengkapan dokumen yudisium pada tahap beta testing, dilakukan proses pengumpulan masukan (feedback) untuk mengevaluasi pengalaman penggunaan secara kualitatif. Feedback ini menjadi bagian penting dari proses evaluasi dan pengembangan berkelanjutan, karena memberikan informasi langsung mengenai kelebihan, kekurangan, serta potensi perbaikan sistem dari sudut pandang pengguna. Pengumpulan feedback dilakukan melalui formulir saran terbuka yang disisipkan pada bagian akhir kuesioner evaluasi sistem. Setelah pengguna menjawab seluruh pernyataan tertutup dalam skala Likert, disediakan ruang terbuka bagi pengguna untuk menyampaikan pendapat, kritik, maupun saran terhadap sistem secara bebas.

Seluruh tanggapan dikumpulkan, didokumentasikan, dan dianalisis secara tematik untuk mengidentifikasi pola umpan balik yang relevan. Masukan yang bersifat kritis dan muncul secara berulang akan diprioritaskan sebagai rekomendasi utama dalam penyempurnaan sistem, sementara saran yang bersifat minor akan dicatat sebagai bagian dari revisi ringan sebelum sistem diimplementasikan secara menyeluruh.

V. SIMPULAN DAN SARAN

5.1. Simpulan

Berdasarkan hasil pengembangan dan pengujian modul kelengkapan pelaksanaan yudisium pada Sistem Informasi Akademik Terpadu Universitas Lampung (SIAKADU), dapat disimpulkan hal-hal berikut:

- a. Modul kelengkapan dokumen yudisium dirancang dan dikembangkan dengan memanfaatkan teknologi tepat guna berupa PHP untuk membangun aplikasi, PostgreSQL sebagai basis data, dan LaTeX untuk penyusunan dokumen. Integrasi ketiga teknologi ini mendukung efisiensi proses administrasi akademik dengan menghasilkan dokumen yudisium yang terstruktur, rapi, dan sesuai standar.
- b. Penyusunan data mahasiswa yang telah lulus dilakukan dengan mengambil data langsung dari *database* SIAKADU dan memformatnya ke dalam dokumen LaTeX. Proses ini menghasilkan dokumen yudisium yang lebih terstruktur dan efisien dibandingkan metode manual sebelumnya, serta mempermudah pembuatan buku yudisium, *slide* yudisium, dan daftar nama yudisium.
- c. Modul ini dikembangkan untuk membantu meminimalkan kesalahan input data dengan memanfaatkan data yang sudah tersedia di SIAKADU. Proses pengolahan data yang lebih terstruktur juga mempercepat pembuatan dokumen yudisium, sehingga membantu mengurangi beban kerja admin fakultas dalam penyusunan dokumen yudisium di Universitas Lampung.

5.2. Saran

Berdasarkan kesimpulan di atas, penulis memberikan beberapa saran untuk pengembangan modul selanjutnya:

- Mengimplementasikan fitur penyaringan data yudisium berdasarkan periode yang dipilih pengguna agar hasil yang ditampilkan lebih relevan dan akurat.
- b. Meningkatkan desain antarmuka pengguna agar lebih menarik, mudah dipahami, dan nyaman digunakan, sehingga dapat meningkatkan efektivitas penggunaan sistem oleh admin fakultas.
- c. Menyediakan dokumentasi lengkap dan pelatihan penggunaan modul bagi admin fakultas agar proses adaptasi sistem lebih cepat dan optimal.
- d. Melakukan pengujian lebih luas dengan melibatkan lebih banyak pengguna untuk memperoleh umpan balik yang lebih beragam dan menyeluruh.
- e. Disarankan agar sistem dikembangkan lebih lanjut dengan menambahkan fitur otomatisasi kompilasi dokumen LaTeX menjadi PDF secara langsung melalui *server*. Dengan demikian, pengguna tidak perlu lagi menyalin kode ke MiKTeX secara manual, dan dokumen dapat langsung diunduh dalam format PDF dari sistem.

DAFTAR PUSTAKA

- Afifah, A., & Martoyo. 2019. Pengertian: Jurnal Pendidikan Indonesia (PJPI). Pendidikan Agama Islam, Sekolah Tinggi Agama Islam Ibnu Rusyd Lampung Utara, 2(1), 1–8. https://doi.org/10.61930/pjpi.v2i1
- Aji, R. K., & Syah, F. 2020. Membuat dokumen dengan LaTeX. *Jurnal Sistem Informasi*, 1(LaTeX), 60. https://doi.org/10.1234/abcd.2016.98765
- Ardiansyah, A., Yahya, F. Y., Irawati, A. R., & Yusman, M. 2021. Pengembangan sistem informasi terpadu FMIPA Universitas Lampung (SIMIPA) menggunakan metode Scrum. *Jurnal Teknoinfo*, 15(2), 112. https://doi.org/10.33365/jti.v15i2.1041
- Arfinanti, N. 2018. Pengembangan media pembelajaran matakuliah metode numerik dengan implementasi Scilab berbantuan software LaTeX. Al-Khwarizmi: *Jurnal Pendidikan Matematika dan Ilmu Pengetahuan Alam*, 6(2), 1–18. https://doi.org/10.24256/jpmipa.v6i2.370
- Akbar, I. S., & Haryanti, T. 2023. Pengembangan entity relationship diagram database toko online Ira Surabaya. *Computing Insight: Journal of Computer Science*, 3(2), 28–35. https://doi.org/10.30651/comp_insight.v3i2.12002
- Fauzan. (2024). Power Point Wisuda. Universitas Lampung.
- Fihartini, Y. 2015. Pengaruh kualitas layanan elektronik SIAKAD online terhadap kepuasan mahasiswa di Fakultas Ekonomi dan Bisnis Universitas Lampung. *Jurnal Bisnis dan Manajemen*, 11(3), 174–246.
- Firdaus, F. A. (2024). *Buku Lulusan VII 2023-2024 FMIPA UNILA*. Universitas Lampung.

- Firman, A., Wowor, H. F., & Najoan, X. 2020. Sistem informasi perpustakaan online berbasis web. *Jurnal Teknologi Informasi dan Komunikasi (TIKomSiN)*, 8(2). https://doi.org/10.30646/tikomsin.v8i2.465
- Hakim, H. L., Faqih, D., Deva, D., Hudaya, I. F., & Ilyas, M. N. 2024. Pengujian alpha dan beta testing pada aplikasi TIJE. *TeknoIS: Jurnal Ilmiah Teknologi Informasi dan Sains*, 14(2), 285–295. https://doi.org/10.36350/jbs.v14i2.265
- Hamas, M., & Imaduddin, Z. 2019. Pengembangan sistem jual beli bahan pokok petani berbasis aplikasi mobile. *Jurnal Informatika Terpadu*, 5(2), 49–55.
- Hengki, & Suprawiro, S. 2017. Analisis dan perancangan sistem informasi inventory sparepart kapal berbasis web: Studi kasus Asia Group Pangkalpinang. *Jurnal Sisfokom*, 6(2), 121–129. https://doi.org/10.32736/sisfokom.v6i2.258
- Hidayat, A., Yani, A., Rusidi, & Saadulloh. 2019. Membangun website SMA PGRI Gunung Raya Ranau menggunakan PHP dan MySQL. *Jurnal Teknik Informatika Mahakarya*, 2(2), 41–52.
- Irwansyah, I. P. 2018. Sistem informasi akademik subsistem master data mahasiswa dengan menggunakan framework CodeIgniter. *Jurnal Informatika: Jurnal Pengembangan IT*, 3(3), 300–309. https://doi.org/10.30591/jpit.v3i3.914
- Jiwandono, A. 2021. Analisa perbandingan kinerja web server Apache, Nginx, dan Litespeed dengan menggunakan metode stress test. *Skripsi, Universitas Islam Riau*.
- Munawaroh, S. 2019. Mengeksplorasi database PostgreSQL dengan PgAdmin III. Jurnal Teknologi Informasi DINAMIK, 10(2), 103–107.
- Nugroho, I., Listiyono, H., & Anwar, S. N. 2017. Perancangan Unified Modelling Language Aplikasi Sarana Prasarana Pendukung Pariwisata Kota Semarang. Seminar Nasional Multi Disiplin Ilmu & Call for Papers (SENDI_U3).
- Nurliana, N., & Esabella, S. 2020. Rancang Bangun Aplikasi Pendaftaran Yudisium Pada Fakultas Teknik Universitas Teknologi Sumbawa Berbasis Web. *JINTEKS* (*Jurnal Informatika Teknologi Dan Sains*), 2(4), 238–248. https://doi.org/10.51401/jinteks.v2i4

- Praba, D. A., & Safitri, M. 2020. Studi perbandingan performansi antara MySQL dan PostgreSQL. *Jurnal Khatulistiwa Informatika*, 8(2), 88–93. https://doi.org/10.31294/jki.v8i2.8851
- Prasetyo, D. A. B., & Susetyo, Y. A. 2022. Implementasi information schema database pada PostgreSQL untuk pembuatan tabel informasi dengan menggunakan Python di PT XYZ. *JATISI (Jurnal Teknik Informatika dan Sistem Informasi)*, 9(3), 1961–1972. https://doi.org/10.35957/jatisi.v9i3.2221
- Prastyo, I. S. 2022. *Panduan LaTeX untuk pemula* (P. sampul : Y. D. Prastyo (ed.)). Pati:Penerbit Little Soleil.
- Pressman, R. S., & Maxim, B. R. (2020). *Software Engineering: A Practitioner's Approach (9th ed.)*. New York:McGraw-Hill Education.
- Putri, K. W. 2023. Analisis pengalaman pengguna Sistem Informasi Akademik (SIAKADU) V.6 Universitas Lampung menggunakan metrik Pulse dan HEART. *Nuclear Physics*, 13(1), 104–116.
- Ramadhan, A., Zulkifli, Kurniawan, R., & Widianto, S. 2021. Pengembangan sistem informasi akademik untuk bagian keuangan dan bagian pengolahan nilai yudisium. *JOISIE*, 5(2), 118–128. https://doi.org/10.35145/joisie.v5i2.1730
- Ramdhan, N. A., & Nufriana, D. A. 2019. Rancang bangun dan implementasi sistem informasi skripsi online berbasis web. *Jurnal Ilmiah Intech*, 1(2), 1–12. https://doi.org/10.46772/intech.v1i02.75
- Rumagit, M. A. 2015. Sistem informasi kelulusan yudisium di jurusan teknik elektro berbasis web (*Skripsi*). Politeknik Negeri Manado.
- Satoto, K. I., Isnanto, R. R., & Masykur, A. 2008. Analisis keamanan sistem informasi akademik berbasis web di Fakultas Teknik Universitas Diponegoro. *Seminar Nasional Aplikasi Sains dan Teknologi*, 13, 1–15.
- Schenk, C. 2000. MiKTeX Manual (Rev. 2). *MiKTeX Project*. New York:Springer-Verlag. https://doi.org/10.1234/miktex.2000.001
- Soeparyanto, T. S., Nuhun, R. S., Ismayana, Apriani, M., & Hado. 2024. Penggunaan

- Standar Metode Work Breakdown Structure (WBS) Pada Proyek Pembangunan Gudang BPBD Dan Rumah Jabatan Dandim. *Civil Engineering Journal (SCiEJ)*, 5(2).
- Sukamto, & Shalahuddin. 2016. *Daftar simbol simbol usecase diagram* (B. Setiawan (ed.)). Daftar Simbol Use Case Diagram; Bina Sarana Informatika. https://repository.bsi.ac.id/index.php/unduh/item/205310/File_9-Daftar-Simbol.pdf
- Sungkar, M. S., Harimadi, A. M., & Suneva, I. 2020. Rancang Bangun Web Server Pada Smk Nu Al-Yaman Menggunakan Linux Ubuntu. *Jurnal POLEKTRO: Jurnal Power Elektronik*, 8(2). https://doi.org/10.30591/polektro.v5i1.330
- Waruwu, T. S. 2019. Implementasi Postgresql Sebagai Sistem Manajemen Basis Data Pada Pendaftaran Mahasiswa Baru Berbasis Web. *Jurnal Mahajana Informasi*, *4*(1), 57–61. https://doi.org/10.51544/jurnalmi.v4i1.728
- Widyastuti, S. R. 2022. Pengembangan skala Likert untuk mengukur sikap terhadap penerapan penilaian autentik siswa sekolah menengah pertama. *Jendela ASWAJA*, 3(2), 57–75. https://doi.org/10.52188/ja.v3i02.393
- Wijaya, D., Ayu, R. S., Aziz, F. A., Sipahutar, R. M., Naja, Z. L. C., & Yusuf, M. 2024. Pengujian Aplikasi Keuangan Kaspro Dengan Metode Alpha Dan Beta Testing. *BINER: Jurnal Ilmu Komputer, Teknik Dan Multimedia*, *2*(2). https://journal.mediapublikasi.id/index.php/Biner %7C
- Zulfa, I., & Wanda, R. 2023. Rancangan sistem informasi akademik berbasis web menggunakan PHP dan MySQL. Klik: Kajian Ilmiah Informatika dan Komputer, 3(4), 393–399. https://djournals.com/klik/article/view/617