PENGARUH PENGGUNAAN MODEL ARGUMENT-DRIVEN INQUIRY (ADI) TERINTEGRASI SDGs TERHADAP HIGHER ORDER THINKING SKILLS (HOTS) DAN SELF-EFFICACY PESERTA DIDIK PADA MATERI PERUBAHAN IKLIM

(Skripsi)

Oleh:

CINDI EMALIA

FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS LAMPUNG BANDAR LAMPUNG 2025

ABSTRAK

PENGARUH PENGGUNAAN MODEL ARGUMENT-DRIVEN INQUIRY (ADI) TERINTEGRASI SDGs TERHADAP HIGHER ORDER THINKING SKILLS (HOTS) DAN SELF-EFFICACY PESERTA DIDIK PADA MATERI PERUBAHAN IKLIM

Oleh

CINDI EMALIA

Penelitian ini bertujuan untuk mengetahui pengaruh penggunaan model Argument-Driven Inquiry (ADI) terintegrasi SDGs terhadap HOTS (Higher Order Thinking Skills) dan self-efficacy peserta didik kelas X di SMAN 7 Bandar Lampung. Penelitian ini menggunakan desain quasi experimental dengan teknik pretest posttest non-equivalent control group design. Sampel diambil menggunakan teknik cluster random sampling dengan jumlah sampel 30 peserta didik kelas X.4 sebagai kelas eksperimen dan 34 peserta didik kelas X.5 sebagai kelas kontrol. Data kuantitatif berupa nilai pretest-posttest HOTS dan pre-post angket selfefficacy. Sedangkan data kualitatif berupa angket tanggapan peserta didik. Hasil penelitian menunjukkan bahwa HOTS kelas eksperimen lebih tinggi (N-Gain 0,69) berbeda nyata dibandingkan dengan kelas kontrol (N-Gain 0,50). Hasil uji independent sample t-test didapatkan nilai sig. (2-tailed) 0,000 < 0,05 yang artinya H₀ ditolak dan H₁ diterima. Selain itu, hasil uji effect size sebesar 1,9 dengan interpretasi besar. Indikator HOTS yang mengalami peningkatan paling tinggi adalah kemampuan menganalisis (N-Gain 0,80) dengan kategori tinggi dan terendah pada indikator mencipta (N-Gain 0,60). Dengan demikian, dapat disimpulkan bahwa penggunaan model Argument-Driven Inquiry (ADI) terintegrasi SDGs berpengaruh terhadap HOTS peserta didik. Hasil penelitian juga menunjukkan bahwa terdapat pengaruh yang signifikan penggunaan model Argument-Driven Inquiry (ADI) terintegrasi SDGs terhadap self-efficacy peserta didik. Hasil uji independent sample t-test sig. (2-tailed) 0,000 < 0,05 yang artinya H₀ ditolak dan H₁ diterima. Dimensi level mengalami peningkatan tertinggi (N-Gain 0,55). Hasil uji effect size sebesar 1,4 dengan interpretasi besar. Hasil analisis angket tanggapan menunjukkan bahwa penggunaan model Argument-Driven Inquiry (ADI) terintegrasi SDGs mendapatkan tanggapan positif dari peserta didik dalam hal meningkatkan kemampuan menganalisis, mengevaluasi, menciptakan dan keyakinan diri peserta didik.

Kata Kunci: Argument-Driven Inquiry (ADI), Higher Order Thinking Skills (HOTS), Self-Efficacy, Sustainable Development Goals (SDGs)

ABSTRACT

THE EFFECT OF USING THE ARGUMENT-DRIVEN INQUIRY (ADI) MODEL INTEGRATED WITH SDGs ON HIGHER ORDER THINKING SKILLS (HOTS) AND SELF-EFFICACY OF STUDENTS IN THE SUBJECT OF CLIMATE CHANGE

By

CINDI EMALIA

This study aims to determine the effect of using the SDGs-integrated Argument-Driven Inquiry (ADI) model on HOTS (Higher Order Thinking Skills) and selfefficacy of grade X students at SMAN 7 Bandar Lampung. This study employs a quasi-experimental design using a pretest-posttest non-equivalent control group design. The sample was selected using cluster random sampling, with 30 students from class X.4 as the experimental group and 34 students from class X.5 as the control group. Quantitative data consist of pretest-posttest HOTS scores and prepost self-efficacy questionnaires, while qualitative data is interpreted from student response questionnaires. The results showed that the experimental class had higher HOTS scores (N-Gain 0.69), which was significantly different from the control class (N-Gain 0.50). The independent sample t-test yielded a sig. (2-tailed) of 0.000 < 0.05, meaning that H_0 was rejected and H_1 was accepted. Additionally, the effect size test yielded a value of 1.9, interpreted as large. The HOTS indicator with the highest increase was analytical ability (N-Gain 0.80) in the high category, while the lowest increase was in the creativity indicator (N-Gain 0.60). Thus, it can be concluded that the use of the SDGs-integrated Argument-Driven Inquiry (ADI) model has an effect on students' HOTS. The results also show that there is a significant effect of the use of the SDGs-integrated Argument-Driven *Inquiry (ADI) model on students' self-efficacy. The results of the independent* sample t-test sig. (2-tailed) 0.000 < 0.05, meaning that H_0 is rejected and H_1 is accepted. The dimension level experienced the highest increase (N-Gain 0.55). The effect size test result was 1.4, interpreted as large. The results of the questionnaire analysis show that the use of the Argument-Driven Inquiry (ADI) model integrated with SDGs received positive responses from students in terms of improving their ability to analyze, evaluate, create, and their self-confidence.

Keywords: Argument-Driven Inquiry (ADI), Higher Order Thinking Skills (HOTS), Self-Efficacy, Sustainable Development Goals (SDGs)

PENGARUH PENGGUNAAN MODEL ARGUMENT-DRIVEN INQUIRY (ADI) TERINTEGRASI SDGs TERHADAP HIGHER ORDER THINKING SKILLS (HOTS) DAN SELF-EFFICACY PESERTA DIDIK PADA MATERI PERUBAHAN IKLIM

Oleh

CINDI EMALIA NPM 2113024028

Skripsi

Sebagai Salah Satu Syarat untuk Mencapai Gelar SARJANA PENDIDIKAN

Pada

Program Studi Pendidikan Biologi Jurusan Pendidikan Matematika dan Ilmu Pengetahuan Alam

FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS LAMPUNG BANDAR LAMPUNG 2025

Judul Skripsi

: PENGARUH PENGGUNAAN MODEL

ARGUMENT-DRIVEN INQUIRY (ADI)

TERINTEGRASI SDGs TERHADAP HIGHER ORDER THINKING SKILLS (HOTS) DAN SELF-EFFICACY PESERTA DIDIK PADA

MATERI PERUBAHAN IKLIM

Nama Mahasiswa

: Cindi Emalia

Nomor Pokok Mahasiswa

: 2113024028

Program Studi

: Pendidikan Biologi

Jurusan

: Pendidikan MIPA

Fakultas

: Keguruan dan Ilmu Pendidikan

MENYETUJUI

1. Komisi Pembimbing

Alter

Prof. Dr. Neni Hasnunidah, S.Pd., M.Si. NIP 19700327 199403 2 001

Wisnu Juli Wiono, S.Pd., M.Pd. NIP 19880707 201903 1 014

2. Ketua Jurusan Pendidikan MIPA

Dr. Narhanur wati, M.Pd NIP 19670808 199103 2 001

1. Tim Penguji

: Prof. Dr. Neni Hasnunidah, S.Pd., M.Si. Ketua

Sekretaris

: Wisnu Juli Wiono, S.Pd., M.Pd.

Penguji Bukan

: Dr. Tri Jalmo, M.Si.

Pembimbing

2. Dekan Fakultas Keguruan dan Ilmu Pendidikan

Aaydiantoro, S.Pd., M.Pd

Tanggal Lulus Ujian Skripsi: 25 Juni 2025

870504 201404 1 001

PERNYATAAN SKRIPSI MAHASISWA

Yang bertanda tangan di bawah ini:

Nama : Cindi Emalia

NPM : 2113024028

Program Studi : Pendidikan Biologi

Jurusan : Pendidikan MIPA

Dengan ini menyatakan bahwa dalam skripsi ini tidak terdapat karya yang pernah diajukan untuk memperolah gelar kesarjanaan di suatu perguruan tinggi. Sepengetahuan saya juga tidak terdapat karya atau pendapat yang pernah ditulis atau diterbitkan oleh orang lain, kecuali secara tertulis dalam naskah ini dan disebutkan dalam daftar pustaka.

Apabila ternyata kelak dikemudian hari terbukti ada ketidakbenaran dalam pernyataan saya di atas, maka saya bertanggung jawab sepenuhnya.

Bandar Lampung, 23 Juni 2025 Yang Menyatakan

Cindi Emalia 2113024028

RIWAYAT HIDUP

Penulis dilahirkan di Banding Agung, Lampung Barat pada tanggal 2 Mei 2002 sebagai anak pertama dari dua bersaudara, putri dari Bapak Lekat Elwin Suhnda dan Ibu Emi Susanti.

Penulis beralamat di Jl. Lintas Liwa No. 17 Dusun Banding Agung, Desa Gunung Sugih, Kecamatan Balik Bukit, Kabupaten Lampung Barat, Lampung.

Penulis mengawali pendidikan formal di Madrasah Ibtidaiyah Negeri (MIN) 2 Lampung Barat (2010 – 2015), MTs Negeri 1 Lampung Barat (2015 – 2018), dan SMA Negeri 1 Liwa (2018 – 2021). Pada tahun 2021, penulis terdaftar sebagai mahasiswa baru Jurusan Pendidikan Biologi Universitas Lampung melalui jalur Seleksi Bersama Masuk Perguruan Tinggi Negeri (SBMPTN).

Selama menjadi mahasiswa, penulis aktif mengikuti kegiatan organisasi di lingkungan kampus. Pada tahun 2021-2023, penulis tergabung dalam Forum Mahasiswa Pendidikan Biologi Unila (Formandibula) sebagai Anggota Divisi Komunikasi dan Informasi (Kominfo), Anggota Bidang Kemuslimahan FPPI FKIP UNILA. Pada tahun 2024 penulis melaksanakan Kuliah Kerja Nyata (KKN) dan Program Pengenalan Lapangan Persekolahan (PLP) selama 40 hari di Desa Pasuruan, Kecamatan Penengahan, Kabupaten Lampung Selatan, Lampung. Pada tahun 2024, penulis diterima sebagai mahasiswa kampus merdeka program Kampus Mengajar Angkatan 8 dan ditempatkan di SMP YPPL (Yayasan Pendidikan Panjang Lampung). Kemudian pada tahun 2025 penulis melakukan penelitian untuk menyelesaikan tugas akhir yaitu skripsi di SMAN 7 Bandar Lampung, Kota Bandar Lampung.

MOTTO

"Sesungguhnya bersama kesulitan ada kemudahan. Maka apabila engkau telah selesai (dari suatu urusan), tetaplah bekerja keras (untuk urusan yang lain), dan hanya kepada Tuhanmulah engkau berharap"

(Q.S. Al-Insyirah: 6 - 8)

"Boleh jadi kamu membenci sesuatu, padahal ia amat baik bagimu, dan boleh jadi (pula) kamu menyukai sesuatu, padahal ia amat buruk bagimu. Allah mengetahui, sedang kamu tidak mengetahui"

(Q.S. Al-Bagarah: 216)

"Tugasmu hanya memperbaiki diri, semakin kamu baik, semakin Allah hadirkan hal-hal baik dalam hidupmu, percayalah"

(Ust. Adi Hidayat)

"Tenangkan pikiranmu. Semua sudah tertulis untukmu. Apa yang jadi milikmu akan sampai kepadamu, meski siapapun menghalangi. Tenangkan hatimu. Esok dan lusa, kehidupan tetap dalam kendali Allah. Jangan takut, jangan gusar, kamu hanya perlu untuk terus di jalan-Nya, mengingat-Nya sepenuh hati"

(Ustadzah Halimah Alaydrus)

بِسْمِ للهِ الرَّحْمَنِ الرَّحِيْمِ

"Dengan menyebut nama Allah yang Maha Pengasih dan Maha Penyayang"

PERSEMBAHAN

Alhamdulillahi robbil 'alamin, segala puji bagi Allah SWT yang Maha Pengasih dan Maha Penyayang yang telah memberikan kemudahan dan kelancaran sehingga skripsi ini dapat terselesaikan dengan kesungguhan dan tanggungjawab. Tak lupa juga, shalawat beserta salam senantiasa tercurahkan kepada Nabi Muhammad SAW.

Dengan penuh kerendahan hati, karya ini kupersembahkan kepada orang-orang yang sangat berharga dan berjasa di dalam kehidupanku, kepada:

Ayah (Lekat Elwin S.) dan Ibu (Emi Susanti)

Yang telah membesarkan penulis dengan penuh ikhlas dan cinta yang tak lekang oleh waktu. Terima kasih atas segala doa, kepercayaan, dukungan, dan nasihat yang senantiasa mengiringi penulis disetiap langkah kehidupan. Tak lupa juga, terima kasih atas segala usaha dan jerih payah yang senantiasa menguatkan tekad penulis untuk terus berjuang mencapai impiannya. Semoga Allah meridhoi dan memberkahi penulis untuk terus berbakti dan membahagiakan kalian.

Adikku (Hafidz Al-Azzam)

Yang telah ikut serta memberikan doa dan dukungan terbaiknya. Terima kasih telah mewarnai hari-hari penulis selama ini.

Para Pendidik

Yang telah senantiasa memberikan bimbingan, nasihat, dan dukungan yang membangun disetiap prosesnya. Terima kasih atas setiap waktu yang telah diberikan untuk membimbing penulis dan memberikan begitu banyak pembelajaran berharga guna membentuk pribadi penulis menjadi lebih baik lagi.

Almamater Tercinta, Universitas Lampung

SANWACANA

Segala puji bagi Allah SWT, yang telah memberikan rahmat dan hidayah-Nya sehingga penulis dapat menyelesaikan skripsi ini sebagai salah satu syarat untuk memperoleh gelar sarjana Pendidikan Biologi di Universitas Lampung. Penulis menyadari bahwa dalam proses penyusunan skripsi ini tidak terlepas dari peranan dan bantuan berbagai pihak. Oleh karena itu, pada kesempatan ini penulis mengucapkan terima kasih kepada:

- 1. Dr. Albet Maydiantoro, S.Pd., M.Pd., selaku Dekan Fakultas Keguruan dan Ilmu Pendidikan Universitas Lampung;
- Dr. Nurhanurawati, M.Pd., selaku Ketua Jurusan Pendidikan Matematika dan Ilmu Pengetahuan Alam, Fakultas Keguruan dan Ilmu Pendidikan, Universitas Lampung;
- 3. Rini Rita T. Marpaung, S.Pd., M.Pd., selaku Ketua Program Studi Pendidikan Biologi Fakultas Keguruan dan Ilmu Pendidikan Universitas Lampung;
- 4. Prof. Dr. Neni Hasnunidah, S.Pd., M.Si., selaku dosen pembimbing I yang telah memberikan bimbingan, nasihat, saran, dan motivasi selama proses penyelesaian skripsi;
- 5. Wisnu Juli Wiono, S.Pd., M.Pd., selaku dosen pembimbing II yang telah memberikan bimbingan dan sarannya sehingga skripsi ini dapat selesai dengan baik;
- 6. Dr. Tri Jalmo, M.Si., selaku dosen pembahas yang telah memberikan arahan dan bimbingan berupa saran dan masukan yang membangun dalam penulisan skripsi;

- Seluruh Dosen serta Staf Program Studi Pendidikan Biologi Universitas Lampung, terima kasih atas segala saran, motivasi, dan ilmu yang telah diberikan kepada penulis;
- 8. Hi. Umar Singgih, S.Pd., MM., selaku kepala sekolah, Damanuri, S.Pd., selaku Waka Bidang Kurikulum dan Nefi Gusmasari, S.Si., selaku guru Biologi, seluruh dewan guru, staf, serta siswa kelas X.4 dan X.5 SMAN 7 Bandar Lampung yang telah memberikan izin dan bantuan kepada penulis selama melaksanakan penelitian;
- 9. Sahabat sekaligus saudara perempuanku, Erika Rizkia Amalia, Salwa Serliani yang selalu memberikan dukungan dan doa yang mengiringi langkahku;
- 10. YKKA, Syifa Nur Rahma, Ni Made Virna Parvati, Shella Okthavia, Tria Kartika Devi, Dina Silviana yang telah memberikan dukungan moral dari awal perkuliahan hingga saat ini;
- 11. Sahabatku, Rumaisa Hidayani, Atikah Nur Shofiyah Ramadhani, Anisa Fadiah, Asy Syifa, Nazmi, Feni, Nola, Asma, dan Eni, terima kasih telah mewarnai kehidupanku;
- 12. Sahabat seperbimbingan, Putri Asmarani, Lima Andini, Fransisca Shanti dan Nawang Yudhianingrum. Terima kasih sudah saling menguatkan satu sama lain pada saat kondisi terpuruk;
- 13. Teman-teman Pendidikan Biologi angkatan 2021, khususnya kelas B (Bivalvia) yang selama ini telah memberikan banyak sekali warna dan pelajaran kehidupan yang sangat berkesan.

Penulis berharap skripsi ini dapat bermanfaat serta berguna bagi kita semua, Aamiin.

> Bandar Lampung, 23 Juni 2025 Penulis

(mei

Cindi Emalia

NPM 2113024028

DAFTAR ISI

	Halaman
DAFTAR ISI	xiii
DAFTAR TABEL	xv
DAFTAR GAMBAR	XV
DAFTAR LAMPIRAN	XV
I. PENDAHULUAN	1
1.1 Latar Belakang	1
1.2 Rumusan Masalah	8
1.3 Tujuan Penelitian	8
1.4 Manfaat Penelitian	9
1.5 Ruang Lingkup Penelitian	9
II. TINJAUAN PUSTAKA	11
2.1 Pembelajaran Biologi	11
2.2 Higher Order Thinking Skills (HOTS)	13
2.3 Self-Efficacy	17
2.4 Model Pembelajaran ADI Terintegrasi SDGs	20
2.5 Membelajarkan Materi Pokok Perubahan Iklim	23
2.6 Kerangka Pikir	25
2.7 Hipotesis	29
III. METODE PENELITIAN	30
3.1 Waktu dan Tempat Penelitian	30
3.2 Populasi dan Sampel	30

3.3 Desain Penelitian	30
3.4 Prosedur Penelitian	31
3.5 Jenis dan Teknik Pengumpulan Data	33
3.6 Instrumen Penelitian	34
3.7 Uji Instrumen Penelitian	37
3.8 Teknik Analisis Data	39
IV. HASIL DAN PEMBAHASAN	46
4.1 Hasil Penelitian	46
4.2 Pembahasan	56
V. KESIMPULAN DAN SARAN	81
5.1 Kesimpulan	81
5.2 Saran	81
DAFTAR PUSTAKA	82
LAMPIRAN	91

DAFTAR TABEL

Tabel	Halaman
Tabel 1. Dimensi Proses Kognitif	14
Tabel 2. Tahapan-tahapan Model Argument-Driven Inquiry (ADI)	21
Tabel 3. Keluasan dan Kedalaman Materi	23
Tabel 4. Desain Pretest- Posttest Non Equivalent Control Group Design.	31
Tabel 5. Format kisi-kisi soal <i>pretest</i> dan <i>posttest</i>	35
Tabel 6. Format Rubrik Soal Tes	35
Tabel 7. Format Kisi-Kisi Angket Self-Efficacy	35
Tabel 8. Format Angket Self-Efficacy	36
Tabel 9. Format Kisi – kisi Angket Tanggapan Peserta Didik	36
Tabel 10. Format Angket Tanggapan Peserta Didik	36
Tabel 11. Format Lembar Observasi Keterlaksanaan Sintaks Model Peml	oelajaran
	37
Tabel 12. Indeks Validitas	37
Tabel 13. Interpretasi Tingkat Reliabilitas	38
Tabel 14. Kategori Kemampuan Peserta Didik dalam Menyelesaikan Soa	ıl HOTS
	39
Tabel 15. Kriteria N-Gain	40
Tabel 16. Kriteria Kategori Effect Size	43
Tabel 17. Kriteria Self-Efficacy	43
Tabel 18. Kriteria Persentase Angket Tanggapan Peserta Didik	44
Tabel 19. Kriteria Keterlaksanaan Pembelajaran	45
Tabel 20. HOTS Peserta Didik Sebelum dan Setelah Penerapan Model	
Pembelajaran	46
Tabel 21. Rataan Nilai <i>Pretest</i> dan <i>Posttest</i> HOTS Perindikator	47
Tabel 22. Rataan N-Gain HOTS perindikator	47

Tabel 23. Hasil Uji Statistik Data <i>Pretest</i> dan <i>Posttest</i> HOTS	8
Tabel 24. Hasil Uji <i>Effect Size</i>	9
Tabel 25. Nilai Self-Efficacy Peserta Didik Sebelum dan Setelah Penerapan 50	0
Tabel 26. Nilai <i>Pretest</i> dan <i>Posttest Self-Efficacy</i> Perindikator	1
Tabel 27. N-Gain Self-Efficacy Perindikator	1
Tabel 28. Hasil Uji Normalitas, Uji Homogenitas, dan <i>Independent Sample T Test</i>	
	2
Tabel 29. Hasil Uji <i>Effect Size Self-Efficacy</i>	3
Tabel 30. Tanggapan Siswa Terhadap Penggunaan Model Pembelajaran ADI-	
SDGs	3
Tabel 31. Tanggapan Siswa Terhadap Penggunaan Model Discovery Learning 5.	5
Tabel 32. Data Keterlaksanaan Sintaks Pembelajaran Model ADI-SDGs 50	6
Tabel 33. Data Keterlaksanaan Sintaks Pembelajaran Model Discovery Learning	
	6

DAFTAR GAMBAR

Gambar H	Ialaman
Gambar 1. Skema Kerangka Pikir	28
Gambar 2.Hubungan Antara Variabel X dengan Y	29
Gambar 3 (a) (b) (c). Pretest, Proses Pembelajaran, Posttest Indikator Kem	ampuan
Menganalisis Kelas Eksperimen	59
Gambar 4 (a) (b) (c). Pretest, Proses Pembelajaran, Posttest Indikator	
Kemampuan Menganalisis Kelas Kontrol	60
Gambar 5 (a) (b) (c). Pretest, Proses Pembelajaran, Posttest Indikator	
Kemampuan Mengevaluasi Kelas Eksperimen	62
Gambar 6 (a) (b) (c). Pretest, Proses Pembelajaran, Posttest Indikator	
Kemampuan Mengevaluasi Kelas Kontrol	63
Gambar 7 (a) (b) (c). Pretest, Proses Pembelajaran, Posttest Indikator	
Kemampuan Mencipta Kelas Eksperimen	65
Gambar 8 (a) (b) (c). Pretest, Proses Pembelajaran, Posttest Indikator	
Kemampuan Mencipta Kelas Kontrol	66
Gambar 10. Identifikasi Tugas pada LKPD ADI-SDGs	69
Gambar 11. Sintaks Pengumpulan Data pada Kelas Eksperimen	70
Gambar 12 (a) (b). Lembar Jawaban Penyusunan Argumentasi Peserta Did	ik pada
Kelas Eksperimen	72
Gambar 13. Lembar Jawaban Sesi Argumentasi pada Kelas Eksperimen	74
Gambar 14. laporan penyelidikan peserta didik kelas pada kelas Eksperime	en 76
Gambar 15 (a) (b). Hasil Jawaban Siswa pada Lembar <i>Peer Review</i> di Kela	as
Eksperimen	77
Gambar 16 (a) (b). Revisi Laporan Salah Satu Siswa di Kelas Eksperimen	79

Gambar 17. Jawaban Diskusi Eksplisit dan Reflektif Siswa pada Kelas		
80		
. 212		

DAFTAR LAMPIRAN

Lampiran	Halaman
Lampiran 1. ATP Kelas Eksperimen	92
Lampiran 2. Modul Ajar Kelas Eksperimen	95
Lampiran 3. LKPD 1 Kelas Eksperimen	99
Lampiran 4. Kunci Jawaban LKPD ADI-SDGs	118
Lampiran 7. Alur Tujuan Pembelajaran (ATP) Kelas Kontrol	
Lampiran 8. Modul Ajar Kelas Kontrol	125
Lampiran 9. LKPD 1 Kelas Kontrol	133
Lampiran 10. Kunci Jawaban LKPD 1 Kelas Kontrol	142
Lampiran 13. Kisi-Kisi Soal Pretest-Posttest	144
Lampiran 14. Rubrik Soal Pretest-Posttest	146
Lampiran 15. Soal Pretset-Posttest HOTS Materi Perubahan Iklim	162
Lampiran 16. Lembar Keterlaksanaan Sintaks Pembelajaran Kelas Eks	sperimen
	166
Lampiran 17. Lembar Observasi Keterlaksanaan Sintaks Kelas Eksper	imen 170
Lampiran 18. Lembar Keterlaksanaan Sintaks Pembelajaran Kelas Ko	ntrol 173
Lampiran 19. Kisi-Kisi Angket Self-Efficacy	175
Lampiran 20. Lembar Angket Self-Efficacy	178
Lampiran 21. Angket Tanggapan Peserta Didik Kelas Eksperimen	181
Lampiran 22. Angket Tanggapan Peserta Didik Kelas Kontrol	183
Lampiran 23. Hasil Uji Validitas	185
Lampiran 24. Uji Reliabilitas	189
Lampiran 29. Lampiran Hasil N-Gain Pretest dan Posttest Kelas Eksp	erimen . 190
Lampiran 30. Lampiran Hasil N-Gain Pretest-Posttest Kelas Kontrol .	192
Lampiran 31. Lampiran Hasil <i>N-Gain</i> HOTS Perindikator	194

Lampiran 32. N-Gain Self-Efficacy Pretest dan Posttest Kelas Eksperimen	195
Lampiran 33. N-Gain Self-Efficacy Pretest dan Posttest Kelas Kontrol	196
Lampiran 34.Lampiran Hasil N-Gain Self-Efficacy Perindikator	197
Lampiran 35. Hasil Uji Statistik	198
Lampiran 36. Tanggapan Peserta Didik Kelas Eksperimen	204
Lampiran 37. Tanggapan Peserta Didik Kelas Kontrol	206
Lampiran 38. Keterlaksanaan Sintaks Model ADI-SDGs	209
Lampiran 39. Keterlaksanaan Sintaks Model Discovery Learning	211

I. PENDAHULUAN

1.1 Latar Belakang

Ilmu pengetahuan dan teknologi yang berkembang pada abad 21 telah melahirkan berbagai tuntutan keterampilan yang harus dikuasai oleh peserta didik.
Partnership for 21st century Learning membuat suatu framework pembelajaran abad 21 dimana peserta didik dituntut untuk memiliki keterampilan 4C (critical thinking and problem solving, communication, collaboration, creativity and innovation) (Greenhill, 2010: 9). Dalam perkembangannya, keterampilan abad 21 yang harus dikuasai oleh peserta didik dikenal sebagai keterampilan 6C yaitu communication (komunikasi), collaboration (kolaborasi), critical thinking (berpikir kritis), creativity (kreativitas), character, citizenship (Quinn dkk., 2019: 5). Kemampuan berpikir kritis, kreatif dan pemecahan masalah dikenal dengan kemampuan berpikir tingkat tinggi atau HOTS (Higher Order Thinking Skills) (Nurinsani & Zaelani, 2023: 113; Wismayani Pratiwi dkk., 2019: 128).

HOTS merupakan keterampilan berpikir yang lebih dari menghafalkan fakta atau konsep. Keterampilan tersebut mengharuskan peserta didik melakukan sesuatu atas dasar fakta. Peserta didik harus dapat memahami, menganalisis satu dengan lainnnya, mengkategorikan, memanipulasi, menciptakan cara-cara baru secara kreatif, dan menerapkannya dalam mencari solusi terhadap persoalan baru (Thomas & Thorne, 2009:1; Dinni, 2018: 170). HOTS berdasarkan level kognitif taksonomi Bloom yang direvisi oleh Anderson dan Krathwohl terdiri dari kemampuan menganalisis (C4), mengevaluasi, (C5) dan mencipta (C5) (Anderson & Krathwohl, 2001: 68).

Pentingnya HOTS bagi peserta didik sebagai upaya mempersiapkan sumber daya manusia untuk memenuhi tantangan dan tuntutan abad 21. Keterampilan tersebut sangat diperlukan karena dapat membantu peserta didik untuk menghasilkan ideide sehingga dapat memecahkan masalah pada pembelajaran, dan dapat membantu untuk mencapai hasil akhir yang berkualitas dan membantu peserta didik untuk memahami suatu informasi (Chatib, 2012: 156). Selain itu, HOTS peserta didik sangat penting untuk dikembangkan secara komprehensif agar kemampuan dan keterampilan peserta didik dalam hal berpikir kritis, sistematis, logis, analitis, evaluatif, kreatif, pemecahan masalah, dan pengambilan keputusan secara jujur, percaya diri, bertanggung jawab dan mandiri sehingga mampu berkembang dan menjadi manusia yang berkualitas (Badjeber & Purwaningrum, 2018: 39; Maryanto, 2015: 83).

HOTS memiliki korelasi yang erat terhadap self-efficacy. Menurut Bandura (1997: 3) self-efficacy merupakan keyakinan individu bahwa mereka dapat mengambil tindakan untuk menyelesaikan tugas atau masalah yang dihadapi dengan tujuan mencapai hasil yang diinginkan. Peserta didik yang memiliki self-efficacy tinggi akan memotivasi diri untuk melaksanakan tugas, aktivitas atau tindakan tertentu dan terus berusaha apabila menemukan hambatan dalam mencapai tujuan. Peserta didik yang memiliki HOTS rendah cenderung memiliki self-efficacy rendah yang dapat dilihat dari rendahnya kepercayaan akan kemampuannya dalam menyelesaikan tugas seperti menghindari untuk mengerjakan soal-soal yang sulit, mudah menyerah dalam mengerjakan tugas dan tidak mampu mengerjakan soal yang bervariasi (Sumini dkk., 2020: 161). Hal ini juga didukung oleh hasil penelitian Basito dkk., (2018: 12) bahwa terdapat hubungan antara self-efficacy terhadap HOTS peserta didik, terdapat implikasi bahwa untuk meningkatkan HOTS peserta didik dapat dilakukan dengan meningkatkan tingkat kepercayaan diri peserta didik akan kemampuannya meliputi meningkatkan kegigihan dalam mengerjakan hal-hal sulit, memiliki kemampuan dalam melakukan tugas-tugas yang rumit, dan memiliki ketekunan dalam mengerjakan tugas. Dalam kegiatan pembelajaran self-efficacy memiliki peran penting, individu yang memiliki selfefficacy akan mampu menggunakan potensi dirinya secara optimal sehingga

mempengaruhi keberhasilan dalam menyelesaikan tugas belajarnya (Sahin dkk., 2024:637).

HOTS dan self-efficacy memiliki hubungan yang erat dan saling terkait dengan literasi sains. HOTS mencakup kemampuan analisis, evaluasi, dan mencipta yang semuanya berkontribusi pada pemahaman dan penerapan konsep sains yang lebih mendalam. Penelitian Thahir dkk (2021: 81) menunjukkan bahwa terdapat hubungan positif antara HOTS dan kemampuan literasi sains, di mana nilai korelasi yang ditemukan adalah 0,370. Hasil penelitian menunjukkan bahwa semakin tinggi nilai HOTS yang diperoleh semakin tinggi pula nilai literasinya. Penelitian yang dilakukan Wulaningsih dkk (2022: 34) menunjukkan bahwa terdapat hubungan positif antara efikasi diri dengan literasi. Hal ini, sejalan dengan hasil penelitian yang dilakukan oleh Wiarsana (2020: 114) menunjukkan bahwa self-efficacy memiliki pengaruh langsung secara signifikan terhadap literasi sains peserta didik. Self-efficacy atau efikasi diri berhubungan positif dengan pencapaian sains siswa, di mana siswa yang merasa yakin akan kemampuan mereka dalam sains menunjukkan hasil yang lebih baik dalam pembelajaran sains (Juan dkk., 2018:3). Sementara itu, berdasarkan hasil studi PISA (*Program for* Internasional Student Assessment) menunjukkan kemampuan literasi sains peserta didik di Indonesia masih di bawah rata-rata internasional. Literasi sains peserta didik Indonesia tahun 2015 Indonesia berada pada peringkat ke-63 dari 70 negara dengan skor 403 (OECD, 2016: 70). Pada tahun 2018 berada pada peringkat ke-70 dari 78 negara dengan skor 396, skor tersebut mengalami penurunan (OECD, 2019:80), kemudian pada tahun 2022 terjadi penurunan skor rata-rata di bidang sains sebesar 383 dan menduduki peringkat 74 dari 81 negara (OECD, 2023: 71). Penurunan skor PISA dan rata-rata nilai literasi menunjukkan bahwa keterampilan berpikir tingkat tinggi peserta didik masih belum terlatih dengan baik (Yandra dkk., 2024:63).

Kondisi rendahnya HOTS dan *self-efficacy* juga ditemukan di SMA Negeri 7 Bandar Lampung. Berdasarkan hasil survey melalui wawancara dan penyebaran angket kepada guru dan peserta didik di sekolah tersebut, diketahui bahwa peserta didik belum dapat menghasilkan banyak gagasan, belum bisa melakukan pemecahan masalah yang kompleks, tidak mampu menghubungkan atau mengaitkan berbagai informasi yang berbeda, peserta didik hanya terpaku pada konsep atau materi yang dihafalkan tanpa memahaminya, serta peserta didik belum dapat menyimpulkan jawaban berdasarkan hasil pengembangan gagasan atau pemikiran sendiri, jawaban masih mengandung gagasan yang kurang bervariasi dan masih umum sama dengan internet atau sumber belajar peserta didik. Hal ini menunjukkan HOTS meliputi kemampuan menganalisis, mengevaluasi dan mencipta yang masih rendah khususnya dalam pembelajaran biologi. Diperoleh informasi lain bahwa, peserta didik masih kurang yakin dalam menyampaikan pendapat dan ide-idenya dalam menjawab pertanyaan dan juga bertanya, ketika menjawab pertanyaan peserta didik cenderung bergantung dengan jawaban teman lainnya. Hal ini menunjukkan bahwa keyakinan peserta didik terhadap kemampuannya melakukan suatu tindakan masih rendah.

Faktor penyebab rendahnya HOTS dan *self-efficacy* peserta didik di SMA Negeri 7 Bandar Lampung tersebut karena pembelajaran yang digunakan oleh guru kurang dapat melatih HOTS dan *self-efficacy*. Pada saat proses pembelajaran peserta didik cenderung untuk menghafal, menulis ulang atau latihan saja, seringnya guru memberikan masalah yang relevan dengan materi yang diajarkan sehingga dapat diselesaikan dan dikerjakan dengan mudah daripada memberikan masalah yang memerlukan keterampilan dalam memecahkannya. Selama proses pembelajaran guru jarang menerapkan pembelajaran eksperimen tanpa eksperimen, siswa hanya menerima informasi secara pasif sehingga kemampuan menganalisis, mengevaluasi, dan menciptakan solusi dari permasalahan nyata peserta didik tidak berkembang dengan baik.

Faktor penyebab rendahnya HOTS dan *self-efficacy* peserta didik tersebut dapat diidentifikasi melalui beberapa penelitian terdahulu. Hasil penelitian Noor & Abadi (2022:466) mengungkapkan bahwa rendahnya HOTS dikarenakan pada proses pembelajaran peserta didik hanya diajarkan untuk menghafal, menulis ulang dan mengerjakan pekerjaan rumah atau latihan saja, serta hanya menyelesaikan masalah yang relevan dengan materi yang diajarkan. Didukung oleh penelitian lainnya, salah satu penyebab rendahnya HOTS karena pemilihan model atau metode pembelajaran yang belum tepat dan guru yang jarang

melatihkan soal berorientasi HOTS (Pusparini & Mistiani, 2023: 158). Sehingga, peserta didik tidak terbiasa menyelesaikan soal kategori HOTS (Saraswati & Agustika, 2020: 266). Faktor lain meliputi, kecemasan siswa dalam menyelesaikan masalah, sumber buku yang digunakan tidak efektif dan seringnya guru memberikan masalah rutin daripada non rutin (Faizzah & Sutarni, 2023: 1971). Rendahnya self-efficacy peserta didik di Indonesia juga disebabkan salah satunya adalah sifat dari tugas yang dikerjakan. Kesulitan yang dihadapi oleh peserta didik akan mempengaruhi kemampuan diri yang akan berdampak pada keputusan untuk mencoba atau tidak mencoba menyelesaikan suatu tugas (Putri & Fadhilah, 2024: 337). Menurut Utami & Wutsqa (2017:168) kehadiran guru untuk memberikan materi juga dapat mempengaruhi tinggi rendahnya self-efficacy peserta didik. Kebanyakan peserta didik tidak memahami konsep yang dijelaskan oleh guru sehingga para peserta didik bingung untuk menyelesaikan soal karena peserta didik hanya mementingkan jawaban akhir tanpa memedulikan proses penyelesaiannya yang mengakibatkan keraguan peserta didik dalam menyelesaikan tugas.

Solusi untuk menekankan pola pikir tingkat tinggi peserta didik salah satunya adalah menggunakan model pembelajaran yang menstimulasi pada peningkatan HOTS dan self-efficacy. Salah satunya adalah model pembelajaran Argument-Driven Inquiry (ADI). Model pembelajaran ADI merupakan model pembelajaran yang dirancang untuk memodifikasi tujuan penyelidikan ilmiah sebagai upaya untuk mengembangkan sebuah argumen yang menyediakan dan mendukung sebuah penjelasan untuk pertanyaan penelitian. Model ini dirancang untuk membantu peserta didik mengerti tentang bagaimana cara membuat sebuah penjelasan ilmiah, bagaimana menggeneralisasikan fakta ilmiah, menggunakan data untuk menjawab pertanyaan ilmiah, dan pada akhirnya dapat merefleksikan hasil kerja yang telah dilakukannya (Sampson dkk., 2011: 219; Andriani, 2023: 193). Model ADI terdiri dari 8 tahap yaitu: (1) identifikasi masalah, (2) merancang metode dan mengumpulkan data; (3) membuat argumen tentatif; (4) sesi argumentasi; (5) penulisan laporan penyelidikan; (6) double-blind peer review; (7) revisi laporan; (8) diskusi eksplisit dan reflektif. Berdasarkan hasil penelitian Hidayanti, Juhanda & Nuranti (2022: 576) model ADI memiliki

pengaruh terhadap HOTS peserta didik. Hal tersebut dikarenakan model ADI pada proses pembelajarannya menekankan pada kegiatan penyelidikan sehingga melatih peserta didik untuk menciptakan penjelasan ilmiah, menjawab pertanyaan menggunakan data yang diperoleh hasil penyelidikan, dan mampu merefleksikan hasil kerja yang sudah dilakukan. Menurut Nufus dkk (2018: 115) model ADI dapat meningkatkan argumentasi dan kemampuan berpikir kritis peserta didik. Keterampilan argumentasi dan berpikir kritis merupakan bagian dari keterampilan berpikir tingkat tinggi, meningkatnya berpikir kritis peserta didik juga akan meningkatkan HOTS peserta didik. Didukung hasil penelitian Prayoga *dkk*. (2020:18) model ADI efektif meningkatkan HOTS terlihat dari nilai tes peserta didik melampaui KKM dan mengalami peningkatan di setiap aspek kemampuan HOTS.

Penelitian lain menunjukkan bahwa ADI dapat meningkatkan self-efficacy peserta didik. Dalam penelitian Dina dkk (2022: 14) penerapan model pembelajaran ADI juga efektif dalam meningkatkan self-fficacy. Hasil penelitian menunjukkan bahwa terdapat perbedaan hasil nilai self-efficacy peserta didik sebelum dan sesudah menerapkan model pembelajaran ADI. Hal ini membuktikan bahwa model pembelajaran ADI memiliki pengaruh yang signifikan terhadap selfefficacy peserta didik. Sintaksis model pembelajaran ADI yang tepat untuk meningkatkan self-efficacy peserta didik terdapat pada tahap argumentasi. Penelitian lainnya telah membahas mengenai penerapan hubungan penerapan model ADI mampu meningkatkan efikasi diri siswa, persepsi inquiri, dan keterampilan laboratorium (Eymur, 2018: 6). Dalam penelitian Hikmah dkk (2023: 428) bahwa model pembelajaran ADI dinilai mampu memengaruhi kemampuan berargumentasi peserta didik, kemampuan berargumentasi peserta didik memengaruhi self-efficacy peserta didik sehingga HOTS peserta didik meningkat. Tahap pembelajaran dengan model ADI dirancang untuk memastikan bahwa siswa memiliki kesempatan untuk terlibat dalam praktik ilmu (praktikum) selama penyelidikan laboratorium, menerima umpan balik, dan mengembangkan pengetahuan dan keterampilan baru (Sampson dkk., 2011: 48). Salah satu kelemahan model ADI adalah kecenderungan siswa untuk terjebak dalam argumen yang kurang relevan dengan konteks global yang lebih luas. Dalam

model pembelajaran ADI belum memuat konsep tujuan pembangunan berkelanjutan *atau Sustainable Development Goals* (SDGs) (Khoiri dkk., 2022: 14). Oleh karena itu dibutuhkan pengintegrasian model pembelajaran ADI dengan SDGs untuk melengkapi kelemahan tersebut.

Sustainable Development Goals (SDGs) merupakan program dunia jangka panjang untuk mengoptimalkan potensi dan sumber daya yang dimiliki oleh tiap negara. SDGs terdiri dari 17 tujuan atau goals yang harus dicapai dan dikelompokkan kedalam empat pilar dimana setiap pilar memiliki pengaruh yang saling terkait dalam upaya mencapai tujuan-tujuan tersebut (Hidayah & Nugraheni, 2024: 1671). Untuk mencapai SDGs diperlukan keterampilan berpikir kritis yang dapat mendorong siswa untuk berlatih merefleksikan pendapatnya dalam menghubungkan konteks masalah yang ada dengan konteks keberlanjutan (UNESCO dalam Fauziyah & Hamdu, 2021: 56). Penelitian yang dilakukan oleh Ain (2022: 418) menunjukkan bahwa terdapat peningkatan kemampuan berpikir kritis peserta didik ketika memahami masalah yang berkonteks sustainability. Menurut Erlina (2021: 148) self-efficacy juga turut berkontribusi pada pendidikan yang berkelanjutan.

Salah satu materi yang dapat disampaikan dengan pembelajaran ADI terintegrasi SDGs adalah materi perubahan iklim. Perubahan iklim menjadi isu utama dalam beberapa dekade terakhir dan menjadi salah satu rencana aksi dunia, salah satunya Indonesia. Dampak perubahan iklim telah menjadi lebih nyata dan merusak, dengan suhu global yang terus meningkat, cuaca ekstrem yang semakin sering terjadi, dan konsekuensi serius bagi lingkungan dan makhluk hidup.

Intergovermental Panel on Climate Change (IPCC) menyatakan perubahan iklim menjadikan naiknya suhu di bumi yang memengaruhi manusia karena berdampak pada spesies dan keanekaragaman hayati (Ainurrohmah & Sudarti, 2022: 3).

Dalam beberapa tahun terakhir, bencana terkait iklim ekstrem kerap terjadi di Indonesia dan beberapa negara lain. Salah satunya adalah hujan deras dan badai siklon yang berpotensi menyebabkan banjir dan longsor, atau terjadinya cuaca panas yang menyebabkan kemarau panjang dan kekeringan sehingga mempengaruhi ketersediaan air bersih (Afiff, 2022: 109). Salah satu penyebab

utama terjadinya perubahan iklim adalah peningkatan Gas Rumah Kaca (GRK) yaitu meningkatnya emisi gas karbon dioksida (CO₂), metana (CH₄) dan klorofluoro karbon (CFC) yang melebihi batas normal. GRK ini dihasilkan dari berbagai aktivitas manusia dan alam, terutama pembakaran bahan bakar fosil dapat meningkatkan konsentrasi gas-gas rumah kaca dalam atmosfer, yang dapat memperkuat efek rumah kaca secara berlebihan (Irma & Gusmira, 2023: 13). Salah satu upaya penting untuk mengatasi perubahan iklim adalah meningkatkan kesadaran dan pemahaman tentang pentingnya mengurangi peningkatan GRK di Bumi ini.

Berdasarkan pada masalah yang telah diuraikan, dan mengingat pentingnya HOTS dan *self-efficacy* bagi peserta didik, maka perlu dilakukan penelitian untuk membekali peserta didik agar mereka dapat memiliki HOTS dan *self-efficacy* yang baik. Hal inilah yang memotivasi peneliti untuk melakukan penelitian dengan judul "Pengaruh Penggunaan Model *Argument-Driven Inquiry* (ADI) terintegrasi SDGs terhadap *Higher Order Thinking Skills* (HOTS) dan *Self-Efficacy* Peserta Didik Pada Materi Perubahan Iklim".

1.2 Rumusan Masalah

Berdasarkan latar belakang yang telah dipaparkan di atas, maka masalah dalam penelitian ini adalah:

- 1. Bagaimana pengaruh penggunaan model *Argument-Driven Inquiry* (ADI) terintegrasi SDGs terhadap peningkatan HOTS dan *self-efficacy* pada materi perubahan iklim?
- 2. Bagaimana tanggapan peserta didik terhadap penggunaan model *Argument-Driven Inquiry* terintegrasi SDGs dalam proses pembelajaran pada materi perubahan iklim?

1.3 Tujuan Penelitian

Berdasarkan latar belakang dan permasalahan penelitian di atas, adapun tujuan penelitian ini adalah untuk mengetahui:

- 1. Pengaruh signifikan dari penggunaan model *Argument-Driven Inquiry* (ADI) terintegrasi SDGs terhadap peningkatan *Higher Order Thinking Skills* (HOTS) dan *self-efficacy* pada materi perubahan iklim.
- 2. Tanggapan peserta didik terhadap penggunaan model *Argument-Driven Inquiry* (ADI) terintegrasi SDGs dalam proses pembelajaran pada materi perubahan iklim.

1.4 Manfaat Penelitian

Adapun manfaat yang diharapkan dari penelitian ini adalah:

- 1. Bagi peneliti, menambah pengalaman dalam menggunakan model dan mengukur HOTS dan *self-efficacy* peserta didik pada materi perubahan iklim dengan menggunakan model ADI terintegrasi SDGs.
- 2. Bagi peserta didik, dapat memberikan pengalaman dan pemahaman dalam proses pembelajaran yang ditandai dengan meningkatnya HOTS dan *self-efficacy* peserta didik melalui penerapan model pembelajaran *argument-driven inquiry* (ADI) terintegrasi SDGs.
- 3. Bagi pendidik, memperoleh referensi terkait model pembelajaran ADI terintegrasi SDGs dalam meningkatkan HOTS dan *self-efficacy* peserta didik.
- 4. Bagi sekolah, menjadi alternatif untuk meningkatkan kualitas pembelajaran di sekolah.
- 5. Bagi peneliti lain, menjadi referensi terkait penggunaan model ADI terintegrasi SDGs dalam mengatasi HOTS dan *self-efficacy* peserta didik dan selanjutnya dapat digunakan sebagai bahan rujukan pada materi pokok perubahan iklim.

1.5 Ruang Lingkup Penelitian

Ruang lingkup dalam penelitian ini adalah sebagai berikut:

Model ADI yang digunakan pada penelitian ini memiliki sintaks terdiri dari:
 Identifikasi masalah; 2) merancang metode dan mengumpulkan data; 3)
 membuat argumen tentatif; 4) sesi argumentasi; 5) penulisan laporan
 investigasi masing-masing peserta didik; 6) double-blind peer review; 7) revisi

- laporan berdasarkan hasil dari peer review; 8) diskusi eksplisit dan reflektif tentang penyelidikan (Sampson dkk., 2016: 466-470).
- 2. SDGs adalah program dunia jangka panjang untuk mengoptimalkan semua potensi dan sumber daya yang dimiliki oleh tiap negara. SDGs memiliki 17 tujuan yang harus dicapai. Pada penelitian ini, peneliti membatasi pada tujuan nomor 13 yaitu penanganan perubahan iklim.
- 3. HOTS adalah kemampuan berpikir yang bukan hanya sekedar mengingat tetapi kemampuan untuk menelaah informasi secara kritis, kreatif, dan mampu memecahkan masalah. Mengukur *Higher Order Thinking Skills* menggunakan soal HOTS berdasarkan indikator taksonomi kemampuan kognitif Bloom meliputi kemampuan menganalisis (C4), mengevaluasi (C5), dan mencipta (C6).
- 4. Indikator yang menjadi acuan untuk mengukur tercapainya *self-efficacy* peserta didik dalam penelitian ini sesuai dengan yang dikemukakan oleh Bandura (1997) yaitu meliputi dimensi tingkat (*level*), kekuatan (*strength*), dan generalisasi (*generality*). Aspek-aspek tersebut dinilai melalui angket *self-efficacy*.
- 5. Subjek penelitian ini adalah peserta didik kelas X SMA Negeri 7 Bandar Lampung.
- 6. Materi pokok yang menjadi fokus dalam penelitian ini yaitu Perubahan Iklim, dengan capaian pembelajaran yaitu pada akhir fase E, peserta didik memiliki kemampuan untuk memahami perubahan iklim, sehingga responsif dan dapat berperan aktif dalam memberikan penyelesaian masalah pada isu-isu lokal dan global.

II. TINJAUAN PUSTAKA

2.1 Pembelajaran Biologi

Pembelajaran merupakan proses interaksi antara peserta didik dengan pendidik dan berbagai sumber belajar dalam suatu lingkungan pembelajaran untuk mencapai suatu tujuan. Pembelajaran juga dapat diartikan sebagai kegiatan yang terstruktur yang telah direncanakan untuk mencapai suatu tujuan yang dilaksanakan oleh pendidik dan peserta didik, dimana terjadi pertukaran informasi antara pendidik dan peserta didik (Nurhusain dkk., 2023: 44). Dalam konteks Ilmu Pengetahuan Alam (IPA), pembelajaran berperan penting dalam membangun pemahaman tentang fenomena alam melalui pendekatan observasi, eksperimen, dan analisis yang berbasis fakta serta konsep ilmiah. IPA pada hakikatnya mengandung komponen pengetahuan, proses, dan sikap. Menurut Trianto (2012: 151) IPA didefinisikan sebagai pengetahuan yang diperoleh melalui pengumpulan data dengan pengamatan, eksperimen, dan deduksi untuk menghasilkan penjelasan tentang gejala yang dapat dipercaya. Ruang lingkup IPA memiliki kaitan erat dengan kehidupan sehari-hari serta yang terdapat pada lingkungan sekitar, mulai dari fenomena alam hingga tanda-tanda terbentuknya suatu benda (Pratama dkk., 2023: 182). Pembelajaran IPA menekankan pada pemberian pengalaman langsung untuk mengembangkan kompetensi agar menjelajahi dan memahami alam sekitar secara ilmiah. Kemudian diarahkan untuk mempraktikkan sehingga dapat membantu peserta didik untuk memperoleh pengalaman dan pemahaman yang lebih mendalam tentang alam sekitar.

Salah satu cabang IPA adalah Biologi. Biologi berasal dari kata Yunani yaitu bios yang berarti kehidupan dan logos yang berarti pengetahuan. Oleh karena itu, biologi merupakan ilmu pengetahuan yang mempelajari tentang kehidupan dan organisme hidup (Ayuardini, 2023: 262). Biologi tidak hanya mempelajari tentang makhluk hidup saja, tetapi tentang makhluk hidup dengan segala interaksi yang terjadi dengan lingkungannya. Pembelajaran biologi secara kontekstual dapat mendorong peserta didik lebih aktif dan belajar menjadi lebih bermakna, karena pembelajaran berpusat pada peserta didik (Jayawardana dkk., 2020: 60). Pembelajaran biologi selain mencakup penguasaan konsep dan fakta-fakta yang berkaitan dengan alam, juga bersifat penemuan. Peserta didik harus memahami konsep-konsep terkait atau membuat hubungan antar konsep dengan berbagai cara. Hal tersebut penting untuk dikembangkan karena pembelajaran biologi bersifat kompleks dengan adanya istilah asing dan konsep-konsep yang abstrak (Rahmayumita dkk., 2023: 3). Secara garis besar pembelajaran biologi memiliki tiga komponen utama dalam pembelajarannya, yaitu sikap ilmiah, proses ilmiah dan produk ilmiah.

Pembelajaran biologi sendiri dapat menjadi salah satu alternatif dalam pembekalan keterampilan abad 21. Upaya penerapan pembelajaran biologi untuk membekali siswa memiliki keterampilan abad 21, maka guru harus merancang sebuah pembelajaran yang tepat guna meningkatkan keterampilan komunikasi, kolaborasi, berpikir kritis dan pemecahan masalah, serta berpikir kreatif dan inovatif. Dalam pembelajaran sains khususnya pada pembelajaran biologi, siswa harus dibimbing untuk memiliki kemampuan berpikir tingkat tinggi yang diharapkan dengan kemampuan berpikir tersebut siswa sebagai generasi masa depan dapat menyelesaikan permasalahan-permasalahan abad 21 dan turut berperan dalam pencapaian pembangunan berkelanjutan atau Sustainable Development Goals (SDGs) (Sari dkk., 2017: 6; Haidar dkk., 2024: 1318). Kemampuan berpikir tingkat tinggi dapat dilakukan dengan berbagai cara. Salah satunya melalui pembelajaran inkuiri. Terdapat hubungan antara efikasi diri terhadap kemampuan berpikir tingkat tinggi, dapat dikatakan bahwa sikap percaya diri akan kemampuan dari peserta didik akan mendorong Higher Order Thinking Skills (HOTS) meningkat karena self-efficacy akan mendorong peserta didik untuk berprestasi (Basito dkk., 2018: 11).

2.2 Higher Order Thinking Skills (HOTS)

HOTS merupakan proses berpikir tidak sekedar menghafal dan menyampaikan kembali informasi yang diketahui. HOTS merupakan kemampuan menggabungkan fakta dan ide dalam proses menganalisis, mengevaluasi sampai pada tahap mencipta berupa memberikan penilaian terhadap suatu fakta yang dipelajari atau bisa mencipta dari sesuatu yang dipelajari (Annuru dkk., 2017: 137). HOTS mencakup kemampuan untuk berpikir kritis, berpikir kreatif, memecahkan masalah dan membuat keputusan (Purnamasari dkk., 2020: 516). Kemampuan berpikir tingkat tinggi akan terjadi ketika seseorang mengaitkan informasi baru dengan informasi yang sudah tersimpan di dalam ingatannya dan menghubungkannya atau menata ulang serta mengembangkan informasi tersebut untuk mencapai suatu tujuan ataupun menemukan suatu penyelesaian dari suatu keadaan yang sulit dipecahkan (Hayon dkk., 2017: 310).

Dalam menghadapi tuntutan abad 21 keterampilan berpikir tinggi memiliki peran penting untuk menunjang kesuksesan hidup. Seseorang perlu memiliki kemampuan berpikir kritis dan kreatif dalam menyelesaikan masalah, sebab pesatnya perkembangan pengetahuan dan teknologi menyebabkan tantangan yang akan dihadapi menjadi lebih kompleks (Febrianti dkk., 2021: 40). Untuk beradaptasi di abad ke-21, seseorang harus mampu mengembangkan keterampilan kompetitif yang berfokus pada pengembangan HOTS, seperti : *learning and innovation skills (critical thinking, communication, collaboration, and creativity); information, media and technology skills (information literacy, media literacy, and ICT literacy); life and career skills (flexibility and adaptability, initiative and self-direction, social and cross cultural skills, productivity and accountability, leadership and responsibility) (Ongardwanich dkk., 2015: 738).*

Salah satu cara yang dapat dilakukan untuk meningkatkan dan mengembangkan HOTS seseorang yaitu melalui pendidikan. Menurut Saraswati & Agustika, 2020: 238) HOTS perlu diterapkan di dunia pendidikan karena kemampuan berpikir tingkat tinggi (HOTS) peserta didik dapat dilatih dan ditingkatkan. Kemampuan berpikir tingkat tinggi (HOTS) merupakan kompetensi kognitif tertinggi yang perlu dikuasai peserta didik di kelas (Dilah, 2023: 3201). Pentingnya HOTS juga

terdapat dalam beberapa poin Standar Kompetensi Lulusan Sekolah Menengah pada Permendikbudristek Nomor 5 Tahun 2022, yaitu 1) menunjukkan kemampuan menyampaikan gagasan orisinal, membuat tindakan atau karya kreatif sesuai kapasitasnya, dan terbiasa mencari alternatif tindakan dalam menghadapi tantangan; 2) menunjukkan kemampuan mengidentifikasi informasi yang relevan atau masalah yang dihadapi, menganalisis, memprioritaskan informasi yang paling relevan atau alternatif solusi yang paling tepat (Kemendikbudristek, 2022).

Melalui HOTS, peserta didik akan mampu membedakan ide atau gagasan secara jelas, berargumen dengan baik, mampu memecahkan masalah, mampu mengkonstruksi penjelasan, mampu berhipotesis, dan memahami hal-hal kompleks menjadi lebih jelas (T. Widodo & Kadarwati, 2013: 162). Mustapa (2014: 349) juga menyatakan bahwa peserta didik yang memiliki *High Order Thinking Skills* (HOTS) akan mampu membedakan antara fakta dan opini, mengidentifikasi informasi yang relevan, memecahkan masalah, dan mampu menyimpulkan informasi yang telah dianalisisnya.

Tabel 1. Dimensi Proses Kognitif

Kategori dan Kognitif	Nama Alternatif	Definisi dan Contoh
Proses		
4. Analisis – Memecah materi menjadi beberapa bagian dan menentukan		
bagaimana bagian-bagian tersebut berhubungan satu sama lain dan menjadi		
struktur atau tujuan keseluruhan		
4.1 Membedakan	Mendiskriminasikan,	Membedakan bagian yang
	Membedakan,	relevan dari bagian yang
	Memfokuskan,	tidak relevan, atau bagian
	Memilih	penting dari yang tidak
		penting (contoh:
		membedakan antara angka
		yang relevan dan yang tidak
		relevan dalam soal
		matematika).

Tabel 1 (lanjutan)

Kategori dan Kognitif Proses	Nama Alternatif	Definisi dan Contoh
4.2 Mengorganisasikan	Menemukan Memadukan Mengintegrasikan, Menguraikan, Pengurai Penataan/Menata	Menentukan bagaimana bagian atau elemen cocok atau berfungsi dengan struktur (contoh: bukti struktur dalam deskripsi sejarah menjadi bukti untuk dan terhadap penjelasan sejarah tertentu).
4.3 Menghubungkan	Mengonstruksi	Menentukan sudut pandang, bias, nilai, atau maksud yang mendasari materi yang disajikan (contoh: menentukan sudut pandang penulis esai dalam hal perspektif politiknya).
5. Evaluasi – Membuat pe		
5.1 Memeriksa	Mengkoordinasikan Mendeteksi, Memantau Menguji	Mendeteksi ketidakkonsistenan atau kekeliruan dalam proses produk; menentukan apakah dalam proses atau produk memiliki konsistensi internal; mendeteksi keefektifan produk saat sedang diterapkan (contoh: memastikan apakah kesimpulan yang dibuat ilmuan sesuai dengan data hasil pengamatan).
5.2 Mengkritik	Menilai	Mendeteksi ketidakkonsistenan antara produk dan kriteria eksternal; menentukan apakah produk memiliki konsisten eksternal; mendeteksi kesesuaian produk dengan masalah yang diberikan (contoh: menilai antara dua metode untuk menentukan yang mana yang merupakan cara terbaik untuk memecahkan masalah yang diberikan).

Tabel 1 (lanjutan)

Kategori dan Kognitif Proses	Nama Alternatif	Definisi dan Contoh		
-	6. Mencipta – Meletakkan elemen bersama untuk membentuk keseluruhan yang			
koheren dan fungsional; menjadi struktur baru.	membentuk atau mengat	tur ulang elemen untuk		
6.1 Menghasilkan	Berhipotesis	Memunculkan hipotesis		
		alternatif berdasarkan		
		kriteria (contoh:		
		menghasilkan hipotesis		
		untuk memperhitungkan		
		fenomena yang diamati).		
6.2 Merencanakan	Merancang	Merancang prosedur untuk		
		menyelesaikan beberapa		
		tugas (contoh: merancang		
		makalah penelitian tentang		
		topik sejarah tertentu).		
6.3 Memproduksi	Membangun	Menciptakan produk		
		(contoh: membangun		
		habitat untuk tujuan		
		spesifik).		

Sumber: Anderson dan Krathwohl, 2001: 68

Tinggi atau rendahnya kemampuan berpikir tingkat tinggi atau HOTS peserta didik dipengaruhi oleh beberapa faktor. Beberapa faktor yang mempengaruhi HOTS peserta didik menurut Ningsih dkk., (2022: 77) yaitu:

- 1. Kemampuan mengingat materi pelajaran peserta didik masih rendah.
- 2. Peserta didik belum terampil dalam memahami soal.
- 3. Kemampuan peserta didik untuk membuat strategi dalam menjawab soal masih rendah karena kurangnya latihan soal di rumah.
- 4. Peserta didik yang tergolong ke dalam kategori HOTS rendah kurang berusaha, dan cenderung cepat menyerah dalam mengerjakan soal.
- Kondisi kelas yang kurang kondusif saat guru menjelaskan materi, sehingga mengganggu konsentrasi peserta didik.
- 6. Peserta didik jarang untuk belajar dan mengulang materi pelajaran di rumah.

Sangat dibutuhkan berbagai upaya untuk meningkatkan kemampuan berpikir peserta didik, yaitu melalui berbagai strategi, metode, bahan ajar, media pembelajaran dan sumber belajar yang tepat agar peserta didik aktif, sehingga

dapat meningkatkan kemampuan berpikir peserta didik (Prayoga dkk., 2020). Guru dapat menggunakan bahan ajar berbasis HOTS dengan menggunakan instrumen penilaian yang terdiri dari soal soal berkarakteristik HOTS. Soal HOTS memiliki karakteristik, yaitu:

1. Mengukur HOTS

Keterampilan yang dimaksud adalah dalam memecahkan masalah (problem solving), berpikir kritis (*critical thinking*), berpikir kreatif (*creative thinking*), berargumen (*reasoning*) dan mengambil keputusan (*decision making*).

2. Berbasis permasalahan kontekstual

Permasalahan kontekstual yang dimaksud merupakan permasalahan dalam situasi nyata, termasuk bagaimana kemampuan peserta didik untuk menghubungkan (*relate*), menginterpretasikan (*interprete*), menerapkan (*apply*) dan mengintegrasikan (*integrate*) pengetahuan yang dimiliki untuk menyelesaikan permasalahan nyata (Sukiman & Ahmad, 2019: 1).

2.3 Self-Efficacy

Self-efficacy merupakan persepsi individu terhadap kemampuannya untuk melakukan tugas dalam beberapa konteks (Chen dkk., 2001: 63). Dapat dikatakan bahwa apabila seseorang memiliki self-efficacy yang tinggi maka dia akan mampu mengorganisasi dan menyelesaikan permasalahan untuk mencapai hasil yang terbaik dalam suatu tugas tertentu (Indrawati & Wardono, 2019: 250). Noer (2012: 803) menyatakan bahwa self-efficacy memengaruhi pilihan seseorang dalam pengaturan perilaku, banyaknya usaha untuk menyelesaikan tugas, dan lamanya waktu mereka dalam menghadapi hambatan. Peserta didik yang memiliki self-efficacy tinggi akan terus bertahan dalam usahanya meskipun banyak mengalami kesulitan dan tantangan dalam menyelesaikan suatu tugas.

Efikasi diri atau *self-efficacy* memiliki peran yang sangat penting ketika seseorang mampu menggunakan kelebihan dirinya secara optimal pada situasi tertentu. Dapat dikatakan apabila seseorang memiliki keyakinan dan kepercayaan diri yang tinggi maka dia akan dapat menyelesaikan masalah yang dirasakan. Bandura (1994: 2) juga mengatakan bahwa seseorang yang memiliki efikasi diri yang kuat

akan lebih melihat masalah sebagai tantangan yang harus dihadapi, bukan sesuatu yang dihindari. Hal ini sesuai dengan penelitian Hanifah dan Agustini (2012: 30) yang menyatakan bahwa peserta didik dengan tingkat *self-efficacy* rendah cenderung akan menghindari pelajaran dengan tugas yang banyak, khususnya tugas yang membutuhkan keterampilan berpikir tingkat tinggi atau bersifat menantang, sedangkan peserta didik dengan *self-efficacy* yang tinggi mempunyai tekat yang besar dalam menyelesaikan tugas-tugasnya meskipun tugas yang menantang sekalipun. Selain itu Widyaninggar (2014: 94) juga berpendapat peserta didik dengan efikasi diri tinggi juga memiliki kepercayaan diri lebih dibandingkan peserta didik yang lain, sehingga peserta didik tersebut lebih mampu mempelajari materi baru tanpa menunggu instruksi atau arahan dari guru, tidak segan bertanya, memiliki rasa ingin tahu yang tinggi, dan lebih kreatif dalam menyelesaikan masalah yang sedang dihadapi.

Aspek-aspek yang terkandung dalam *self-efficacy* memiliki karakteristik yang berbeda dalam kemampuan diri seseorang. Menurut Bandura dalam (Oktamala, 2024: 15-16) tiga aspek atau dimensi *self-efficacy*, yaitu:

1. Dimensi Tingkat (*level*)

Dimensi tingkat ini, individu akan mengalami pembatasan dalam self efficacy tergantung pada tingkat kesulitan dari tugas yang dihadapi. Dalam hal ini, self efficacy individu akan terfokus pada tugas-tugas yang memiliki tingkat kesulitan yang mudah, sedang, atau bahkan yang paling sulit, sesuai dengan batas kemampuan yang dimiliki. Individu yang memiliki self efficacy tinggi akan memiliki keyakinan yang kuat tentang kemampuan dalam melaksanakan suatu tugas. Seseorang yakin bahwa dirinya mampu mengatasi tantangan dan mencapai hasil yang diinginkan. Sebaliknya, individu yang memiliki self efficacy rendah cenderung memiliki keyakinan yang rendah pula tentang kemampuan yang dimilikinya. Merasa tidak yakin dan kurang percaya diri dalam menghadapi tugas-tugas yang sulit atau kompleks. Dalam konteks ini, tingkat self efficacy individu sangat bergantung pada persepsi individu terhadap kemampuannya. Tingkat self efficacy yang tinggi dapat memberikan motivasi dan dorongan untuk mencapai prestasi yang lebih baik, sementara tingkat efikasi diri yang rendah dapat menghambat individu dalam

menghadapi tantangan dan mencapai potensi yang sebenarnya. Dengan demikian, pemahaman tentang dimensi tingkat dalam self efficacy dapat memberikan wawasan yang penting dalam memahami bagaimana individu mengontrol dan mengelola keyakinan tentang kemampuan diri dalam menghadapi berbagai tugas dan tantangan dalam kehidupan sehari-hari.

2. Dimensi Kekuatan (*strength*)

Dalam self efficacy berkaitan dengan keyakinan atau harapan individu terhadap kemampuan yang dimilikinya. Dalam dimensi ini, individu memiliki harapan yang kuat terhadap kemampuan individu, yang mendorongnya untuk bertahan dalam usaha yang di lakukan. Sebaliknya, jika harapan individu terhadap kemampuan diri lemah, maka akan mudah goyah oleh pengalamanpengalaman yang tidak mendukung. Aspek kekuatan ini menggambarkan seberapa yakin individu dalam menggunakan kemampuan yang di miliki dalam mengerjakan tugas. Jika individu memiliki kekuatan yang tinggi dalam self efficacy, maka akan merasa yakin dan percaya bahwa individu ini mampu mengatasi tantangan dan mencapai hasil yang diinginkan. Keyakinan ini akan memotivasi individu untuk berusaha lebih keras dan tidak mudah menyerah ketika menghadapi kesulitan. Namun, jika individu memiliki kekuatan yang rendah dalam self efficacy maka akan merasa kurang yakin dan ragu dalam menggunakan kemampuan yang dimiliki. Hal ini dapat membuat individu enggan untuk mengambil risiko dan cenderung menghindari tugas-tugas yang dianggap sulit atau menantang. Pemahaman tentang dimensi kekuatan dalam self-efficacy penting karena dapat mempengaruhi motivasi dan ketahanan individu dalam menghadapi tugas-tugas yang di hadapi. Individu dengan kekuatan self efficacy yang tinggi cenderung memiliki motivasi yang kuat dan kemampuan untuk mengatasi rintangan, sedangkan individu dengan kekuatan self efficacy yang rendah mungkin mengalami kesulitan dalam mempertahankan usaha dan dapat dengan mudah terpengaruh oleh pengalaman yang negatif.

3. Dimensi Generalisasi (generality)

Dimensi ini mengacu pada perilaku yang menunjukkan keyakinan diri terhadap kemampuan seseorang. Seseorang menyadari bahwa kemampuan yang dimiliki memiliki batasan ketika dihadapkan pada satu aktivitas atau kondisi tertentu dan bervariasi. Individu dengan tingkat kepercayaan diri yang rendah cenderung mudah menyerah dan mengeluh ketika dihadapkan pada banyak tugas secara bersama-sama atau kondisi yang berbeda dari biasanya. Di sisi lain, individu yang memiliki keyakinan yang tinggi akan melihat ancaman sebagai tantangan yang harus dihadapi.

Self efficacy atau kemampuan diri umumnya dapat dilatih dan ditingkatkan melalui pembiasaan pada aktifitas sehari-hari. Santrock (1999:357) menyebutkan empat cara meningkatkan self efficacy yang dimiliki, yaitu:

- 1. Memilih dan menetapkan tujuan, tujuan harus bersifat realistis untuk dicapai
- Membedakan pengalaman dari masa lalu sebagai acuan rencana yang sedang dilakukan. Hal ini agar pengaruh kegagalan masa lalu tidak terulang dengan rencana yang sedang dilakukan
- 3. Tetap mempertahankan prestasi yang baik dengan berusaha fokus pada keberhasilan yang akan dicapai selanjutnya
- 4. Membuat daftar kegiatan yang akan dilakukan mulai dari hal yang paling mudah sampai ke hal yang paling sulit demi meningkatkan *self-efficacy* secara bertahap.

2.4 Model Pembelajaran ADI Terintegrasi SDGs

Salah satu model yang digunakan dalam pembelajaran IPA dan memiliki karakteristik yang berpotensi untuk meningkatkan HOTS dan *self-efficacy* peserta didik, yaitu model *Argument-Driven Inquiry* (ADI). ADI adalah model yang digunakan dalam pembelajaran dan mampu mengajarkan siswa untuk belajar bagaimana berpartisipasi aktif dalam proses belajar dan menggunakan ide-ide untuk membangun konsep dalam mempelajari ilmu pengetahuan alam. Siswa diajarkan bukan hanya penguasaan konsep semata, akan tetapi ditekankan membangun konsep-konsep pengetahuan yang diajarkan sehingga menjadi landasan berpikir (Sampson & Gleim, 2009: 465-470). Model ini dirancang untuk membantu siswa melatih cara membuat penjelasan ilmiah, menjawab pertanyaan dengan menggunakan data yang diperoleh dari hasil penyelidikan, serta

merefleksikan hasil kerja yang dilakukan (Sampson dkk., 2011: 219; Rahayu dkk., 2019:83).

Tabel 2. Tahapan-tahapan Model Argument-Driven Inquiry (ADI)

No	Tahap	Kegiatan Guru	Kegiatan Peserta Didik
1.	Identifikasi masalah	Menjelaskan topik yang akan	Merumuskan masalah
	(dentification of a task)	dipelajari	berdasarkan permasalahan
			yang dijelaskan oleh guru
2.	Pengumpulan data	Mengarahkan untuk	Peserta didik bersama
	(Generation and analysis	berkelompok dan	kelompoknya melakukan
	of data)	membimbing percobaan	percobaan
3.	Argumen tentatif	Membimbing untuk	Menyusun argument yang
	(Production of a	menganalisis data,	terdiri dari <i>claim</i> , data,
	tentative argument)	memfasilitasi menyusun	warrant, dan rebuttal
		argumen	berdasarkan hasil
			percobaan.
4.	Sesi argumentasi	Membimbing peserta didik	Mengkomunikasikan
	(Argumentation session)	untuk berbagi argument dan	argumen dari hasil
		memperbaiki penjelasan	percobaan dan peserta
			didik lainnya
			menyanggah atau
			bertanya
5.	Penyusunan laporan	Membimbing peserta didik	Membuat laporan hasil
	(Investigation report)	untuk membuat laporan	percobaan yang berisi
		percobaan	argumentasi
6.	Double-blind peer	Membimbing peserta didik	Menilai laporan
	review	untuk mengevaluasi kualitas	investigasi kelompok lain
		laporan percobaan	berdasarkan form review
7.	Revisi laporan	Membimbing peserta didik	Merevisi laporan
	-	untuk melakukan revisi	berdasarkan hasil dari
		laporan percobaan	reviewer dan
		- •	mengumpulkan laporan
8.	Diskusi eksplisit dan	Membimbing untuk	Bersama guru
	reflektif	melakukan refleksi diri.	mendiskusikan hal yang
			sudah dipelajari

Sumber: Grooms dkk., 2015: 219-223

Model pembelajaran ADI memiliki kelebihan, yaitu: 1) melibatkan peserta didik dalam penyelidikan; 2) sebagai bagian dari proses inkuiri, maka model ini mendorong peserta didik untuk belajar berargumen untuk menyusun argumen yang dapat mendukung penjelasan dari pertanyaan penelitian; 3) memberikan waktu untuk belajar cara menyampaikan usulan, mengevaluasi dan memperbaiki serta menulis ide-ide melalui suatu diskusi bagi peserta didik; 4) membuat kelas yang selalu berpikir kritis dan menghargai bukti; 5) membantu peserta didik guna meningkatkan berpikir kritis dan mengembangkan pemikiran dengan menegaskan

peran penting argumentasi dalam meningkatkan pengetahuan ilmiah (Sampson dan Gleim, 2009: 465) Salah satu kelemahan model ADI adalah kecenderungan siswa untuk terjebak dalam argumen yang kurang relevan dengan konteks global yang lebih luas. Dalam model pembelajaran ADI belum memuat konsep tujuan pembangunan berkelanjutan *atau Sustainable Development Goals* (SDGs) (Khoiri dkk., 2022: 14). Oleh karena itu dibutuhkan pengintegrasian model pembelajaran ADI dengan SDGs untuk melengkapi kelemahan tersebut.

Sustainable Development Goals (SDGs) atau Tujuan Pembangunan Berkelanjutan (TPB) merupakan hasil kesepakatan Negara-negara PBB pada sidang umum yang dilaksanakan pada bulan September 2015 di New York, Amerika Serikat. Indonesia bersama dengan negara-negara PBB lainnya menyepakati komitmen global berupa Tujuan Pembangunan Berkelanjutan (TPB) untuk jangka waktu pelaksanaan tahun 2015 – 2030. SDGs terdiri atas 17 tujuan dan 169 target yang membidik berbagai isu lingkungan, isu pembangunan, mulai dari kemiskinan hingga kerja sama internasional (Wijayanto & Nurhajati, 2019: 15). Tujuan tersebut dibagi menjadi 4 pilar yaitu pilar pembangunan (terdapat 5 tujuan), pembangunan ekonomi (5 tujuan), pembangunan lingkungan (6 tujuan), serta pembangunan hukum dan tata kelola (1 tujuan). Isu lingkungan merupakan pilar dengan tujuan yang memiliki 6 tujuan yaitu tujuan 6 tentang air dan sanitasi, tujuan 11 tentang kota dan pemukiman, tujuan 12 tentang produksi dan konsumsi pangan, tujuan 13 tentang perubahan iklim, tujuan 14 tentang kelautan, dan tujuan 15 tentang darat. Selain itu, beberapa tujuan lainnya juga terdapat keterkaitan yang erat dengan isu lingkungan hidup (Budiantoro, 2017: 9).

Model ADI-SDGs dinilai bisa melatih HOTS dan *self-efficacy* peserta didik. Ketika peserta didik memiliki *self-efficacy* (keyakinan diri) yang tinggi maka kemampuan berpikir tingkat tinggi meliputi kemampuan menganalisis, mengevaluasi dan mencipta peserta didik akan meningkat. Hal ini juga didukung oleh hasil penelitian Basito, Arthur & Daryati (2018:12) bahwa terdapat hubungan antara *self-efficacy* terhadap kemampuan berpikir tingkat tinggi peserta didik, terdapat implikasi bahwa untuk meningkatkan kemampuan berpikir tingkat tinggi peserta didik dapat dilakukan dengan meningkatkan tingkat kepercayaan diri

peserta didik akan kemampuannya meliputi meningkatkan kegigihan dalam mengerjakan hal-hal sulit, memiliki kemampuan dalam melakukan tugas-tugas yang rumit, dan memiliki ketekunan dalam mengerjakan tugas.

Model ADI-SDGs dikembangkan untuk memberikan permasalahan kontekstual yang berkaitan dengan konsep keberlanjutan. Materi pelajaran diharapkan berkisar pada fakta, konsep, dan prosedur serta dikaitkan dengan dampak pengetahuan terhadap aspek sosial budaya, lingkungan, dan ekonomi sehingga dapat memperluas kompetensi siswa, tidak hanya pada empat kompetensi yang terdapat dalam kurikulum tetapi juga keterampilan abad 21 yang dibutuhkan peserta didik (Khoiri dkk., 2022)

2.5 Membelajarkan Materi Pokok Perubahan Iklim

Materi Perubahan Iklim yang dipelajari pada tingkat SMA/MA kelas X memiliki capaian pembelajaran yaitu peserta didik memiliki kemampuan untuk memahami Perubahan Iklim, sehingga responsif dan dapat berperan aktif dalam memberikan penyelesaian masalah pada isu-isu lokal dan global. Semua upaya tersebut diarahkan pada pencapaian tujuan pembangunan yang berkelanjutan (*Sustainable Development Goals*/SDGs). Keluasan dan kedalaman materi Perubahan Iklim disajikan pada Tabel 3.

Tabel 3. Keluasan dan Kedalaman Materi

Keluasan	Kedalaman	
Perubahan	1. Definisi perubahan iklim	
iklim	Perubahan Iklim adalah berubahnya kondisi fisik atmosfer bumi	
	antara lain suhu dan distribusi curah hujan yang terjadi di suatu	
	daerah selama kurun waktu yang panjang. Perubahan tersebut	
	membawa dampak luas terhadap berbagai sektor kehidupan	
	manusia. Perubahan Iklim dapat juga dikatakan sebagai sintesis	
	kejadian cuaca selama kurun waktu yang panjang	
	2. Indikator Perubahan iklim	
	Indikator perubahan iklim meliputi peningkatan suhu global rata-	
	rata, konsentrasi gas rumah kaca, pencairan es & gletser, kenaikan	
	permukaan laut, perubahan pola curah hujan, frekuensi cuaca	
	ekstrem, perubahan ekosistem dan keanekaragaman hayati	

Keluasan Kedalaman

3. Penyebab perubahan iklim

Perubahan Iklim disebabkan oleh beberapa faktor sebagai berikut:

- a. Efek rumah kaca, menyebabkan sebagian panas yang harusnya dipantulkan permukaan bumi diperangkap oleh gas-gas rumah kaca di atmosfer, sehingga membuat bumi menjadi semakin panas.
- b. Pemanasan global, menyebabkan peningkatan rata-rata temperatur atmosfer yang dekat dengan permukaan
- c. bumi dan di troposfer yang dapat berkontribusi pada perubahan pola iklim global.
- d. Penggunaan transportasi, menyebabkan perubahan iklim karena emisi gas karbon dioksida yang berasal dari bahan bakar fosil sebagai sumber energi kendaraan.
- e. Penebangan hutan, menyebabkan perubahan iklim karena berkurangnya penyerapan emisi gas rumah kaca akibat pohon yang ditebang akan melepaskan karbon yang tersimpan di dalamnya.
- f. Perubahan orbit bumi, penyebab terjadinya perubahan iklim karena saat bumi lebih dekat ke matahari, iklim akan menjadi lebih hangat.
- 3. Proses terjadinya perubahan iklim
 Proses perubahan iklim dimulai dengan peningkatan konsentrasi
 gas rumah kaca seperti karbon dioksida (CO2), metana (CH4), dan
 uap air di atmosfer. Gas-gas ini bertindak seperti selimut, menahan
 radiasi inframerah dari permukaan bumi dan mencegahnya lolos ke
 luar angkasa. Akibatnya, energi yang dipancarkan oleh bumi
 terperangkap di atmosfer, menyebabkan peningkatan suhu secara
- 4. Dampak perubahan iklim

keseluruhan.

Perubahan iklim menimbulkan beberapa dampak yaitu:

- a. Suhu bumi yang lebih panas, terjadi akibat peningkatan konsentrasi Gas Rumah Kaca di atmosfer bumi, sehingga berakibat pada meningkatnya suhu permukaan bumi.
- b. Meningkatnya kekeringan, perubahan iklim mengakibatkan ketersediaan air semakin langka di lebih banyak wilayah, sehingga meningkatkan risiko kekeringan pertanian yang mempengaruhi produksi pangan.
- c. Punahnya spesies, perubahan iklim menimbulkan risiko kelangsungan hidup bagi spesies darat maupun lautan. Risiko ini semakin meningkat seiring dengan meningkatnya suhu bumi.
- d. Kelangkaan pangan, sektor perikanan, pertanian, dan peternakan kemungkinan akan rusak atau menjadi kurang produktif untuk menghasilkan bahan pangan bagi penduduk dunia. Resiko kesehatan, perubahan iklim yang menyebabkan perubahan pola cuaca menyebabkan meluasnya sebaran penyakit melalui polusi udara, penyakit, kejadian cuaca ekstrim, tekanan pada kesehatan mental, dan meningkatnya kelaparan dan gizi buruk di tempat dimana manusia tidak \

Tabel 3 (lanjutan)

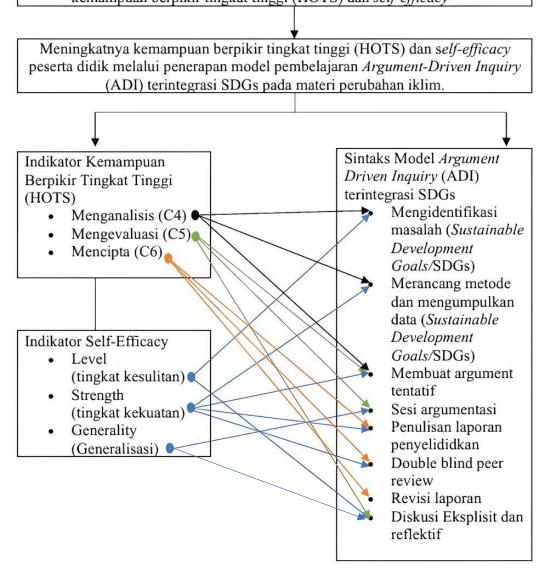
Keluasan		Kedalaman
		e. dapat menumbuhkan tanaman atau mendapatkan makanan yang cukup.
		f. Kemiskinan, perubahan iklim meningkatkan faktor- faktor yang menyebabkan atau menempatkan manusia dalam kemiskinan. Banjir yang melanda kawasan perkotaan merusak rumah dan kehidupan. Panas yang ekstrim menyebabkan manusia tidak dapat bekerja diluar ruangan.
Upaya	5.	Beberapa upaya yang dapat dilakukan yaitu:
Opaya penanganan masalah akibat perubahan iklim	3.	 a. Hemat energi, hal yang dapat dilakukan yaitu beralih ke bola lampu LED dan peralatan listrik hemat energi, mencuci cucian dengan air dingin, atau menggantung barang-barang hingga kering daripada menggunakan pengering. b. Membatasi penggunaan bahan bakar fosil, usaha yang dapat dilakukan yaitu berjalan, bersepeda, atau naik kendaraan umum sehingga mengurangi emisi gas rumah kaca. c. Penggunaan energi terbarukan, dapat dengan memanfaatkan panel surya untuk mengubah energi matahari menjadi listrik. d. Melakukan reboisasi, dengan mengembalikan fungsi hutan, maka akan membantu penyerapan emisi gas rumah kaca.
		 e. Menerapkan 3R (<i>Reuse, Reduce, Recycle</i>), elektronik, pakaian, dan barang barang lain dapat menyebabkan emisi karbon di setiap titik produksi, mulai dari ekstraksi bahan mentah hingga pembuatan dan pengangkutan barang ke pasar. Hal yang dapat dilakukan yaitu beli lebih sedikit barang, belanja barang bekas, perbaiki apa yang bisa, dan lakukan daur ulang. f. Pendidikan dan kesadaran masyarakat, melalui kesadaran akan pentingnya peran aktif untuk mengatasi perubahan iklim.

2.6 Kerangka Pikir

Pembelajaran abad 21 menitikberatkan kepada keterampilan berpikir kritis, kreatif, pemecahan masalah, komunikasi dan kerjasama yang merupakan bagian dari HOTS yang sangat penting untuk dimiliki oleh peserta didik sebagai bekal dalam menghadapi tantangan global. Selain kemampuan berpikir tingkat tinggi (HOTS), peserta didik juga harus memiliki *self-efficacy* atau keyakinan diri. Peserta didik yang memiliki *self-efficacy* tinggi akan mampu menyelesaikan masalah dengan baik dan dapat beradaptasi dengan lebih baik dalam menghadapi perubahan ataupun kesulitan dalam pembelajaran. Salah satu model pembelajaran yang dapat digunakan untuk melatih kemampuan berpikir tingkat tinggi (HOTS) dan *self-efficacy* peserta didik adalah model *Argument-Driven Inquiry* (ADI).

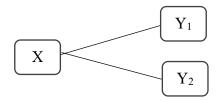
Model pembelajaran ADI menuntut peserta didik untuk berpikir kritis dan berargumentasi secara ilmiah.

Pembelajaran dengan menggunakan model ADI mengutamakan keterlibatan peserta didik secara aktif saat penyelidikan, berargumentasi, *mereview*, dan menulis. Selama kegiatan pembelajaran, pendidik tidak mendominasi kegiatan saat di kelas, tetapi yang aktif bekerja adalah peserta didik. Pada proses pembelajaran dengan model ADI, peserta didik diberikan permasalahan dan pertanyaan ilmiah yang berkaitan dengan tujuan pembangunan berkelanjutan (SDGs) terutama dalam masalah perubahan iklim untuk diidentifikasi, tahap ini dapat meningkatkan kemampuan berpikir tingkat tinggi pada indikator menganalisis. Sintaks ADI ini juga akan mendorong peserta didik untuk mengambil peran aktif dalam menentukan fokus penyelidikan sehingga dapat meningkatkan *self-efficacy* pada indikator *level*. Pada tahap ini juga peserta didik akan merencanakan metode pengumpulan data dengan panduan mengenai sumber daya yang menerapkan prinsip SDGs sehingga dapat meningkatkan HOTS pada indikator menganalisis dan *self-efficacy* pada indikator *strength*.


Pada tahap menganalisis data dan menyusun argumentatif, peserta didik akan belajar menyajikan data yang sudah didapatkan dari percobaan yang telah dilaksanakan, selanjutnya peserta didik diminta untuk membuat argumen sebagai jawaban dari permasalahan dalam penelitian, pada tahap ini akan meningkatkan HOTS pada indikator mengevaluasi dan *self-efficacy* pada indikator *strength*. Tahap selanjutnya yaitu sesi argumentasi, peserta didik akan diminta memaparkan argumen-argumen mereka dan selanjutnya peserta didik mengkritis apa yang sudah ditemukan oleh kelompok lain, tahap ini akan meningkatkan HOTS pada indikator menganalisis dan mengevaluasi. Tahap ini juga akan meningkatkan *self-efficacy* pada indikator *generality*.

Tahap selanjutnya peserta didik menuliskan hasil penyelidikan yang bersifat sementara terdiri atas tujuan penyelidikan, metode yang digunakan dan hasil penyelidikan yang telah dilaksanakan, sehingga dapat melatih HOTS pada indikator menciptakan dan juga tahap ini dapat melatih *self-efficacy* peserta didik pada indikator *strength*. Hasil penyelidikan yang telah dibuat selanjutnya akan

dikoreksi secara acak oleh peserta didik lain berdasarkan arahan dari pendidik, hal ini akan meningkatkan HOTS pada indikator mencipta, tahap ini juga akan melatih *strength* peserta didik. Selanjutnya, peserta didik akan menuliskan ulang hasil penyelidikannya berdasarkan hasil koreksian yang telah diterima sehingga dapat melatih kemampuan HOTS peserta didik pada indikator mencipta juga akan melatih *self-efficacy* pada indikator *strength*. Kemudian peserta didik melakukan diskusi reflektif mengenai penyelidikan yang telah dilakukan, hal ini bertujuan untuk menyediakan tempat bagi peserta didik menyimpulkan tentang apa yang telah peserta didik pelajari selama penyelidikan. Tahap ini akan melatih kemampuan HOTS pada indikator mengevaluasi dan juga akan melatih *self-efficacy* pada indikator *level* dan *generality*.


Berdasarkan uraian di atas, maka gambaran kerangka berpikir dalam penelitian ini dapat dilihat pada gambar berikut ini:

- Kemampuan berpikir tingkat tinggi (HOTS) dan *self-efficacy* penting di abad 21
 HOTS dan *self-efficacy* peserta didik di Indonesia tergolong rendah
- 3. Proses pembelajaran yang belum mendukung berkembangnya kemampuan berpikir tingkat tinggi (HOTS) dan *self-efficacy*

Gambar 1. Skema Kerangka Pikir

Pada penelitian ini terdapat tiga variabel, yaitu 1 variabel bebas dan 2 variabel terikat. Variabel bebas (X) dalam penelitian ini adalah model pembelajaran ADI terintegrasi SDGs, serta variabel terikat (Y₁) adalah keterampilan berpikir tingkat tinggi (HOTS) dan variabel terikat (Y₂) adalah *self-efficacy* peserta didik. Hubungan kedua variabel tersebut dapat digambarkan pada diagram dibawah ini.

Gambar 2. Hubungan Antara Variabel X dengan Y

2.7 Hipotesis

Hipotesis yang diajukan dalam penelitian ini adalah:

- H₀: Tidak terdapat pengaruh yang signifikan dari penerapan model pembelajaran Argument-Driven Inquiry (ADI) terintegrasi SDGs terhadap HOTS peserta didik pada materi perubahan iklim.
 - H₁: Terdapat pengaruh yang signifikan dari penerapan model pembelajaran Argument-Driven Inquiry (ADI) terintegrasi SDGs terhadap HOTS peserta didik pada materi perubahan iklim.
- 2. H₀: Tidak terdapat pengaruh yang signifikan dari penerapan model pembelajaran *Argument-Driven Inquiry* (ADI) terintegrasi SDGs terhadap *self-efficacy* peserta didik pada materi perubahan iklim.
 - H₁: Terdapat pengaruh yang signifikan dari penerapan model pembelajaran Argument-Driven Inquiry (ADI) terintegrasi SDGs terhadap self-efficacy peserta didik pada materi perubahan iklim.

III. METODE PENELITIAN

3.1 Waktu dan Tempat Penelitian

Penelitian ini dilaksanakan pada semester genap tahun ajaran 2024/2025. Tempat dilaksanakannya penelitian ini yaitu SMA Negeri 7 Bandar Lampung yang beralamatkan di Jl. Teuku Cik Ditiro No.2, Beringin Raya, Kec. Kemiling, Kota Bandar Lampung, Lampung.

3.2 Populasi dan Sampel

Populasi penelitian ini adalah seluruh peserta didik kelas X SMA Negeri 7 Bandar Lampung tahun ajaran 2024/2025 yang berjumlah 341 peserta didik yang terbagi menjadi 11 kelas. Penelitian menggunakan sampel sebanyak 2 kelas yang dipilih secara acak, yaitu dengan cara mengundi dari 11 kelas yang ada kemudian kelas yang terpilih merupakan kelas yang dijadikan sampel yaitu kelas X.4 dengan jumlah 30 orang sebagai kelas eksperimen dan kelas X.5 berjumlah 35 orang sebagai kelas kontrol. Sampel dicuplik dari populasi dengan teknik cluster random sampling. Menurut Hasnunidah (2017: 81) teknik *cluster random sampling* digunakan untuk mengambil kelompok atau kelas sampel dari populasi secara acak.

3.3 Desain Penelitian

Penelitian ini adalah penelitian eksperimen semu (*Quasy Exsperimental*) menggunakan desain *Pretest-Posttest Non Equivalen Control Grup*. Desain ini diawali dengan pemilihan dua kelompok subyek yaitu kelas eksperimen dan kelas kontrol. Kedua kelas tersebut diberikan *pretest* untuk mengetahui pengetahuan awal. Kemudian pada kegiatan pembelajaran di kelas eksperimen diberikan model

pembelajaran ADI terintegrasi SDGs dan kelas kontrol menggunakan pembelajaran *Discovery learning*. Pada akhir pembelajaran dilakukan *posttest* untuk mengetahui pengaruh dari perlakuan yang telah diberikan. *Pretest-Posttest Non Equivalen Control Group Design* dapat dilihat pada tabel 3.1

Tabel 4. Desain Pretest-Posttest Non Equivalent Control Group Design

Kelas	Pretest	Perlakuan	Posttest
Е	X_1	X	Y_2
С	\mathbf{Y}_1	-	Y_2

Sumber: Hasnunidah (2017: 55)

Keterangan:

E : Kelas eksperimenC : Kelas kontrol

Y₁: Pretest terkait variabel terikat (HOTS)
 Y₂: Posttest terkait variabel terikat (HOTS)

X : Perlakuan menggunakan model ADI terintegrasi SDGs : Perlakuan menggunakan model *Discovery Learning*

3.4 Prosedur Penelitian

Penelitian ini terdiri dari tiga tahap, yaitu tahap persiapan, tahap pelaksanaan dan tahap akhir. Langkah-langkah dari setiap tahapan tersebut sebagai berikut:

3.4.1 Tahap Persiapan

Pada tahap persiapan, kegiatan yang dilakukan adalah sebagai berikut:

- a. Mengurus surat izin penelitian ke dekanat FKIP untuk melakukan observasi di sekolah.
- b. Melakukan studi pendahuluan melalui kegiatan survei dengan wawancara dan observasi ke sekolah yang ingin dijadikan tempat penelitian.
- c. Melakukan studi untuk mengkaji literatur yang akurat mengenai permasalahan yang dikaji.
- d. Menentukan populasi dan sampel penelitian kelas eksperimen dan kelas kontrol dengan menggunakan teknik *cluster random sampling*.
- e. Mengkaji studi kurikulum untuk memahami keluasan dan kedalaman materi pokok yang digunakan untuk penelitian.

- f. Menyusun perangkat pembelajaran yang terdiri dari modul ajar, LKPD untuk kelas eksperimen dan kelas kontrol.
- g. Membuat dan menyusun instrumen penelitian yang terdiri atas angket *self-efficacy* serta soal *pretest-posttest* tes HOTS, lembar observasi keterlaksanaan sintaks, dan angket tanggapan peserta didik.
- h. Melakukan uji validitas instrumen penelitian oleh pembimbing.
- i. Melakukan uji coba soal tes HOTS, meliputi uji validitas dan reliabilitas.
- j. Menganalisis hasil tes HOTS, meliputi uji validitas dan reliabilitas.
- k. Melakukan revisi instrumen penelitian yang tidak valid dan tidak reliabel.

3.4.2 Tahap Pelaksanaan

Pada tahap pelaksanaan penelitian, kegiatan yang dilakukan adalah sebagai berikut:

- a. Memberikan pretest untuk mengukur kemampuan HOTS peserta didik dan mengisi angket self-efficacy sebelum diberikan perlakuan. Pretest dan pemberian angket self-efficacy dilakukan pada kelas eksperimen dan kelas kontrol.
- b. Memberikan perlakuan yaitu melaksanakan kegiatan pembelajaran pada materi pokok perubahan iklim pada kelas eksperimen menggunakan model ADI terintegrasi SDGs dan kelas kontrol menggunakan model *Discovery Learning*.
- c. Melakukan observasi keterlaksanaan sintaks model pembelajaran selama pembelajaran berlangsung baik pada kelas eksperimen maupun kelas kontrol.
- d. Memberikan *posttest* dan mengisi angket *self-efficacy* untuk mengukur dan membandingkan *Higher Order Thinking Skills* (HOTS) dan *self-efficacy* peserta didik setelah diberi perlakuan (*treatment*).
- e. Menyebarkan angket tanggapan peserta didik pada kelas eksperimen untuk menggali informasi pengalaman belajar setelah menggunakan model ADI terintegrasi SDGs.

3.4.3 Tahap Akhir

Pada tahap akhir, kegiatan yang dilakukan adalah sebagai berikut:

- a. Mengolah dan menganalisis data angket self-efficacy serta pretest dan posttest untuk mengetahui perbedaan HOTS peserta didik pada kelas eksperimen dan kelas kontrol.
- b. Mengolah dan menganalisis data hasil penyebaran angket tanggapan peserta didik terhadap penggunaan model pembelajaran ADI terintegrasi SDGs
- c. Mengolah dan menganalisis data hasil observasi keterlaksanaan sintaks model pembelajaran ADI terintegrasi SDGs dan model pembelajaran *Discovery* learning.
- d. Membuat kesimpulan berdasarkan hasil yang diperoleh dari analisis data.

3.5 Jenis dan Teknik Pengumpulan Data

Adapun jenis dan teknik pengumpulan data pada penelitian ini adalah sebagai berikut:

3.5.1 Jenis Data

a. Data kuantitatif

Data kuantitatif dalam penelitian ini adalah data nilai *Higher Order Thinking Skills* (HOTS) peserta didik pada materi perubahan iklim yang diperoleh dari nilai *pretest* dan *posttest*. Selain itu, data kuantitatif penelitian ini adalah *selfeficacy* peserta didik yang diperoleh dari *pre*-angket dan *post*-angket.

b. Data Kualitatif

Data kualitatif pada penelitian ini adalah data keterlaksanaan sintaks pembelajaran materi perubahan iklim menggunakan model ADI terintegrasi SDGs dan model *Discovery Learning*. Dikumpulkan juga data tanggapan peserta didik mengenai penggunaan model ADI terintegrasi SDGs dalam pembelajaran.

3.5.2 Teknik Pengumpulan Data

Teknik pengumpulan data pada penelitian ini adalah sebagai berikut:

a. Pretest dan Posttest

Teknik pengumpulan data yang digunakan adalah teknik tes HOTS dalam bentuk *pretest* dan *posttest* pada kelas eksperimen dan kelas kontrol. *Pretest*

dan *posttest* dilaksanakan di luar jam pelajaran dengan waktu yang relatif sama untuk kedua kelas. Pelaksanan *pretest* dilakukan sebelum diberikan perlakuan (*treatment*) sedangkan *posttest* dilaksanakan setelah kegiatan pembelajaran berakhir.

b. Pemberian Angket Self-Efficacy

Pemberian angket *self-efficacy* bertujuan untuk mengukur tingkat keyakinan diri peserta didik terhadap kemampuannya. Penyebaran angket dilakukan sebelum dan setelah proses pembelajaran berlangsung.

c. Observasi Keterlaksanaan Sintaks Model Pembelajaran Kegiatan observasi dilakukan dengan menggunakan lembar observasi untuk mengetahui keterlaksanaan model pembelajaran yang digunakan saat pembelajaran berlangsung. Observasi ini dilaksanakan di kelas eksperimen dan kelas kontrol yang dilakukan oleh 2 observer, yaitu rekan sejawat peneliti dan guru biologi. Observasi ini dilakukan selama 2 pertemuan. Pengamatan oleh observer dilakukan di bagian belakang ruang kelas agar tidak mengganggu jalannya proses belajar mengajar.

d. Pemberian Angket Tanggapan Peserta Didik

Pemberian angket tanggapan peserta didik bertujuan untuk menggali informasi mengenai tanggapan peserta didik terhadap pengalaman belajar menggunakan model ADI terintegrasi SDGs. Penyebaran angket dilakukan setelah proses pembelajaran berlangsung.

3.6 Instrumen Penelitian

Instrumen yang digunakan dalam penelitian ini adalah soal tes, lembar observasi dan angket. Adapun penjelasannya diuraikan secara lengkap di bawah ini:

3.6.1 Soal Tes Higher Order Thinking Skills (HOTS)

Instrumen penelitian yang digunakan dalam penelitian ini yaitu soal-soal HOTS yang berbentuk essay berjumlah 10 soal. Pertanyaan dalam soal tes berhubungan dengan indikator HOTS menurut Anderson & Krathwohl (2001) yaitu: 1)

menganalisis; 2) mengevaluasi 3) mencipta. Adapun format kisi-kisi soal *pretest-posttest* yang akan digunakan pada penelitian ini sebagai berikut:

Tabel 5. Format kisi-kisi soal pretest dan posttest

Indikator Pencapaian Kompetensi (IPK)	Indikator Soal	Jumlah Soal	Nomor Soal	Ranah Kognitif	Bentuk Soal

Adapun format rubrik soal tes HOTS terdapat pada Tabel 6, sebagai berikut:

Tabel 6. Format Rubrik Soal Tes

Indikator soal	Ranah Kognitif	Soal	Kunci Jawaban	Skor

3.6.2 Angket Self-Efficacy Peserta Didik

Penelitian ini mengungkap data mengenai *self-efficacy* peserta didik yang diukur melalui penggunaan instrumen berupa angket. Angket *self-efficacy* yang digunakan adalah pernyataan mencakup pernyataan positif (*favorable*) dan pernyataan negatif (*unfavorable*) yang diadaptasi dari Oktamala (2024: 92). Kisi-kisi instrumen angket *self-efficacy* yang digunakan pada penelitan ini terdapat pada tabel berikut:

Tabel 7. Format Kisi-Kisi Angket Self-Efficacy

No	Aspek	Indikator	Item Pernyataan	
			Favorable	Unfavorable

Instrumen yang terdapat pada *self-efficacy* menggunakan skala *Likert* yang terdiri dari lima skala respon yaitu SS (sangat setuju), S (setuju), TS (tidak setuju), STS (sangat tidak setuju) terdapat pada tabel berikut:

Tabel 8. Format Angket Self-Efficacy

No.	Pernyataan	nyataan	Kate	Kategori Respon		
	· 	SS	S	TS	STS	

Keterangan:

SS = Sangat Setuju

S = Setuju

TS = Tidak Setuju

STS = Sangat Tidak Setuju

3.6.3 Angket Tanggapan Peserta Didik

Lembar angket ini bertujuan untuk menggali informasi dari peserta didik untuk mengetahui pengalaman pembelajaran yang diterapkan oleh peneliti. Kuesioner tanggapan peserta didik diadaptasi dari Hasnunidah (2017: 79). Pernyataan dalam kuesioner menggunakan skala *Guttman*. Setiap siswa dan guru diminta menjawab pertanyaan dengan jawaban Ya/Tidak. Jika menjawab "Ya" mendapat skor 1 dan jika menjawab "Tidak" mendapat skor 0 (Sugiyono, 2022). Lembar angket yang diisi oleh peserta didik disebarkan setelah semua proses pembelajaran selesai. Kegiatan penyebaran angket dilakukan selama 40 menit di luar jam pelajaran. Adapun format kisi-kisi angket disajikan pada tabel berikut:

Tabel 9. Format Kisi – kisi Angket Tanggapan Peserta Didik

No.	Indikator	Aspek yang diukur	Nomor pernyataan	Total pernyataan

Format kisi-kisi angket dibuat terpisah dengan format angket. Adapun format angket dapat dilihat pada tabel berikut:

Tabel 10. Format Angket Tanggapan Peserta Didik

3.6.4 Lembar Observasi Keterlaksanaan Sintaks Model Pembelajaran

Lembar Observasi Keterlaksanaan Sintaks Model Pembelajaran ADI terintegrasi SDGs dan model *Discovery Learning* pada penelitian ini berupa daftar cek yang diadaptasi dari lembar observasi oleh Hasnunidah (2016: 387). Pernyataan dalam lembar observasi menggunakan skala *Liker*t, terdiri atas kriteria terlaksana, kurang terlaksana, dan tidak terlaksana (Y, K,T). Observer mengisi lembar observasi dengan cara memberi tanda centang pada salah satu kolom penilaian. Adapun format lembar observasi dapat dilihat pada tabel berikut:

Tabel 11. Format Lembar Observasi Keterlaksanaan Sintaks Model Pembelajaran

No.	Sintaks Model Pembelajaran	Aktivitas Guru	Ket	erlaksana	an	Aktivitas Peserta Didik	Ket	erlaksa	ınaan
			Y	K	T		Y	K	T

Keterangan:

Y = Ya (terlaksana)

K = Kurang terlaksana

T = Tidak terlaksana

3.7 Uji Instrumen Penelitian

3.7.1 Uji Validitas

Validitas adalah suatu ukuran yang menunjukkan kevalidan suatu soal dan dapat digunakan untuk mengukur apa yang seharusnya diukur (Sugiyono, 2022: 121). Uji validitas ini menggunakan koefisien korelasi *Pearson* dengan bantuan program SPSS versi 26. Butir soal dikatakan valid jika ($r_{hitung} > r_{tabel}$) maka instrumen atau item-item pertanyaan berkorelasi signifikan terhadap skor total (Slamet & Wahyuningsih, 2022). Untuk menginterpretasi nilai dari hasil uji validitas maka digunakan kriteria yang terdapat pada Tabel 12.

Tabel 12. Indeks Validitas

Koefisien Korelasi	Kriteria Validitas
$0.81 <_{r_{11}} \le 1.00$	Sangat Tinggi
$0.61 <_{r_{11}} \le 0.80$	Tinggi
$0.40 <_{r_{11}} \le 0.60$	Cukup

Tabel 12 (lanjutan)

Koefisien Korelasi	Kriteria Validitas
$0.20 <_{r_{11}} \le 0.40$	Rendah
$0.00 <_{r_{11}} \le 0.20$	Sangat Rendah

Sumber: Widodo dkk. (2023: 56)

Hasil analisis uji validitas tes HOTS terdapat pada tabel 13.

Tabel 13. Uji Validitas Instrumen Tes

Nomor Soal	Koefisien Korelasi	Kriteria Validitas
1	0, 473	Valid
2	0, 546	Valid
3	0, 533	Valid
4	0, 423	Valid
5	0, 697	Valid
6	0, 452	Valid
7	0, 605	Valid
8	0, 687	Valid
9	0, 530	Valid
10	0, 595	Valid

3.7.2. Uji Reliabilitas

Data yang sudah valid kemudian dilanjutkan dengan uji reliabilitas. Untuk menentukan reliabilitas instrumen pada penelitian ini digunakan bantuan program SPSS versi 26 dengan uji $Cronbach\ Alpha$. Butir soal dikatakan reliabel apabila nilai $Cronbach\ s\ Alpha > r_{tabel}$ maka item pertanyaan dalam kuesioner dapat diandalkan (Slamet & Wahyuningsih, 2022: 52). Untuk menginterpretasi nilai dari hasil uji reliabilitas maka digunakan kriteria yang terdapat pada Tabel 13.

Tabel 13. Interpretasi Tingkat Reliabilitas

Koefisien Korelasi	Kriteria Validitas
0,80-1,00	Sangat Tinggi
0,60-0,79	Tinggi
0,40-0,59	Cukup
0,20-0,39	Rendah
0,00-0,19	Sangat Rendah

Sumber: Sugiyono (2011:184)

Hasil analisis uji reliabilitas tes HOTS terdapat pada tabel 15.

Tabel 15. Uji Reliabilitas Instrumen Tes

Alpha Cronbach's	Keterangan
0, 740	Reliabel

3.8 Teknik Analisis Data

Penelitian ini menggunakan 4 macam data, yaitu data hasil tes *pretest-posttest*, data angket *self-efficacy* peserta didik, hasil observasi keterlaksanaan sintaks model pembelajaran, dan hasil angket tanggapan peserta didik. Adapun teknik analisis keempatnya sebagai berikut:

3.8.1. Data Hasil Pretest dan Posttest HOTS

a. Menghitung Nilai pretest dan posttest

Kemampuan HOTS peserta didik dianalisis berdasarkan standar kemampuan yang diujikan dalam soal berbasis HOTS. Data tersebut dianalisis dengan menggunakan deskripsi persentase. Menghitung hasil nilai individu peserta didik dari setiap tingkatan dengan menggunakan rumus sebagai berikut:

Skor peserta didik =
$$\frac{Skor\ yang\ diproleh}{Skor\ maksimal} \times 100$$

Menghitung nilai rata-rata (*mean*) nilai peserta didik pada setiap tingkatan dengan menggunakan rumus sebagai berikut:

$$\bar{x} = \frac{\sum x}{\sum N}$$

Keterangan:

 $\sum X = Mean$

 \bar{x} = Jumlah data

N = Jumlah peserta didik

Sumber: Intan dkk., (2020: 7)

Selanjutnya nilai yang diperoleh dikategorikan berdasarkan tabel berikut ini:

Tabel 14. Kategori Kemampuan Peserta Didik dalam Menyelesaikan Soal HOTS

Skor	Kategori
81-100	Sangat tinggi
61-80	Tinggi
41-60	Sedang

Tabel 14 (lanjutan)

Skor	Kategori
21-40	Rendah
0-20	Sangat rendah

Sumber: Wakhidyah dkk. (2023: 72)

b. Uji *N-Gain*

Kualitas peningkatan HOTS peserta didik ditunjukkan dengan menggunakan rumus rata-rata *N- gain. N-gain (normalized gain)* digunakan untuk mengukur peningkatan HOTS peserta didik antara sebelum dan setelah pembelajaran. Adapun untuk mengetahui *N-gain* digunakan rumus sebagai berikut:

$$N - Gain = \frac{Skor\ posttest - skor\ pretest}{100 - skor\ pretest}$$

N-Gain pada penelitian ini dihitung menggunakan Aplikasi IBM SPSS *Statistics Version* 26. Kategori nilai *N-gain* ditentukan berdasarkan tabel kriteria *N-Gain* berikut:

Tabel 15. Kriteria N-Gain

Nilai N-gain Ternomalisasi	Interpretasi
$0.70 \le g < 100$	Tinggi
$0.30 \le g < 0.70$	Sedang
$0.00 \le g < 0.30$	Rendah
g = 0.00	Tidak terjadi peningkatan
$-1,00 \le g < 0,00$	Terjadi penurunan

Sumber: (Nismalasari dkk. 2016: 83)

c. Uji Normalitas Data

Uji normalitas merupakan sebuah uji yang digunakan untuk mengetahui sebaran data berdistribusi normal atau tidak. Uji normalitas data dilakukan menggunakan uji *Shapiro Wilk* dengan bantuan aplikasi SPSS versi 26. Uji ini digunakan untuk sampel berukuran kurang dari 50. Adapun ciri dari uji *Shapiro-Wilk* sebagai berikut:

a) Hipotesis

H₀= Sampel berasal dari populasi yang berdistribusi normal

H₁= Sampel berasal dari populasi yang tidak berdistribusi normal

b) Kriteria Uji

Terima H_0 jika $T_{hitung} < T_{tabel}$, sebaliknya jika $T_{hitung} > T_{tabel}$ maka H_0 ditolak (Arikunto, 2006: 214). Pengambilan keputusan uji normalitas dilihat berdasarkan pada besaran probabilitas atau nilai signifikansi, yaitu dengan ketentuan sebagai berikut:

Jika nilai sig < 0,05 maka data HOTS peserta didik tidak berdistribusi normal.

d. Uji Homogenitas Data

Data homogen adalah kumpulan data yang memiliki karakteristik yang memiliki keseragaman. Uji homogenitas merupakan salah satu uji statistik yang dilakukan dengan tujuan untuk mendapatkan informasi apakah dua atau lebih kelompok data yang diuji berasal dari populasi dengan variasi yang sama atau tidak (Nuryadi dkk., 2017:125-126). Uji homogenitas ini dapat dianalisis menggunakan uji *Levene test* dengan taraf signifikansi 0,05. Rumusan hipotesis yang digunakan adalah sebagai berikut:

a). Hipotesis

H₀: Variansi antara nilai *pretest* dan *posttest* homogen

H₁: Variansi antara nilai *pretest* dan *posttest* tidak homogen

b). Kriteria Uji

Jika nilai p-value (Sig.) $> \alpha$ (0,05) maka H₀ diterima artinya data homogen. Jika nilai p-value (Sig.) $< \alpha$ (0,05) maka H₀ ditolak H₁ diterima artinya data tidak homogen.

Sumber: Nuryadi dkk. (2017:125-126)

e. Uji Hipotesis

a). Independent Sample T-test

Jika hasil uji normalitas dan uji homogenitas menunjukkan data berdistribusi normal dan homogen, maka dilanjutkan dengan uji hipotesis menggunakan *Independent Sample T-test* (uji t) dibantu dengan aplikasi SPSS versi 26. Independent sample t-test berfungsi untuk mengetahui apakah ada perbedaan ratarata antara dua populasi. Uji rerata dengan menggunakan uji *Independent-Sample*

T-Test dengan taraf signifikasi 0,05 (Sugiyono, 2013: 200). Adapun hipotesis statistik yang akan diuji:

Hipotesis

H0: rata-rata N-gain kedua sampel sama

H1: rata-rata N-gain kedua sampel tidak sama.

• Kriteria Uji

Jika –Ttabel < thitung < ttabel, maka H₀ diterima

Jika thitung \leq -ttabel atau thitung \geq ttabel, maka H_0 ditolak.

Apabila data yang didapatkan tidak berdistribusi normal, maka dilakukan Uji *Mann-Whitney U*.

Hipotesis

H0 = tidak ada perbedaan nilai rata-rata antara kelas eksperimen dan kelas kontrol H1 = terdapat perbedaan nilai rata-rata antara kelas eksperimen dan kelas kontrol

• Kriteria Uji

Jika p-value > 0.05 maka H₀ diterima; jika p-value < 0.05 maka H₀ ditolak.

b). Uji *Effect Size*

Effect size adalah ukuran mengenai besarnya efek suatu variabel pada variabel lain, besarnya perbedaan maupun hubungan yang bebas dari pengaruh besarnya sampel. Dalam penelitian ini, rumus yang digunakan untuk menentukan effect size menggunakan rumus Cohen (1988: 67), sebagai berikut:

$$Cohen's = \frac{mean \ kelas \ eksperimen - mean \ kelas \ kontrol}{Sd \ gabungan}$$

Untuk mengetahui standar deviasi gabungan digunakan rumus sebagai berikut:

$$\sigma = \sqrt{\frac{(Ne-1)Sde^2 + (Nc-1)Sdc^2}{Ne + Nc - 2}}$$

Keterangan:

Ne: Jumlah sampel kelas eksperimen Nc: Jumlah sampel kelas kontrol Sde²: Standar deviasi kelas eksperimen Sdc²: Standar deviasi kelas kontrol

Dengan kategori effect size diklasifikasikan sebagai berikut:

Tabel 16. Kriteria Kategori Effect Size

Effect Size	Kategori
0 < d < 0.2	Kecil
0.2 < d < 0.8	Sedang
d > 0.8	Besar

Sumber: Cohen (dalam (Lovakov & Agadullina, 2021: 4)

3.8.2. Data Hasil Angket Self-Efficacy

Data hasil *self-efficacay* peserta didik didapatkan dari instrumen pengumpulan data menggunakan angket yang berisi jenis pertanyaan tentang *self-efficacy* peserta didik. Analisis data dilakukan dengan menghitung tanggapan terhadap pertanyaan dari masing-masing aspek *self-efficacy*. Kriteria *skala self-efficacy* dalam penelitian ini dikategorikan menjadi 3 yaitu: rendah, sedang, tinggi. Untuk mengategorikan terlebih dahulu ditentukan besarnya interval dengan rumus sebagai berikut:

$$Persentase = \frac{\sum Xi}{N} \times 100\%$$

Keterangan:

 $\sum Xi = \text{Jumlah skor yang diperoleh}$

N = Jumlah Skor Maksimum

Sumber : (Sudijono, 2012: 43)

Adapun kriteria skala *self-efficacy* adalah sebagai berikut:

Tabel 17. Kriteria Self-Efficacy

No	Interval Persentase	Kategori
1.	75-100	Sangat Baik
2.	49-74	Cukup
3.	<48	Kurang Baik

Sumber: Sudijono (2012: 43)

3.8.3 Data Hasil Angket Tanggapan Peserta Didik

a. Data hasil tanggapan peserta didik terhadap model pembelajaran ADI-SDGs dianalisis secara deskriptif kualitatif dalam bentuk persentase. Skala yang

- dipakai dalam penelitian ini adalah skala *guttman* dengan penskoran apabila memilih "Ya" akan diberi skor 1, dan menjawab "Tidak" diberi skor 0.
- Perhitungan persentase skor hasil angket tanggapan peserta didik dengan rumus berikut:

$$\textit{Persentase tanggapan \%} = \frac{\text{jumlah skor}}{\text{jumlah skor maksimal}} X \ 100$$

Untuk memberikan interpretasi pada persentase yang diperoleh, sebelumnya dihitung mean untuk setiap pernyataan dengan menggunakan rumus berikut:

$$M = \frac{\sum (fi.xi)}{\sum fi}$$

Keterangan:

M = Mean (nilai rata-rata)

fi = frekuensi jawaban

xi = skor pilihan jawaban Sumber : Kamelta (2013: 144)

Selanjutnya diberikan penafsiran terhadap jawaban dengan kategori sebagai berikut:

Tabel 18. Kriteria Persentase Angket Tanggapan Peserta Didik

Persentase	Kategori
$25\% < NRS \le 43\%$	Tidak Positif
$44\% < NRS \le 62\%$	Kurang Positif
$63\% < NRS \le 81\%$	Positif
$82\% < NRS \le 100\%$	Sangat Positif

Sumber: Sudjana dalam Saragih, Matondang, dan Wati (2021: 1734)

3.8.4. Data Hasil Observasi Keterlaksanaan Sintaks Model Pembelajaran

Lembar observasi keterlaksanaan sintaks pembelajaran menggunakan model ADI terintegrasi SDGs dihitung dalam bentuk skor. Setiap indikator pada sintaks pembelajaran yang terlaksana diberi skor 2, kurang terlaksana diberi skor 1, dan tidak terlaksana diberi skor 0. Setelah itu, hasil dihitung dalam bentuk persentase. Perhitungan persentase keterlaksanaan sintaks pembelajaran diadopsi dari penelitian Rosidi (2015: 18) dengan rumus:

% Keterlaksanaan pembelajaran =
$$\frac{\sum Kegiatan \ terlaksana}{\sum Seluruh \ kegiatan}$$
X 100%

Selanjutnya hasil persentase tersebut diintepretasikan berdasarkan kriteria keterlaksanaan pembelajaran pada Tabel 20.

Tabel 19. Kriteria Keterlaksanaan Pembelajaran

PKS	Kategori
PKS = 0	Tidak ada kegiatan terlaksana
$0 < PKS \le 25$	Sebagian kecil kegiatan teraksana
$25 < PKS \le 50$	Hampir seluruh kegiatan terlaksana
PKS = 50	Setengah kegiatan terlaksana
$50 < PKS \le 75$	Sebagian besar kegiatan terlaksana
$75 < PKS \le 100$	Hampir seluruh kegiatan terlaksana
PKS = 100	Seluruh kegiatan terlaksana

Keterangan:

PKS: Persentase Keterlaksanaan Sintaks

Sumber: Hasnunidah (2016: 387)

V. KESIMPULAN DAN SARAN

5.1 Kesimpulan

Berdasarkan hasil analisis data pada pembahasan, dapat disimpulkan bahwa:

- Terdapat pengaruh signifikan pada penggunaan model pembelajaran ADI
 Terintegrasi SDGs terhadap HOTS (Higher Order Thinking Skills) dan self-efficacy peserta didik pada materi Perubahan Iklim di SMA Negeri 7 Bandar Lampung
- Tanggapan peserta didik terhadap penggunaan model pembelajaran ADI-SDGs pada materi perubahan iklim menunjukkan bahwa sebagian besar peserta didik memberikan tanggapan yang sangat positif.

5.2 Saran

Berdasarkan hasil penelitian yang telah dilakukan, maka penulis menyarankan beberapa hal sebagai berikut:

- 1. Langkah-langkah pembelajaran ADI Terintegrasi SDGs perlu dijelaskan terlebih dahulu terkait konsep model dan pola berpikir argumen Toulmin sebelum pembelajaran karena peserta didik belum terbiasa.
- Pada salah satu indikator HOTS yaitu kemampuan mencipta memiliki capaian terendah dalam penelitian ini. Sehingga untuk penelitian selanjutnya diharapkan dapat menekankan pemahaman siswa melalui contoh peristiwa yang lebih bervariasi.

3. Self-efficacy mengacu pada keyakinan individu terhadap kemampuan mereka untuk mencapai tugas tertentu sehingga membutuhkan waktu untuk berkembang karena melibatkan pengalaman yang berulang, faktor eksternal seperti dukungan sosial dan umpan balik juga berkontribusi pada pembentukan self-efficacy. Oleh sebab itu, untuk penelitian selanjutnya diharapkan pelaksanaan pembelajaran dilakukan dalam rentang waktu yang lebih panjang dan memperhatikan faktor lainnya dalam meningkatkan self-efficacy siswa.

DAFTAR PUSTAKA

- Afifa, I. N., Hasnunidah, N., & Maulina, D. (2021). Effectiveness of argument-driven inquiry (ADI) learning model on students' creative thinking skill: Environmental pollution. *Biosfer*, *14*(1). https://doi.org/10.21009/biosferjpb.17316
- Afiff, S. (2022). Antropologi dan Persoalan Perubahan Iklim: Perspektif Kritis Ekologi Politik. *Jurnal Antropologi: Isu-Isu Sosial Budaya*, *24*(1), 109. https://doi.org/10.25077/jantro.v24.n1.p109-118.2022
- Ain, A. M. C. (2022). Pengembangan LKPD Berbasis Sustainability Pada Pembelajaran IPS Kelas VI SD Terhadap Keterampilan Berpikir Kritis Siswa. *Jpgsd*, 10(2), 411–420.
- Ainurrohmah, S., & Sudarti, D. S. (2022). Analisis Perubahan Iklim dan Global Warming yang Terjadi sebagai Fase Kritis. In *Jurnal Pendidikan Fisika dan Fisika Terapan* (Vol. 8, Issue 1).
- Akmala, N. F., Suana, W., & Sesunan, F. (2019). Analisis Kemampuan Berpikir Tingkat Tinggi Siswa SMA pada Materi Hukum Newton Tentang Gerak. *Titian Ilmu: Jurnal Ilmiah Multi Sciences*, 11(2), 67–72. https://doi.org/10.30599/jti.v11i2.472
- Anderson, L. W., & Krathwohl, D. R. (2001). A taxonomy for learning, teaching, and assessing: A revision of Bloom's taxonomy of educational objectives: complete edition. Addison Wesley Longman, Inc.
- Ayuardini, M. (2023). Pengembangan E-Modul Interaktif Berbasis Flipbook pada Pembahasan Biologi. *Faktor Exacta*, *15*(4), 259. https://doi.org/10.30998/faktorexacta.v15i4.14924
- Badjeber, R., & Purwaningrum, J. P. (2018). Pengembangan Higher Order thinking Skills dalam pembelajaran matematika di SMP. *Guru Tua: Jurnal Pendidikan Dan Pembelajaran*, 1(1), 36–43.
- Basito, M. D., Arthur, R., & Daryati, D. (2018). Hubungan efikasi diri terhadap kemampuan berpikir tingkat tinggi siswa SMK program keahlian teknik bangunan pada mata pelajaran mekanika teknik. *Jurnal Pensil: Pendidikan Teknik Sipil*, 7(1), 21–34.

- Chatib, M. (2012). Orangtuanya manusia: melejitkan potensi dan kecerdasan dengan menghargai fitrah setiap anak. Kaifa.
- Chen, G., Gully, S. M., & Eden, D. (2001). Validation of a New General Self-Efficacy Scale. *Organizational Research Methods*, *4*(1), 62–83. https://doi.org/10.1177/109442810141004
- Diartika, E. I. A. (2024). Efektivitas Modul Pencemaran Sampah dengan Model Argument-Driven Inquiry (ADI) untuk Meningkatkan Keterampilan Berpikir Kritis Mahasiswa Biologi. *Indo-MathEdu Intellectuals Journal*, *5*(2), 2090–2102. https://doi.org/10.54373/imeij.v5i2.983
- Dilah, S. (2023). Peran Pembelajaran IPA Berbasis Higher Order Thinking Skills (HOTS) DI SD Kelas Tinggi Era Society 5.0. *Pendas: Jurnal Ilmiah Pendidikan Dasar*, 8(2), 3197–3208.
- Dina, R. N., Zainuddin, Z., & Pada, A. U. T. (2022). Implementation of argument-driven inquiry learning model to enhance student's science process skills and self-efficacy. *JIPF (Jurnal Ilmu Pendidikan Fisika)*, 7(1), 9–17.
- Dinni, H. N. (2018). HOTS (High Order Thinking Skills) dan kaitannya dengan kemampuan literasi matematika. *PRISMA*, *Prosiding Seminar Nasional Matematika*, *I*, 170–176.
- Erlina, N. (2021). Kesiapan Calon Guru IPA dalam Pengembangan Rencana Pembelajaran Berbasis Education for Sustainable Development. *Jurnal Pendidikan Dan Pembelajaran Sains Indonesia (JPPSI)*, 4(2), 142-150., 2623–0852.
- Eymur, G. (2018). Developing High School Students' Self-Efficacy and Perceptions about Inquiry and Laboratory Skills through Argument-Driven Inquiry. *Journal of Chemical Education*, 95(5), 709–715. https://doi.org/10.1021/acs.jchemed.7b00934
- Faizzah, S. N., & Sutarni, S. (2023). Investigasi Kesulitan Siswa dalam Menyelesaikan Masalah HOTS Matematika. *Jurnal Cendekia : Jurnal Pendidikan Matematika*, 7(2), 1963–1975. https://doi.org/10.31004/cendekia.v7i2.2438
- Farida, I., & Gusniarti, W. F. (2014). Profil Keterampilan Argumentasi Siswa pada Konsep Koloid yang Dikembangkan Melalui Pembelajaran Inkuiri Argumentatif. *Edusains*, 6(1), 31–40.
- Fatah, H. A., Suprapto, P. K., & Meylani, V. (2020). Kemampuan kognitif dan literasi sains: sebuah model pembelajaran argument-driven inquiry pada materi jaringan tumbuhan. *JPBIO (Jurnal Pendidikan Biologi)*, *5*(1), 80–87. https://doi.org/10.31932/jpbio.v5i1.590

- Fauziyah, S. N., & Hamdu, G. (2021). Analisis Item Instrumen Pengukur Kompetensi Berpikir Kritis Siswa Berbasis ESD di Sekolah Dasar. *Indonesian Journal of Social Science Education (IJSSE)*, *3*(1), 55–64. http://ejournal.iainbengkulu.ac.id/index.php/ijsse
- Febrianti, W., Studi Pendidikan Biologi, P., Matematika dan Ilmu Pengetahuan Alam, F., Negeri Padang, U., Hamka, J., Tawar Bar, A., Padang Utara, K., Padang, K., & Barat, S. (2021). *META ANALISIS: PENGEMBANGAN SOAL HOTS UNTUK MENINGKATKAN KEMAMPUAN BERPIKIR KRITIS PESERTA DIDIK*. http://jurnal.radenfatah.ac.id/index.php/bioilmi
- Ginanjar, W. S., Utari, S., & Muslim, Dr. (2015). Penerapan Model Argument-Driven Inquiry dalam Pembelajaran IPA Untuk Meningkatkan Kemampuan Argumentasi Ilmiah Siswa SMP. *Jurnal Pengajaran Matematika Dan Ilmu Pengetahuan Alam*, 20(1), 32. https://doi.org/10.18269/jpmipa.v20i1.559
- Greenhill, V. (2010). 21st Century Knowledge and Skills in Educator Preparation. *Partnership for 21st Century Skills*.
- Grooms, J., Enderle, P., & Sampson, V. (2015). Coordinating Scientific Argumentation and the Next Generation Science Standards through Argument Driven Inquiry What Is Scientific Argumentation and Why Is It important in Science?
- Haidar, T., Adiansyah, R., & Ali, M. (2024). SOSIALISASI KONSEP PEMBELAJARAN BIOLOGI UNTUK MENDUKUNG SDGs DI MTs SINOA. 08(03), 2024–2598.
- Hasnunidah, N. (2013). Pembelajaran Biologi dengan Strategi Argument-Driven Inquiry dan Keterampilan Argumentasi Peserta Didik. *Jurnal Pendidikan Biologi Universitas Negeri Malang*, *5* (1)(1), 1–29.
- Hasnunidah, N. (2016). Pengaruh Argument-Driven Inquiry Dengan Scaffolding Terhadap Keterampilan Argumentasi, Keterampilan Berpikir Kritis Dan Pendalaman Konsep Biologi Dasar Mahasiswa Jurusan Pendidikan MIPA Universitas Lampung. *Disertasi Dan Tesis Malang: UM*.
- Hasnunidah, N. (2017). Metodologi penelitian pendidikan. *Yogyakarta: Media Akademi*.
- Hayon, V. H. B., Wariani, T., Bria, C., & Unwira Kupang, F. (2017). Seminar Nasional Pendidikan Sains II UKSW.
- Hidayah, B. N., & Nugraheni, N. (2024). PERAN PEMBELAJARAN ABAD 21 DALAM MEWUJUDKAN SUSTAINABLE DEVELOPMENT GOALS (SDGS). *Jurnal Citra Pendidikan*, *4*(2), 1666–1677. https://doi.org/10.38048/jcp.v4i2.3619

- Hikmah, S. I., Tukiran, & Nasrudin, H. (2023). Validity of Student Worksheets Based on Model Argument Driven Inquiry Integrated by STEM to Train Students' Argumentation Ability and Self-Efficacy in Chemical Equilibrium Material. *IJORER*: *International Journal of Recent Educational Research*, 4(4), 416–433. https://doi.org/10.46245/ijorer.v4i4.300
- Intan, F. M., Kuntarto, E., & Alirmansyah, A. (2020). Kemampuan Siswa dalam Mengerjakan Soal HOTS (Higher Order Thinking Skills) pada Pembelajaran Matematika di Kelas V Sekolah Dasar. *JPDI (Jurnal Pendidikan Dasar Indonesia)*, 5(1), 6–10.
- Irma, M. F., & Gusmira, E. (2023). Evaluasi Kebijakan Lingkungan terhadap Emisi Gas Rumah Kaca di Indonesia. *Jurnal Kolaborasi Sains Dan Ilmu Terapan*, 2 No. 1, 12–18.
- Jayawardana, H. B. A., Sugiarti, R., & Gita, D. (2020). *Prosiding Seminar Nasional Biologi di Era Pandemi COVID-19 Gowa*. http://journal.uin-alauddin.ac.id/index.php/psb/
- Juan, A., Hannan, S., & Namome, C. (2018). I believe I can do science: Self-efficacy and science achievement of Grade 9 students in South Africa. *South African Journal of Science*, 114(7–8), 48–54.
- Kemendikbudristek. (2022). Peraturan menteri pendidikan kebudayaan riset dan teknologi tentang standar proses pada pendidikan usia dini, jenjang pendidikan dasar dan jenjang pendidikan menengah. *Peraturan Menteri Pendidikan Dan Kebudayaan Republik Indonesia Nomor*, 16, 5–24.
- Khoiri, N., Sugandi, K., & Siswanto, J. (2022). The Validity of the Sustainability Based Argument-Driven Inquiry to Improve Students' Critical Thinking Skills. *Gagasan Pendidikan Indonesia*, *3*(1), 12–23. https://doi.org/10.30870/gpi.v3i1.15115
- Lovakov, A., & Agadullina, E. R. (2021). Empirically derived guidelines for effect size interpretation in social psychology. *European Journal of Social Psychology*, *51*(3), 485–504.
- Marhamah, O. S., Nurlaelah, I., & Setiawati, I. (2017). PENERAPAN MODEL ARGUMENT-DRIVEN INQUIRY (ADI) DALAM MENINGKATKAN KEMAMPUAN BERARGUMENTASI SISWA PADA KONSEP PENCEMARAN LINGKUNGAN DI KELAS X SMA NEGERI 1 CIAWIGEBANG. *Quagga: Jurnal Pendidikan Dan Biologi*, 9(02), 45. https://doi.org/10.25134/quagga.v9i02.747
- Maryanto, W. T. (2015). Model Penilaian untuk Pembelajaran Abad 21 (Sebuah Kajian untuk Mempersiapkan SDM Kritis dan Kreatif). *Prosiding Pendidikan Teknik Boga Busana*, 10(1).

- Nauvalia, C. (2021). Faktor eksternal yang mempengaruhi academic self-efficacy: Sebuah tinjauan literatur. *Cognicia*, *9*(1), 36–39. https://doi.org/10.22219/cognicia.v9i1.14138
- Nikmah, C., & Nasrudin, H. (2020). IMPROVING STUDENTS' SELF-EFFICACY AND LEARNING OUTCOMES USING ARGUMENT DRIVEN INQUIRY LEARNING MODEL. In *Jurnal Pendidikan Sains* (*JPS*) (Vol. 8, Issue 2). http://jurnal.unimus.ac.id/index.php/JPKIMIA
- Nismalasari, N., Santiani, S., & Rohmadi, M. (2016). Penerapan model pembelajaran learning cycle terhadap keterampilan proses sains dan hasil belajar siswa pada pokok bahasan getaran harmonis. *Edu Sains: Jurnal Pendidikan Sains Dan Matematika*, 4(2).
- Noor, P. P., & Abadi, A. P. (2022). Kemampuan Berpikir Tingkat Tinggi dalam Perkembangan Pembelajaran Matematika SMA. *Jurnal Educatio FKIP UNMA*, 8(2), 466–473. https://doi.org/10.31949/educatio.v8i2.1986
- Nurhidayati, E., Masykuri, M., & Fakhrudin, I. A. (2023). Pengaruh Model Pembelajaran Argument Driven Inquiry (ADI) dengan Pendekatan Stem terhadap Keterampilan Argumentasi pada Materi Cahaya dan Alat Optik. *INKUIRI: Jurnal Pendidikan IPA*, 12(3), 171. https://doi.org/10.20961/inkuiri.v12i3.79317
- Nurhusain, Damopolli, M., & Hasan, M. (2023). Penerapan Pemanfaatan Sistem Informasi Manajemen pada Proses Pembelajaran Aplikasi Google Classroom. In *Educational Leadership* (Vol. 3, Issue 1).
- Nurinsani, E. A., & Zaelani, K. S. (2023). Implementasi VTR/GO 4C's untuk meningkatkan kemampuan HOTS siswa kelas VIII pada materi gerak. *Prosiding Seminar Nasional Fisika*, 2(1), 113–119.
- Nuryadi, Astuti, T. D., Utami, E. S., & Budiantara, M. (2017). *Dasar-Dasar Statistik Penelitian*. SIBUKU MEDIA. www.sibuku.com
- Oktamala, L. (2024). Penggunaan Konseling Kelompok Solution Focused Brief Counseling (SFBC) Untuk Meningkatkan Self Efficacy Pada Siswa Kelas X SMA N 3 Bandar Lampung Tahun Ajaran 2023/2024.
- Ongardwanich, N., Kanjanawasee, S., & Tuipae, C. (2015). Development of 21st Century Skill Scales as Perceived by Students. *Procedia Social and Behavioral Sciences*, 191, 737–741. https://doi.org/10.1016/j.sbspro.2015.04.716
- Prayoga, A., Hasnunidah, N., Abdurrahman, A., & Romli, S. (2020).

 Meningkatkan HOTS siswa kelas VII A SMP IT Ar Raihan Bandar Lampung

 Melalui Penerapan LKS Berbasis Argument-Driven Inquiry (ADI).

- Purnamasari, I., Dewanti Handayani, S. S., Formen, A., & Pd, M. (2020). Stimulasi Keterampilan HOTs dalam PAUD Melalui Pembelajaran STEAM.
- Pusparini, F., & Mistiani, L. (2023). Profil Kemampuan HOTS Siswa SMP Plus Ma'arif NU Ciamis pada Pelajaran Biologi. *Bioed: Jurnal Pendidikan Biologi*, 11(2), 150–160.
- Quinn, J., McEachen, J., Fullan, M., Gardner, M., & Drummy, M. (2019). *Dive into deep learning: Tools for engagement*. Corwin Press.
- Rahmayumita, R., Hidayati, N., & Abstrak, I. A. (2023). Kurikulum Merdeka: Tantangan dan Implementasinya pada Pembelajaran Biologi. In *BIOLOGY AND EDUCATION JOURNAL* (Vol. 3, Issue 1).
- Rizkia, R. F., & Aripin, I. (2022). Penerapan Model Pembelajaran Argument Driven Inquiry (ADI) Pada Pembelajaran Biologi di SMA.
- Rosidi, I. (2015). Pengembangan perangkat pembelajaran IPA terpadu tipe integrated untuk mengetahui ketuntasan belajar ipa siswa smp pada topik pengelolaan lingkungan. *Jurnal Pena Sains*, 2(1), 14–25.
- Sahin, A., Ernawati, R., Amalia, R., Dalimunthe, R. Z., Pautina, A. R., Chairunnisa, D., & AlfayyadI, A. F. (2024). Self-Efficacy Pada Siswa: Systematic Literatur Review. *G-Couns: Jurnal Bimbingan Dan Konseling*, 8(2), 627–639.
- Sampson, V., & Gleim, L. (2009). Argument-driven inquiry to promote the understanding of important concepts & practices in biology. *The American Biology Teacher*, 71(8), 465–472.
- Sampson, V., Grooms, J., & Walker, J. P. (2011). Argument-Driven Inquiry as a way to help students learn how to participate in scientific argumentation and craft written arguments: An exploratory study. *Science Education*, 95(2), 217–257.
- Saraswati, P. M. S., & Agustika, G. N. S. (2020). Kemampuan berpikir tingkat tinggi dalam menyelesaikan soal HOTS mata pelajaran matematika. *Jurnal Ilmiah Sekolah Dasar*, 4(2), 257–269.
- Satriya, M. A., & Atun, S. (2024). The Effect of Argument Driven Inquiry Learning Models on Scientific Argumentation Skills and Higher Order Students on The Topics of Acid Base. *Jurnal Penelitian Pendidikan IPA*, 10(5), 2663–2673. https://doi.org/10.29303/jppipa.v10i5.6834
- Slamet, R., & Wahyuningsih, S. (2022). Validitas dan reliabilitas terhadap instrumen kepuasan kerja. *Aliansi: Jurnal Manajemen Dan Bisnis*, 17(2).
- Sudijono, A. (2012). Pengantar Statistik Pendidikan.

- Sukiman, S., & Ahmad, I. F. (2019). Analisis Higher Order Thinking Skills (HOTS) pada Soal Ujian Akhir Siswa Kelas 6 KMI dalam Kelompok Mata Pelajaran Dirosah Islamiyah di Pondok Modern Tazakka Batang. *Jurnal Pendidikan Agama Islam*, 16(2), 137–164.
- Sumini, Winarni, E. W., & Koto, I. (2020). Penerapan Discovery Learning untuk Meningkatkan Efikasi Diri dan HOTS pada Tema Daerah Tempat Tinggalku Siswa Kelas IV A MIN 1 Kota Bengkulu. *Jurnal Pembelajaran Dan Pengajaran Pendidikan Dasar*, 3(1), 159–168.
- Tania. (2021). Analisis Kemampuan HOTS (High Order Thinking Skills) Siswa pada Pembelajaran Online di SMAN 1 Teluk Kuantan Tahun Pelajaran 2020/2021. *Skripsi*.
- Tareze, A. H., Astuti, I., & Afandi. (2022). Model Pembelajaran Kolaborasi SDGs Dalam Pendidikan Formal Sebagai Pengenalan Isu Global Untuk Meningkatkan Kesadaran Sosial Peserta Didik. *Journal Visipena*, *13*(1), 42–53. https://ejournal.bbg.ac.id/visipena
- Thahir, R., Magfirah, N., & Anisa, A. (2021). Hubungan Antara High Order Thinking Skills dan Kemampuan Literasi Sains Mahasiswa Pendidikan Biologi. *BIODIK*, 7(3), 105–113. https://doi.org/10.22437/bio.v7i3.14386
- Utami, R. W., & Wutsqa, D. U. (2017). Analisis kemampuan pemecahan masalah matematika dan self-efficacy siswa SMP negeri di Kabupaten Ciamis. *Jurnal Riset Pendidikan Matematika*, 4(2), 166–175.
- Wakhidyah, S. H., Supriadi, B., & Anggraeni, F. K. A. (2023). Analysis of high-order thinking skills of high school students in solving problems related to temperature and heat. *Jurnal Pendidikan Fisika Dan Teknologi*, 9(1), 70–77.
- Walker, J. P., & Sampson, V. (2013). Argument-driven inquiry: Using the laboratory to improve undergraduates' science writing skills through meaningful science writing, peer-review, and revision. *Journal of Chemical Education*, 90(10), 1269–1274.
- Wiarsana, I. G. S. (2020). Pengaruh Self Efficacy, Motivasi Berprestasi, Dan Study Habits Terhadap Literasi Sains Siswa. *JURNAL PENDIDIKAN SAINS UNIVERSITAS MUHAMMADIYAH SEMARANG*, 8(2), 110–120.
- Widodo, S., Ladyani, F., Lestari, S. M. P., Wijayanti, D. R., Devrianya, A., Hidayat, A., Nurcahyat, S., Sjahriani, T., & Widya, N. (2023). *Buku Ajar Metode Penelitian*. CV Science Techno Direct.
- Widodo, T., & Kadarwati, S. (2013). Higher order thinking berbasis pemecahan masalah untuk meningkatkan hasil belajar berorientasi pembentukan karakter siswa. *Cakrawala Pendidikan*, 1, 85051.

- Wismayani Pratiwi, N. P., Sulistia Dewi, N. L. P. E., & Paramartha, A. A. G. Y. (2019). The Reflection of HOTS in EFL Teachers' Summative Assessment. *Journal of Education Research and Evaluation*, *3*(3), 127–133. https://ejournal.undiksha.ac.id/index.php/JERE
- Wulaningsih, R. D., Sartono, N., & Nurmanita, S. R. (2022). Hubungan Antara Keterampilan Proses Sains Terintegrasi dan Efikasi Diri dengan Literasi Biologi Siswa. *Biopedagogia*, 4(2), 26–37.
- Yandra, B. R., Meliasanti, F., & Huri, D. (2024). Tinjauan Tipe HOTS dan LOTS dalam Soal ASTS serta ASAS Bahasa Indonesia Tahun 2022-2024. *Jurnal Ilmiah FONEMA: Jurnal Edukasi Bahasa Dan Sastra Indonesia*, 7(1), 61–77.