PEMODELAN INTEGER PROGRAMMING PADA PENJADWALAN PERAWAT RUMAH SAKIT ADVENT BANDAR LAMPUNG (STUDI KASUS DI RUANG PERAWATAN ELIM 3)

Skripsi

Oleh

RISKA ROMAULI SIHOMBING NPM. 2117031101

FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS LAMPUNG BANDAR LAMPUNG 2025

ABSTRACT

INTEGER PROGRAMMING MODELING FOR NURSE SCHEDULING AT ADVENT HOSPITAL BANDAR LAMPUNG (CASE STUDY IN ELIM 3 WARD)

By

Riska Romauli Sihombing

Nurse scheduling is a critical aspect of hospital operational management, as it directly impacts service quality and human resource efficiency. This study aims to design an optimal nurse work schedule by considering constraints such as the number of working days, shift requirements, and nurse availability. The model applied is integer programming, formulated and solved using LINGO software. Data were collected from Advent Hospital Bandar Lampung for one work period consisting of eight days. The developed model successfully generates a schedule that satisfies all constraints and minimizes workload imbalance among nurses. The results indicate that this method is effective and provides an optimal solution for management in creating work schedules. Thus, the proposed integer programming model proves to offer an efficient, fair, and practical solution for real-world nurse scheduling systems.

Keywords: nurse scheduling, integer programming, LINGO, schedule optimization.

ABSTRAK

PEMODELAN INTEGER PROGRAMMING PADA PENJADWALAN PERAWAT RUMAH SAKIT ADVENT BANDAR LAMPUNG (STUDI KASUS DI RUANG PERAWATAN ELIM 3)

Oleh

Riska Romauli Sihombing

Penjadwalan perawat merupakan aspek penting dalam manajemen operasional rumah sakit karena berdampak langsung pada mutu pelayanan dan efisiensi sumber daya manusia. Penelitian ini bertujuan merancang jadwal kerja perawat yang optimal dengan mempertimbangkan kendala jumlah hari kerja, kebutuhan *shift*, dan ketersediaan perawat. Model yang digunakan adalah *integer programming*, dengan perumusan dan penyelesaian dilakukan menggunakan perangkat lunak LINGO. Data diambil dari Rumah Sakit Advent Bandar Lampung dalam satu periode kerja yaitu delapan hari. Model yang dikembangkan mampu menghasilkan jadwal yang memenuhi seluruh kendala serta meminimalkan ketimpangan beban kerja antar perawat. Hasil menunjukkan bahwa metode ini efektif dan memberikan solusi optimal bagi manajemen dalam menyusun jadwal kerja. Dengan demikian, model *integer programming* yang dirancang terbukti mampu memberikan solusi yang adil, efisien, serta layak diterapkan dalam sistem penjadwalan di dunia nyata.

Kata-kata kunci: penjadwalan perawat, *integer programming*, LINGO, optimasi jadwal.

PEMODELAN INTEGER PROGRAMMING PADA PENJADWALAN PERAWAT RUMAH SAKIT ADVENT BANDAR LAMPUNG (STUDI KASUS DI RUANG PERAWATAN ELIM 3)

RISKA ROMAULI SIHOMBING

Skripsi

Sebagai Salah Satu Syarat untuk Memperoleh Gelar SARJANA MATEMATIKA

Pada

Jurusan Matematika

Fakultas Matematika dan Ilmu Pengetahuan Alam

FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS LAMPUNG BANDAR LAMPUNG 2025

Judul Skripsi

PEMODELAN INTEGER PROGRAM-

MING PADA PENJADWALAN PERAWAT RUMAH SAKIT ADVENT BANDAR LAMPUNG (STUDI KASUS DI RUANG PERAWATAN

ELIM 3)

Nama Mahasiswa

Riska Romauli Sihombing

Nomor Pokok Mahasiswa

2117031101

Program Studi

Matematika

Fakultas

Matematika dan Ilmu Pengetahuan Alam

MENYETUJUI

1. Komisi Pembimbing

Prof. Dra. Wamiliana, M.A., Ph.D.

NIP. 196311081989022001

Dina Eka Nurvazly, S.Pd., M.Si.

NIP. 199311062019032018

2. Ketua Jurusan Matematika

Dr. Aang Nuryaman, S.Si., M.Si.

NIP. 197403162005011001

MENGESAHKAN

1. tim penguji

Ketua : Prof. Dra. Wamiliana, M.A., Ph.D.

Sekretaris : Dina Eka Nurvazly, S.Pd., M.Si.

Penguji
Bukan Pembimbing : Dr. Fitriani, S.Si., M.Sc.

2. Dekan Fakultas Matematika dan Ilmu Pengetahuan Alam

Dr. Eng. Heri Satria, S.Si., M.Si.

NIP. 197110012005011002

Tanggal Lulus Ujian Skripsi: 19 Juni 2025

PERNYATAAN SKRIPSI MAHASISWA

Yang bertanda tangan di bawah ini:

Nama : **Riska Romauli Sihombing**

Nomor Pokok Mahasiswa : 2117031101

Jurusan : Matematika

Judul Skripsi : Pemodelan Integer Programming pada

Penjadwalan Perawat Rumah Sakit Advent Bandar Lampung (Studi Kasus di Ruang

Perawatan Elim 3)

Dengan ini menyatakan bahwa skripsi ini adalah hasil pekerjaan saya sendiri. Apabila kemudian hari terbukti bahwa skripsi ini merupakan hasil salinan atau dibuat oleh orang lain, maka saya bersedia menerima sanksi sesuai dengan ketentuan akademik yang berlaku.

Bandar Lampung, 19 Juni 2025

Penulis,

Riska Romauli Sihombing

RIWAYAT HIDUP

Penulis memiliki nama lengkap Riska Romauli Sihombing yang lahir di Bandar Lampung pada tanggal 30 September 2002. Penulis merupakan anak keempat dari empat bersaudara yang terlahir dari pasangan J. Sihombing dan R. Sirait.

Penulis menempuh pendidikan di TK Sejahtera IV Bandar Lampung pada tahun 2007 sampai tahun 2008. Selanjutnya, penulis melanjutkan pendidikan di SDS Sejahtera IV Bandar Lampung pada tahun 2008 sampai tahun 2014. Kemudian, penulis melanjutkan pendidikan sekolah menengah pertama di SMPN 8 Bandar Lampung pada tahun 2014 sampai tahun 2017. Setelah itu, penulis melanjutkan pendidikan sekolah menengah atas di SMAN 14 Bandar Lampung pada tahun 2017 sampai tahun 2020.

Pada tahun 2021, penulis melanjutkan pendidikan di perguruan tinggi dan terdaftar sebagai mahasiswa S1 di Jurusan Matematika Fakultas Ilmu Pengetahuan Alam (FMIPA) Universitas Lampung (UNILA) melalui jalur Seleksi Bersama Masuk Perguruan Tinggi Negeri (SBMPTN).

Sebagai bentuk aplikasi bidang ilmu kepada masyarakat, penulis melaksanakan kegiatan Kerja Praktik (KP) pada bulan Desember 2023 sampai Februari di Badan Perencanaan dan Pembanguan Daerah Kota Bandar Lampung. Pada bulan Juli sampai Agustus penulis melaksanakan Kuliah Kerja Nyata (KKN) di Desa Jaya Guna, Kecamatan Marga Tiga, Kabupaten Lampung Timur.

KATA INSPIRASI

"Tetapi carilah dahulu Kerajaan Allah dan kebenarannya, maka semuanya itu akan ditambahkan kepadamu."

- Matius 6 : 33

"Serahkanlah segala kekhawatiranmu kepada-Nya, sebab Ia yang memelihara kamu."

- 1 Petrus 5 : 7

"Karena masa depan sungguh ada, dan harapanmu tidak akan hilang." - Amsal 23 : 18

PERSEMBAHAN

Puji syukur kepada Tuhan Yesus Kristus atas penyertaan-Nya sehingga skripsi ini dapat terselesaikan dengan baik dan tepat pada waktunya. Dengan rasa syukur dan bahagia, saya persembahkan rasa terimakasih saya kepada:

Ayah dan Ibuku Tercinta

Terimakasih kepada orang tuaku atas segala pengorbanan, motivasi, doa dan restu serta dukungannya selama ini. Terimakasih telah memberikan pelajaran berharga kepada anakmu ini tentang makna perjalanan hidup yang sebenarnya sehingga kelak bisa menjadi orang yang bermanfaat bagi banyak orang.

Dosen Pembimbing dan Pembahas

Terimakasih kepada dosen pembimbing dan pembahas yang sudah sangat membantu, memberikan motivasi, memberikan arahan serta ilmu yang berharga.

Sahabat-sahabatku

Terimakasih kepada sahabat-sahabatku, terlebih kepada Sita, Rio, Desi, Ayu Beto, Aqila, Nadia, Nafdha, Nabila dan teman-teman sepembimbingan. Terimakasih juga kepada semua orang-orang baik yang telah memberikan pengalaman, semangat, motivasinya, serta doa-doanya dan senantiasa memberikan dukungan dalam hal apapun.

Almamater Tercinta

Universitas Lampung

SANWACANA

Puji dan syukur penulis panjatkan kepada Tuhan Yesus Kristus atas limpahan berkat dan karunia-Nya sehingga penulis dapat menyelesaikan skripsi ini yang berjudul "Pemodelan *Integer Programming* pada Penjadwalan Perawat Rumah Sakit Advent Bandar Lampung (Studi Kasus di Ruang Perawatan Elim 3)" dengan baik dan lancar serta tepat pada waktu yang telah ditentukan.

Dalam proses penyusunan skripsi ini, banyak pihak yang telah membantu memberikan bimbingan, dukungan, arahan, motivasi serta saran sehingga skripsi ini dapat terselesaikan. Oleh karena itu, dalam kesempatan ini penulis mengucapkan terimakasih kepada:

- 1. Ibu Prof. Dra. Wamiliana, M.A., Ph.D. selaku Pembimbing 1 yang telah banyak meluangkan waktunya untuk memberikan arahan, bimbingan, motivasi, saran serta dukungan kepada penulis sehingga dapat menyelesaikan skripsi ini.
- 2. Ibu Dina Eka Nurvazly, S.Pd., M.Si. selaku Pembimbing II yang telah memberikan arahan, bimbingan dan dukungan kepada penulis sehingga dapat menyelesaikan skripsi ini.
- 3. Ibu Dr. Fitriani, S.Si., M.Sc. selaku Penguji yang telah bersedia memberikan kritik dan saran serta evaluasi kepada penulis sehingga dapat menjadi lebih baik lagi.
- 4. Bapak Dr. Aang Nuryaman, S.Si., M.Si. selaku Ketua Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Lampung.
- 5. Ibu Widiarti, S.Si., M.Si. selaku dosen pembimbing akademik.
- 6. Seluruh dosen, staff dan karyawan Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Lampung.

Semoga skripsi ini dapat bermanfaat bagi kita semua. Penulis menyadari bahwa skripsi ini masih jauh dari sempurna, sehingga penulis mengharapkan kritik dan saran yang membangun untuk menjadikan skripsi ini lebih baik lagi.

Bandar Lampung, 19 Juni 2025

Riska Romauli Sihombing

DAFTAR ISI

DA	FTA	R ISI xii
DA	FTA	R TABEL xiv
DA	FTA	R GAMBAR xv
I	PEN	DAHULUAN 1
	1.1	Latar Belakang Masalah
	1.2	Tujuan Penelitian
	1.3	Manfaat Penelitian
II	TIN,	JAUAN PUSTAKA 4
	2.1	Pemodelan Matematika
	2.2	Penjadwalan
	2.3	Integer Programming
	2.4	Software LINGO
III	ME	TODE PENELITIAN
	3.1	Waktu dan Tempat Penelitian
	3.2	Metode Penelitian
IV	HAS	SIL DAN PEMBAHASAN 14
	4.1	Data Penjadwalan Perawat
	4.2	Formulasi Model
	4.3	Optimasi Penjadwalan Perawat
	4.4	Analisis
V	KES	IMPULAN DAN SARAN 24
	5.1	Kesimpulan
	5.2	Saran
D		R PUSTAKA 24

DAFTAR TABEL

2.1	Luas Tempat dan Harga Mesin	6
2.2	Data Fasilitas Rekreasi	7
2.3	Data Jenis Investasi	8
4.1	Daftar Nama Perawat	14
4.2	Daftar Shift Kerja Perawat	15
4.3	Daftar Hari Kerja	15
4.4	Jadwal Perawat dalam Satu Periode Kerja	22
4.5	Output LINGO 11.0 yang dibuat dalam bentuk Microsoft Excel	23

DAFTAR GAMBAR

2.1	Kondisi Awal LINGO 11.0	10
2.2	Input Data ke dalam LINGO 11.0	11
2.3	Solve Data yang Sudah dimasukkan ke dalam LINGO 11.0 .	11
3.1	Diagram Alir Tahapan Penelitian	13
4.1	Solver LINGO 11.0 Berdasarkan Data dan Kendala yang Sudah Dibuat	19

BABI

PENDAHULUAN

1.1 Latar Belakang Masalah

Perawat merupakan tenaga kesehatan profesional yang memiliki tanggung jawab utama dalam memberikan asuhan keperawatan kepada individu, keluarga, kelompok, maupun masyarakat, baik dalam kondisi sehat maupun sakit. Perawat bertanggung jawab dalam memenuhi kebutuhan dasar manusia, termasuk aspek fisik, psikologis, sosial, dan spiritual, serta berkontribusi dalam upaya menjaga, meningkatkan, dan memulihkan kesehatan pasien (Kementerian Kesehatan RI, 2014).

Rumah sakit merupakan institusi pelayanan kesehatan yang bertujuan untuk meningkatkan kualitas hidup masyarakat. Perawat, sebagai salah satu tenaga kesehatan utama, memiliki tanggung jawab besar dalam memastikan pelayanan kesehatan berjalan dengan optimal. Dengan operasional rumah sakit yang berlangsung 24 jam sehari, diperlukan sistem kerja berbasis *shift* untuk mendukung kelancaran layanan. Oleh karena itu, penjadwalan kerja perawat yang efektif dan efisien menjadi faktor penting dalam memastikan keberlanjutan pelayanan kesehatan (Prasetyo & Kurniawan, 2020).

Salah satu metode yang sering digunakan untuk menyelesaikan masalah penjadwalan adalah *Integer Programming (IP)*. Teknik ini termasuk dalam Optimasi Matematika dan dirancang untuk menangani keputusan diskret dengan berbagai batasan tertentu. Dalam penerapannya pada penjadwalan perawat, model ini membantu rumah sakit dalam menyusun jadwal yang optimal dengan mempertimbangkan berbagai faktor operasional, seperti jumlah *shift*, jadwal libur, serta distribusi beban kerja secara adil di antara perawat. Dibandingkan dengan metode manual yang sering memakan waktu dan rawan

kesalahan, pendekatan ini diharapkan mampu menghasilkan solusi yang lebih efisien dan akurat (Sari & Wijaya, 2019).

Selain meningkatkan efisiensi dalam pengelolaan jadwal, penerapan model optimasi juga berperan dalam meningkatkan kepuasan kinerja sehingga menjadi salah satu faktor penting dalam mengoptimalkan operasional tenaga medis di rumah sakit salah satunya yaitu perawat (Safitri dkk., 2021). Dalam memperhitungkan aspek seperti distribusi *shift* yang adil dan pemberian waktu istirahat yang memadai, metode ini diharapkan dapat menciptakan kondisi kerja yang lebih nyaman dan mendukung bagi tenaga medis.

Penelitian ini bertujuan untuk mengembangkan model penjadwalan perawat di Rumah Sakit Advent Bandar Lampung, khususnya pada ruang perawatan Elim 3 dengan pendekatan *integer programming*. Model ini diharapkan mampu menghasilkan jadwal kerja yang optimal, efisien, dan adil bagi perawat. Selain itu, penelitian ini juga diharapkan dapat memberikan kontribusi bagi pengembangan manajemen sumber daya manusia di sektor kesehatan, khususnya dalam meningkatkan efisiensi operasional rumah sakit dan kesejahteraan tenaga kerja.

1.2 Tujuan Penelitian

Tujuan dari penelitian ini adalah:

- 1. Mengembangkan model penjadwalan *shift* kerja perawat menggunakan metode *integer programming* yang dapat memenuhi kebutuhan operasional rumah sakit secara efisien;
- 2. Menghasilkan jadwal kegiatan *shift* kerja perawat pada Rumah Sakit Advent Bandar Lampung yang optimal.

1.3 Manfaat Penelitian

Manfaat dari penelitian ini adalah:

- 1. Dapat dijadikan sebagai bahan pertimbangan untuk menerapkan sistem penjadwalan *shift* kerja perawat menggunakan metode *integer programming*;
- 2. Memberikan kontribusi pada pengembangan literatur terkait optimasi penjadwalan kerja di sektor kesehatan, yang dapat dijadikan referensi bagi penelitian-penelitian selanjutnya.

BABII

TINJAUAN PUSTAKA

Bab ini membahas mengenai definisi-definisi dasar mengenai pemodelan matematika, penjadwalan, *integer programming*, serta *software* LINGO.

2.1 Pemodelan Matematika

Pemodelan matematika adalah proses mengubah masalah yang ada di dunia nyata menjadi bentuk matematika, dengan menggambarkan sistem yang rumit menggunakan variabel-variabel dan hubungan matematika. Tujuannya adalah untuk memahami masalah, menganalisis, dan mencari solusi yang tepat. Pemodelan matematika sangat bermanfaat di berbagai bidang, seperti ekonomi, teknik, biologi, dan manajemen, sehingga solusi yang efisien dan pengambilan keputusan yang tepat sangat dibutuhkan. Biasanya, dalam pemodelan matematika, dibuat fungsi yang menggambarkan tujuan dan batasan-batasan yang ada dalam masalah tersebut (Herman & Prabowo, 2021).

Menurut Anhalt & Cortez (2015), proses pemodelan matematika memiliki beberapa tahapan, di antaranya:

- 1) identifikasi masalah,
- 2) pengumpulan data,
- 3) formulasi model, yaitu menerjemahkan masalah ke dalam bentuk matematika menggunakan persamaan atau fungsi,
- 4) verifikasi model, yaitu memastikan model yang dibuat akurat dan sesuai dengan kenyataan,
- 5) solusi dan analisis,
- 6) implementasi dan evaluasi.

2.2 Penjadwalan

Penjadwalan merupakan proses perencanaan dan pengaturan berbagai aktivitas dalam jangka waktu tertentu untuk memastikan pemanfaatan sumber daya secara optimal serta penyelesaian tugas dengan efektif dan efisien. Tujuan utama dari penjadwalan adalah memaksimalkan penggunaan sumber daya, mengurangi waktu tunggu dan keterlambatan, serta meningkatkan produktivitas dan kepuasan semua pihak yang terlibat. Selain itu, penjadwalan memiliki berbagai manfaat, seperti membantu dalam pengelolaan waktu yang lebih efisien, meningkatkan kualitas hasil pekerjaan, mengatur beban kerja secara lebih seimbang, mengurangi risiko gangguan operasional, serta mendukung proses pengambilan keputusan yang lebih baik (Suhendra, 2020).

Dalam praktiknya, penjadwalan banyak diterapkan dalam berbagai bidang, termasuk industri dan manajemen operasional, untuk mengalokasikan sumber daya seperti tenaga kerja, mesin, dan bahan baku agar produktivitas meningkat. Di sektor kesehatan misalnya, penjadwalan tenaga medis seperti dokter dan perawat sangat penting untuk memastikan pelayanan kepada pasien berjalan dengan baik dan optimal (Prasetyo, 2019).

Penjadwalan terdiri dari beberapa elemen utama yang berperan dalam memastikan suatu aktivitas atau proses berjalan secara efisien dan optimal. Berikut adalah elemen-elemen utama dalam penjadwalan menurut Suhendra (2020):

- 1) sumber daya (resources),
- 2) waktu (time),
- 3) tugas atau aktivitas (tasks/jobs),
- 4) prioritas (priority),
- 5) kendala (constraints),
- 6) evaluasi dan penyesuaian (evaluation & adjustment).

2.3 Integer Programming

Integer programming (pemrograman bilangan bulat) merupakan salah satu teknik dalam optimasi program linier yang mengharuskan variabel keputusan berbentuk bilangan bulat (integer), bukan nilai kontinu atau pecahan. Metode integer programming banyak diterapkan dalam berbagai bidang seperti penjadwalan, distribusi sumber daya, dan perencanaan produksi, karena dalam praktiknya, banyak keputusan dunia nyata yang hanya dapat diambil dalam bentuk bilangan bulat, seperti jumlah pekerja, kendaraan, atau unit produk yang perlu diproduksi (Sondita dan Pratiwi, 2018).

Menurut Maslihah (2015), berikut adalah jenis-jenis dan contoh dari *integer programming* (pemrograman bilangan bulat):

- 1) *Pure Integer Programming* (PIP), merupakan semua variabelnya bilangan bulat,
- 2) Binary Integer Programming (BIP), merupakan variabel keputusan yang hanya dapat bernilai 0 atau 1,
- 3) *Mixed Integer Programming* (MIP), merupakan penggabungan variabel keputusan bilangan bulat dan kontinu. Beberapa variabel dapat mengambil nilai *noninteger*, sementara yang lain dibatasi sebagai bilangan bulat.

Berikut adalah contoh dari setiap jenis *integer programming* menurut Maslihah (2015):

1) Pure Integer Programming (PIP)

Pemilik toko merencanakan membeli mesin pencetak dan mesin bubut. Pemilik memprediksi setiap mesin pencetak akan menaikkan keuntungan sebesar \$100/hari dan mesin bubut akan menaikkan keuntungan \$150/hari. Luas tempat dan harga masing-masing sebagai berikut:

Tabel 2.1 Luas Tempat dan Harga Mesin

Mesin	Luas Tempat (m^2)	Harga Beli (\$)
Pencetak	15	8000
Bubut	30	4000

Anggaran pembelian mesin adalah \$40.000, sedangkan tempat tersedia 200 meter persegi. Pemilik ingin mengetahui berapa banyak mesin yang dapat dibeli supaya keuntungan maksimum. Dalam hal ini tidak diperbolehkan menghasilkan solusi yang pecahan. Formulasi masalahnya adalah sebagai berikut:

Misalkan:

- x_1 : Banyaknya mesin pencetak (unit) yang dibeli,
- x_2 : Banyaknya mesin bubut (unit) yang dibeli.

Maksimumkan:

$$Z = 100x_1 + 150x_2$$
.

Dengan kendala:

$$15x_1 + 30x_2 \le 200.$$

$$8000x_1 + 4000x_2 \le 40000.$$

$$x_1, x_2 \in \mathbb{Z}^+ \cup \{0\}.$$

2) Binary Integer Programming (BIP)

Bapeda sebuah kota merencanakan untuk membangun fasilitas rekreasi yaitu kolam renang, lapangan tenis, lapangan atletik, dan gelanggang olah raga. Pengguna, biaya, dan lahan yang diperlukan disajikan pada Tabel 2.2:

Tabel 2.2 Data Fasilitas Rekreasi

Fasilitas Rekreasi	Pengguna (org/hari)	Biaya (\$)	Luas (are)
Kolam Renang	300	35.000	4
Lapangan Tenis	90	10.000	2
Lapangan Atletik	400	25.000	7
Gelanggang Olahraga	150	90.000	3

Anggaran yang disediakan adalah \$120.000 dan luas lahan 12 are. Karena ada pada lahan yang sama, kolam renang atau lapangan tenis hanya akan didirikan salah satu saja. Bapeda ingin mengetahui fasilitas mana saja yang harus didirikan agar pengguna menjadi maksimum. Formulasi masalahnya adalah sebagai berikut:

Misalkan:

- x_1 : Banyaknya kolam renang (unit) yang dibangun,
- x_2 : Banyaknya lapangan tenis (unit) yang dibangun,
- x_3 : Banyaknya lapangan atletik (unit) yang dibangun,
- x_4 : Banyaknya gelanggang olah raga (unit) yang dibangun.

Maksimumkan:

$$Z = 300x_1 + 90x_2 + 400x_3 + 150x_4.$$

Dengan kendala:

$$35.000x_1+10.000x_2+25.000x_3+90.000x_4\leq 120.000.$$

$$4x_1+2x_2+7x_3+3x_4\leq 12.$$

$$x_1+x_2\leq 1.$$

$$x_1,x_2,x_3,x_4=0 \text{ at au } 1.$$

3) Mixed Integer Programming (MIP)

Seorang pengusaha memiliki kelebihan uang \$250.000 dan akan diinvestasikan pada 3 alternatif, yaitu membeli kondominium, tanah, dan obligasi. Pengusaha tersebut ingin menginvestasikan uangnya dengan tujuan pengembalian terbesar diperoleh pada akhir tahun.

Tabel 2.3 Data Jenis Investasi

Jenis	Harga	Ketersediaan	Keuntungan
Investasi			per Tahun
Kondominium	\$50.000/unit	4 unit	\$9.000
Tanah	\$12.000/are	15 are	\$1.500
Obligasi	\$8.000/obligasi	20 obligasi	\$1.000

Formulasi masalahnya adalah sebagai berikut:

Misalkan:

- x_1 : Jumlah kondominium (unit) yang dibeli,
- x_2 : Luas tanah (are) yang dibeli,
- x_3 : Jumlah obligasi (unit) yang dibeli.

Maksimumkan:

$$Z = 9000x_1 + 1500x_2 + 1000x_3$$
.

Dengan kendala:

$$50.000x_1 + 12.000x_2 + 8.000x_3 \le 250.000.$$

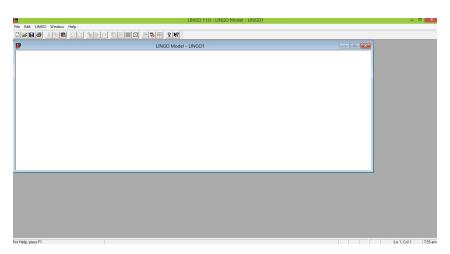
$$x_1 \le 4.$$

$$x_2 \le 15.$$

$$x_3 \le 20.$$

$$x_1, x_3 \in \mathbb{Z}^+ \cup \{0\}.$$

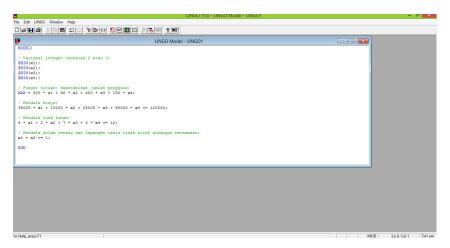
$$x_2 \ge 0.$$


2.4 Software LINGO

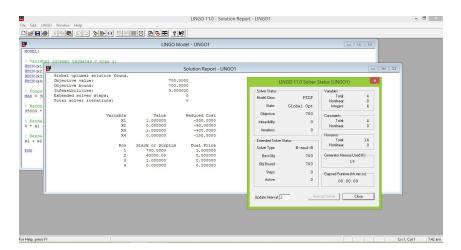
LINGO adalah program komputer yang digunakan untuk menyelesaikan berbagai masalah optimasi, seperti mencari solusi terbaik dalam penggunaan sumber daya, penjadwalan, atau perencanaan produksi. *Software* ini memiliki tampilan yang memudahkan pengguna dalam membuat model matematika dan menyelesaikannya dengan cepat. LINGO banyak digunakan di bidang manajemen, logistik, ekonomi, dan teknik industri untuk membantu pengambilan keputusan berdasarkan perhitungan matematis (Setiawan, 2019). Untuk menyelesaikan masalah optimasi menggunakan LINGO, berikut adalah tahapan-tahapannya:

- 1) identifikasi masalah, yaitu dengan menentukan masalah yang akan diselesaikan dan memastikan bahwa masalah tersebut dapat dimodelkan sebagai masalah optimasi, baik linier maupun nonlinier;
- 2) membuat formulasi model matematisnya, yaitu dengan menentukan variabel keputusan, lalu merumuskankan fungsi yang akan dimaksimalkan atau diminimalkan, dan mengidentifikasi batasan atau restriksi yang harus dipenuhi oleh variabel keputusan;
- 3) memasukkan model ke dalam LINGO;

- 4) menjalankan model dan menganalisis hasil, yaitu menggunakan perintah *solve* untuk mencari solusi optimal;
- 5) memvalidasi model, yaitu dengan memastikan solusi yang diperoleh memenuhi semua kendala dan realistis dalam konteks masalah yang sedang diselesaikan. Jika ditemukan ketidaksesuaian, maka dilakukan model matematis atau data *input* yang digunakan.


Sebagai salah satu contoh penerapan tahapan penyusunan dan penyelesaian model optimasi menggunakan perangkat lunak LINGO, pada bagian berikut disajikan contoh memasukkan model matematis sederhana. Pada contoh ini, digunakan permasalahan *Binary Integer Programming* (BIP) yang telah dibahas sebelumnya pada Subbab 2.3. Selanjutnya, dijelaskan bagaimana model matematis tersebut diimplementasikan dalam bahasa pemrograman LINGO, serta cara penyelesaian yang dilakukan untuk memperoleh solusi optimal, Berikut adalah tahapan *input* data pada *software* LINGO 11.0:

Gambar 2.1 Kondisi Awal LINGO 11.0


Gambar 2.1 menunjukkan kondisi pertama pada saat membuka *software* LINGO, selanjutnya dimasukkan data yang sudah didapat pada sub bab sebelumnya mengenai pembangunan fasilitas rekreasi pada sebuah kota.

Selanjutnya pada Gambar 2.2 di bawah ini memperlihatkan model matematis yang telah dikonversikan ke dalam sintaks bahasa pemrograman LINGO versi 11.0. Model tersebut selanjutnya dijalankan (dieksekusi) untuk memperoleh solusi optimal berdasarkan fungsi tujuan dan kendala-kendala yang telah ditetapkan. Gambar 2.2 memperlihatkan *input* data ke dalam LINGO 11.0:

Gambar 2.2 Input Data ke dalam LINGO 11.0

Berdasarkan hasil *output* LINGO yang ditunjukkan pada Gambar 2.3 di bawah ini, dengan melibatkan 4 variabel, 4 kendala, dan 14 variabel tidak nol, diperoleh nilai optimal dari fungsi tujuan yang memaksimalkan jumlah pengguna fasilitas rekreasi. Nilai variabel keputusan yang dihasilkan menunjukkan bahwa $x_1=1,\ x_2=0,\ x_3=1,\ dan\ x_4=0.$ Hal ini menunjukkan bahwa fasilitas yang direkomendasikan untuk dibangun adalah kolam renang dan lapangan atletik. Hasil ini juga telah memenuhi kendala tambahan, yaitu bahwa kolam renang dan lapangan tenis tidak boleh dibangun secara bersamaan. Karena dalam hasil *output* $x_2=0$, maka pembatasan tersebut terpenuhi.

Gambar 2.3 Solve Data yang Sudah dimasukkan ke dalam LINGO 11.0

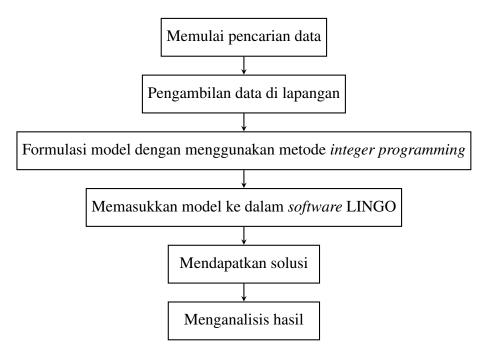
BAB III

METODE PENELITIAN

3.1 Waktu dan Tempat Penelitian

Penelitian ini dilakukan pada semester ganjil tahun ajaran 2024/2025 di Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Lampung yang beralamatkan di Jalan Prof. Dr. Ir. Soemantri Brojonegoro, Gedong Meneng, Kecamatan Rajabasa, Kota Bandar Lampung, Lampung.

3.2 Metode Penelitian


Jenis penelitian yang digunakan penulis adalah studi literatur, dengan diperoleh dari jurnal, buku, maupun artikel untuk membantu dalam mengolah dan memahami teori yang relevan dengan topik yang diteliti melalui penelitian sebelumnya. Pada penelitian ini digunakan data sekunder yang didapat melalui pihak ketiga yang merupakan salah satu perawat di Rumah Sakit Advent Bandar Lampung. Data-data yang diperoleh yaitu nama perawat dan *shift* kerja.

Tahapan dalam melakukan penelitian ini adalah sebagai berikut:

- 1) pengambilan data di lapangan dilakukan oleh pihak ketiga, yaitu melalui salah satu perawat pada Rumah Sakit Advent Bandar Lampung,
- 2) memformulasikan model dengan menggunakan metode *integer pro- gramming*, yaitu menyusun suatu masalah optimasi ke dalam bentuk matematis dengan mempertimbangkan beberapa tujuan secara bersamaan,
- 3) memasukkan model ke dalam *software* LINGO, model yang sudah didapat diterjemahkan ke dalam bahasa pemrograman lalu diolah dalam *software* LINGO,

4) mendapatkan solusi dari model yang sudah diterjemahkan ke dalam bahasa pemrograman pada *software* LINGO.

Berikut diberikan diagram alir dalam penelitian ini:

Gambar 3.1 Diagram Alir Tahapan Penelitian

BAB V

KESIMPULAN DAN SARAN

5.1 Kesimpulan

Berdasarkan hasil pemodelan dan pemrograman menggunakan LINGO 11.0, sistem penjadwalan yang dibangun telah berhasil menyusun jadwal kerja perawat secara optimal dengan memenuhi seluruh kendala yang telah ditetapkan. Model penjadwalan yang dibangun mampu mengakomodasi kebutuhan rumah sakit dalam mengatur jadwal kerja perawat secara optimal, dengan jumlah variabel dan kendala yang berhasil diselesaikan.

Output dari model menunjukkan bahwa setiap perawat bekerja sebanyak dua kali pada setiap *shift* dalam periode delapan hari kerja. Jumlah minimal perawat yang dijadwalkan per hari terpenuhi, yaitu sebanyak 10 orang. Pembagian *shift* juga sesuai dengan kebutuhan, dengan *shift* 1 dan 2 diisi oleh dua perawat, dan *shift* 3 dan 4 diisi oleh tiga perawat setiap harinya.

Dari hasil penelitian ini menunjukkan model penjadwalan perawat yang dibangun dan diselesaikan dengan bantuan perangkat lunak LINGO 11.0 serta dianalisis menggunakan Excel dapat menyusun jadwal kerja yang optimal, adil, dan efisien. Dengan pendekatan ini, rumah sakit dapat mengatur sumber daya manusia secara lebih terstruktur dan tepat sasaran, sekaligus meminimalkan ketidakseimbangan beban kerja di antara perawat.

5.2 Saran

Penjadwalan perawat RS Advent Bandar Lampung menggunakan metode *integer programming* dengan bantuan *software* LINGO dapat menghasilkan jadwal kerja yang lebih efisien dan tepat sasaran dengan mempertimbangkan syarat-syarat yang ditentukan agar setiap perawat mendapatkan jadwal kerja yang adil.

DAFTAR PUSTAKA

- Anhalt, C. O., & Cortez, R. (2015). Mathematical Modeling: A Structured Process. *The Mathematics Teacher*, 108(6), 449–455.
- Herman, H., & Prabowo, I. 2021. *Pemodelan Matematika dan Aplikasinya dalam Pengambilan Keputusan*. Bandung: Alfabeta.
- Kementerian Kesehatan Republik Indonesia. 2014. *Undang-Undang No. 38 Tahun 2014 tentang Keperawatan*.
- Maslihah, S. 2015. Metode Pemecahan Masalah *Integer Programming*. *Jurnal at-Taqaddum*, 7(2), 211–226.
- Prasetyo, M. A. 2019. *Optimasi Penjadwalan dan Manajemen Waktu dalam Dunia Kerja*. Yogyakarta: Andi.
- Prasetyo, R., & Kurniawan, D. 2020. Manajemen *Shift* Kerja Perawat dalam Meningkatkan Efisiensi Pelayanan Kesehatan. *Jurnal Manajemen Rumah Sakit Indonesia*, 10(2), 89-96.
- Safitri, E., Basriati, S., & Putri, R. E. (2021). Optimasi Penjadwalan Perawat Menggunakan *Integer Linear Programming* (Studi Kasus: RS. Aulia Hospital Pekanbaru). *Jurnal Fourier*, 10(1), 45–56.
- Sari, D. P., & Wijaya, H. 2019. Penerapan Model Matematika dalam Optimasi Penjadwalan *Shift* Perawat di Rumah Sakit. *Jurnal Ilmiah Informatika dan Komputasi*, 7(1), 25-34.
- Setiawan, B. 2019. *Pemodelan Matematika dan Optimasi dengan Software Lingo*. Yogyakarta: Penerbit Andi.
- Sondita, A., & Pratiwi, E. 2018. Penerapan Metode *Integer Linear Programming* pada Penjadwalan Karyawan. *Jurnal Rekayasa Aplikasi Matematika*, 6(2), 89-96.
- Suhendra, A. 2020. Manajemen Operasi dan Produksi: Teori dan Aplikasi dalam Penjadwalan. Jakarta: Rajawali Press.