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ABSTRACT

GEOGRAPHICALLY WEIGHTED REGRESSION MODELING WITH
FIXED GAUSSIAN KERNEL WEIGHTS ON TUBERCULOSIS CASES

DATA IN NORTH SUMATRA PROVINCE

By

Eva Sari B. Silaban

Multiple linear regression is often used to analyze the relationship between variables,
but it is less effective in handling data with spatial heterogeneity. Geographically
Weighted Regression (GWR) overcomes this limitation by considering geographical
aspects in parameter estimation. This study applies GWR to analyze the factors
affecting the number of Tuberculosis (TB) cases in North Sumatra, using variables
such as BCG immunization, population density, access to sanitation, education, and
health facilities. The GWR model with a fixed Gaussian kernel performed better than
multiple linear regression, with an AIC value of 327.431 (smaller than 372.018 in
multiple linear regression), confirming that this model is more suitable in capturing
the spatial variation of TB distribution. These findings can support location-based
health policies for more effective TB control.

Keywords: Geographically Weighted Regression, Tuberculosis, Spatial Heterogeneity,
North Sumatra, Spatial Modeling.
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CHAPTER I

INTRODUCTION

1.1 Background

Regression analysis is one of the most commonly used statistical methods to study the
relationship between the dependent variable (response) and one or more independent
variables (predictors) (Nurdin et al., 2014). Armstrong in Basri (2019) stated that
regression analysis aims to model and analyze the relationship between variables.
Regression models can be simple regression (one independent variable) or multiple
regression (two or more independent variables).

Multiple linear regression allows us to identify the factors that influence a
dependent variable by considering several independent variables simultaneously.
However, conventional multiple linear regression has a drawback when applied to
geographically dispersed data, this model presumes that the connection between the
dependent and independent variables remains consistent across different regions. In
reality, the relationship can vary significantly from one location to another, especially
if the data exhibits spatial heterogeneity or geographical differences.

The influence of geographical location causes variations in the value of the response
variable that is influenced by various factors that differ at each location, known
as spatial heterogeneity (Anselin and Getis, 1992). Spatial data itself location
information and attribute descriptions indicate a close relationship between the
data and the location of the observations, so spatial variations need to be considered
in the analysis.

To overcome this problem, the Geographically Weighted Regression (GWR) method
was developed, which is a localized form of linear regression that considers spatial
aspects (Fotheringham et al., 2002). This model allows local analysis in each
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geographical area, thus revealing risk factors that are specific to each region. In GWR,
the influence of independent variables on the dependent variable is not assumed to
be homogeneous across regions but rather varies locally.

Based on the Ministry of Health report written by Rokom, Dr. Siti Nadia Tarmizi,
M.Epid as the Bureau of Communication and Public Services of the Ministry of
Health of the Republic of Indonesia, said that in 2022 Indonesia ranked second
highest in the world after India regarding the number of TB cases, with 969 thousand
cases and 93 thousand deaths per year or equivalent to 11 deaths per hour. North
Sumatra is among the top five provinces with the highest number of TB cases in
Indonesia. The spread of TB is strongly influenced by various local factors, such
as population density, poverty levels, access to health services, and environmental
quality.

Using the GWR method, this study aims to identify factors that influence the number
of TB cases in various regions in North Sumatra province and analyze the spatial
variation of the influence of these factors. The results of this modeling are expected
to provide deeper insight into the spatial distribution of TB, so that it can support
more targeted health policies, especially in addressing local variations that affect the
spread of this disease.

Some previous studies have shown that distance and geographic distribution play a
significant role in increasing the number of TB cases. Like the research conducted
by Long Viet Bui et al. (2018), the use of GWPR model can identify well the
geographical factors that affect the incidence of tuberculosis in Nam Dinh region,
Vietnam. Taking another example from the city of Bandung, research by Octavianty
et al. (2017), mentioned that modeling the number of TB cases with a semiparametric
approach (fixed and flexible) provides a more accurate picture of the distribution
of this disease. Thus, the challenge in mapping the number of TB cases lies not
only in data collection but also in understanding the complex factors that influence
its spread. Later research by Wei et al. (2016) discovered that the GWR model is
more effective in geographically differentiating the connection between the average
number of BTA-positive TB cases and socio-economic factors, which allows for a
better interpretation of the dataset,(adjusted R2 = 0.912, AICc = 1107.22) than the
OLS model (adjusted R2 = 0.768, AICc = 1196.74).
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Researchers are looking to investigate the linear regression method for the number
of TB cases in North Sumatra while taking into account spatial factors through the
GWR model, this model can help understand the spatial distribution pattern of TB
in North Sumatra by considering variables such as BCG immunization, population
density, households that have access to proper sanitation, number of health workers
and the number of health facilities such as hospitals, Puskesmas, polyclinics, and so
on.

1.2 Problem Formulation

Based on the above background, the problem formulations discussed in this study
are as follows:

1. How is GWR modeling data on the number of TB cases in North Sumatra
province in 2022?

2. What are the factors that influence the number of TB cases in districts/cities in
the North Sumatra province in 2022 using the GWR method?

1.3 Research Objectives

The objectives of this research include:

1. Modeling data on the number of TB cases in North Sumatra province in 2022
using GWR.

2. Using the GWR method dentify what factors influence the number of TB
cases in districts/cities in North Sumatra province.

1.4 Research Benefits

The benefits of this research are:

1. Providing a deeper understanding of how the number of TB cases in North
Sumatra Province is influenced by various factors. By using the GWR method,
the analysis can show the variation in the influence of these factors spatially,
which helps in understanding the dynamics of disease spread.
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2. Assist the government in decision-making so that public health policies can be
designed and implemented more effectively to control and prevent the spread
of TB.



CHAPTER II

LITERATURE REVIEW

2.1 Multiple Linear Regression

The multiple linear regression model extends simple linear regression to situations
involving multiple independent or predictor variables. Thus, the aim of multiple
regression is to investigate and measure the association between a numerical
dependent variable and one or more qualitative or quantitative predictor variables.
The outcome of multiple linear regression is a model that illustrates the connection
between two or more independent variables (x) and one dependent variable (y)
(Del Águila and Benı́tez-Parejo, 2011). The general equation as follows:

y = β0 +

n∑
k=1

βkxik + ε (2.1)

where:

y : value of the dependent variable
xik : the value of the kth independent variable at observation-i
β0 : constant
βk : regression parameters of the independent variable k

ε : error, where ε ∼ IIDN(0, σ2)

i : 1, 2, 3, ..., m
k : 1, 2, 3, ..., n.
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2.2 Classical Assumptions of Linear Regression

According to Sholihah et al. (2023), the classical assumption test is a statistical
requirement that must be met in Ordinary Least Squares (OLS) based multiple
linear regression analysis. The linear regression model is considered good if it
meets these classical assumptions, namely normally distributed residuals, and there
is no multicollinearity or heteroscedasticity. The importance of fulfilling these
assumptions is so that the resulting regression model is unbiased and the test can
be trusted. If any of the classical assumptions are violated, the outcomes of the
regression analysis cannot be regarded as BLUE (Best Linear Unbiased Estimator).
This study will employ specific tests to evaluate the assumptions.

2.2.1 Normality Test

Normality test is a test conducted to determine whether the regression analysis
model, response variables, and predictor variables are both normally distributed or
not. So it is necessary to do a normality test. One of the methods that can be used
for the normality test is the Shapiro-Wilk test, with the following hypothesis:

H0 : error is normally distributed
H1 : errors are not normally distributed

The Shapiro-Wilk test statistic is (Cahyono, 2015):

W =

(∑n
i=1 ai(x(n+1)−i − xi)

)2∑n
i=1(xi − x̄)2

, i = 1, 2, 3, . . . n (2.2)

where:

W : calculated Shapiro-Wilk coefficient
x̄ : average of data
x(n+1)−i : data at position (n+ 1)− i

xi : data at position i.

Accept H0 if the value of Wcount < Wtable or if p-value > α = 0.05, which means
the data is normally distributed or the assumption of normality is met.
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2.2.2 Autocorrelation Test

According to Mardiatmoko (2020), autocorrelation is a situation in a regression
model where there is a correlation between residuals in period t and residuals in the
previous period (t-1). A good regression model is free from autocorrelation. This
test can be done with the Durbin-Watson test, as follows:

H0 : there is no autocorrelation in the residuals

H1 : there is autocorrelation in the residuals

DW =

∑n
i=2(ei − ei−1)

2∑n
i=2 e

2
i

, i = 1, 2, 3, . . . n (2.3)

where:

ei : residual of the observation at period i

ei−1 : residual of the observation at period i− 1.

Reject H0 if p-value < α = 0.05, which means autocorrelation exists in the residuals.

2.2.3 Multicollinearity Test

According to In and Asyik (2019), the multicollinearity test is conducted to check
whether there is intercorrelation or collinearity between the independent variables
in the regression model. This intercorrelation refers to a strong linear relationship
between one independent variable or predictor and another predictor in the model.
One method that can be used in detecting multicollinearity is by calculating the VIF
(Variance Inflation Factor) value with the formula:

V IF =
1

1−R2
j

(2.4)

where:

R2
j : the coefficient of determination from the results of regressing the

independent variable j with other independent variables.

The hypothesis H0 is that there is no multicollinearity, with the decision criteria:



8

if V IF < 10, then fail to reject H0, which means that there is no multicollinearity
(Montgomery et al., 1992).

2.3 Model Parameter Test

Parameter testing in multiple linear regression models includes simultaneous testing
and partial testing. Simultaneous testing aims to determine whether the independent
variables collectively have a significant effect on the dependent variable. This test is
conducted using the F-test with the following hypotheses (Caraka and Yasin, 2017):

H0 : β1 = β2 = · · · = βk = 0

H1 : at least one βj ̸= 0, j = 1, 2, . . . , k.

The F-test statistic is defined as:

Fcount =
(R2/k)

((1−R2)/(n− k − 1))
(2.5)

where:

R : regression correlation coefficient,
k : number of predictor variables,
n : number of data samples.

Reject H0 if Fcount > F(α,df1,df2) where α = 0.05. which means that the independent
variables jointly significantly affect the dependent variable.

Furthermore, partial testing is used to determine the variables that significantly affect
the response variable. The partial testing hypothesis is as follows:

H0 : βk = 0

H1 : βk ̸= 0 for k = 1, 2, . . . ,m, i = 1, 2, . . . , n.

With a significance level of α = 0.05, the test statistic is defined as:

tcount =
β̂k

SE(β̂k)
(2.6)

where SE(β̂k) represents the standard error of the coefficient β̂k. The decision
rule states that H0 is rejected if |tcount| > ttable(α/2, df). which means there is an
influence between the dependent variable individually with the independent variable.
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2.4 Heterogeneity Test

According to Bakri et al. (2024), the spatial heterogeneity test is a test that aims to
determine whether each observation location has its characteristics or uniqueness.
This test can be performed using the Breusch Pagan test, with the following
hypothesis:

H0 : σ
2
1 = σ2

2 = σ2
3 · · · = σ2

n (no spatial heterogeneity)
H1 : there is at least one σ2

i ̸= σ2
j where i ̸= j (spatial heterogeneity)

With the test statistics used are (Anselin, 1988):

BP =
1

2
fTZ(ZTZ)−1ZTf (2.7)

where,

Z : [Z1, Z2, . . . , Zp]
T is a matrix of size n× (p+ 1) which contains predictor

variables

f : [f1, f2, . . . , fn]T with fi =
(

ϵ2i
σ2 − 1

)
.

With the test criteria, reject H0 if BP > χ2
(α,p) or if p-value < α, which means that

there is spatial heterogeneity or differences in the characteristics of one region with
other regions, so it is necessary to do modeling using GWR.

2.5 Geographically Weighted Regression (GWR)

According to Fotheringham et al. (2002), GWR is a statistical method used to analyze
spatial heterogeneity, or an extension of the classical linear regression model, which
is used to model data that has spatial influence. With this approach, spatial weights
represent the magnitude of different spatial influences in each location, based on the
idea of GWR model. In the GWR model the dependent variable y is predicted using
the independent variables, where the regression coefficient of each variable depends
on the location where the data is taken, this location is denoted as (ui, vi), which is
the two-dimensional coordinate vector (latitude and longitude) for the i-th location.
The GWR model can be written according to equation (2.8) (Fotheringham et al.,
2002).
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yi = β0(ui, vi) +

p∑
k=1

βk(ui, vi)xik + εi, i = 1, 2, . . . , n. (2.8)

where:

yi : observation value of the response variable at location i,
xk,i : observation value of the k-th predictor variable at the observation location i,
β0 : a constant or intercept at the i-th observation,
(ui, vi): geographical coordinates (longitude, latitude) of the observation location i,
εi : error at observation location i, where ε ∼ IIDN(0, σ2).

2.5.1 Spatial Weighting

Spatial weighting refers to weights that describe the relative positional relationship
between one piece of data and another. This weighting is an important component
because it reflects the spatial location of the observed data. Weighting in GWR can be
done using various kernel function methods. In this study, the Fixed Gaussian kernel
function weighting method will be used, where a bandwidth with the same value is
applied to each observation location point. The fixed Gaussian kernel function is as
follows (Aliu et al., 2022):

wij = exp

(
−1

2

(
dij
b

)2
)

(2.9)

where:

dij =
√

(ui − uj)2 + (vi − vj)2 (2.10)

with:

dij : Euclidean distance between location (ui, vi) and (uj, vj),
b : smoothing parameter (bandwidth),
ui : longitude of the i-th location,
uj : longitude of the j-th location,
vi : latitude of the i-th location,
vj : latitude of the j-th location.
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Euclidean distance is the distance between the regression point i and the location j,
where i ̸= j.

The kernel function functions to provide weights based on the optimum bandwidth.
The bandwidth refers to the radius of a circle used to determine the weight of the
location center point to the observation points in the regression model. Points that
are closer to the i-th observation location will be given greater weight in building a
regression model at that location. This weight represents the level of influence of the
surrounding points on the parameter values at that observation location.

According to Fotheringham et al. (2002), the optimum bandwidth selection can
be done using the Cross Validation (CV) method, where the optimum bandwidth
value is indicated by the minimum CV value. The CV method is formulated by the
following equation:

CV =

n∑
i=1

(yi − ŷ ̸=i(b))
2 (2.11)

with:

yi : observation value of the response variable at location i,
ŷ ̸=i(b) : the estimated value of yi at location (ui, vi), which is omitted from the
estimation process,
n : number of samples.

2.5.2 Parameter Estimation of GWR Model

Parameter estimation in the GWR model is done using the Weighted Least Square
(WLS) method, which involves giving varying weights to each observation location
(Hakim et al., 2015). The first step in applying WLS is to form a diagonal matrix
that represents different weights for each location i, as follows:

W(ui, vi) =


wi,1 0 · · · 0

0 wi,2 · · · 0
...

... . . . ...
0 0 · · · wi,k

 (2.12)

Parameter estimation is obtained by minimizing the sum of squares of the weighted
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errors, assuming that W(ui, vi) = W. Equation (2.8) can then be written in the
following form:

n∑
j=1

Wj(ui, vi)ε
2
j =

n∑
j=1

Wj(ui, vi)

[
yj − β0(ui, vi)−

p∑
k=1

βk(ui, vi)xjk

]2

or in matrix form:

εTWε = (y −Xβ)TW (y −Xβ)

= (yT − βTXT )W (y −Xβ)

= yTWy − yTWXβ − βTXTWy + βTXTWXβ

= yTWy −W (yTXβ)T − βTXTWy + βTXTWXβ

= yTWy − βTXTWy − βTXTWy + βTXTWXβ

= yTWy − 2βTXTWy + βTXTWXβ (2.13)

where:

β =


β0(ui, vi)

β1(ui, vi)
...

βp(ui, vi)


Equation (2.13) is differentiated with respect to βT (ui, vi) and the result is equated
to zero. Then, the parameter estimator of the GWR model is obtained as follows:
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∂(εTW ε)

∂βT
= 0

∂(yTWy − 2βTXTWy + βTXTWXβ)

∂βT
= 0

−2XTWy + 2XTWXβ = 0

2XTWy = 2XTWXβ

β = (XTWX)−1XTWy

β̂ =
(
XTW (ui, vi)X

)−1
XTW (ui, vi)y

(2.14)

with:

X : matrix of predictor variables of order n× (k + 1),
y : response vector of size n× 1,
W (ui, vi) : spatial weighting matrix for the GWR model of size n× n.

2.5.3 Parameter Test of GWR Model

Testing the parameters of the GWR model includes simultaneous testing and partial
testing. Simultaneous testing aims to determine whether there is a significant
difference between the linear regression model and the GWR model. With

H0 : β1(ui, vi) = β2(ui, vi) = · · · = βk(ui, vi) = 0

H1 : at least one βj(ui, vi) ̸= 0, j = 1, 2, . . . , k

Fcount =
(RSSOLS − RSSGWR) /v

RSSOLS/δ1
(2.15)

with

RSSOLS : sum of squared errors of the residuals of the OLS model
RSSGWR : sum of squared errors of GWR model residuals
δ1 : degrees of freedom of the GWR model
v : degrees of freedom of the OLS model
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With the test criteria, reject H0 if Fcount > F(α,df1,df2), where α = 0.05, which means
there is a difference between the linear regression model and the GWR model.

Furthermore, partial testing is used to determine the variables that significantly affect
the response variable. The partial testing hypothesis is as follows:

H0 : βk(ui, vi) = 0

H1 : βk(ui, vi) ̸= 0, k = 1, 2, . . . ,m; i = 1, 2, . . . , n.

with a significance level of α = 5%, the test statistic is

tcount =
β̂k(ui, vi)

SEβ̂k(ui, vi)
(2.16)

where SEβ̂k(ui, vi) is the standard error of the coefficient β̂k(ui, vi). With the
decision to reject H0 if |tcount| > ttable(α/2,df), which means there is an influence
between the dependent variable and the independent variable.

2.6 Model Goodness Criteria

In determining the best model, the criteria used in this study are the Akaike
Information Criterion (AIC), which is used to measure the relative quality of a
statistical model based on available data. Mathematically, AIC is expressed as in the
equation (Fathurahman, 2010):

AIC = e
2k
n

(∑n
i=1 û

2
i

n

)
(2.17)

with

k : number of parameters estimated in the regression model
n : number of observations
e : 2.718
u : residual.
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2.7 TB Disease

Tuberculosis is a contagious infectious disease caused by the bacteria Mycobacterium
tuberculosis, which usually affects the lungs in humans. Transmission occurs
through BTA-positive patients, who spread the bacteria through small droplets
when coughing or sneezing. These bacteria can survive in the air and be inhaled by
healthy people, thus causing infection (Anggraeni and Rahayu, 2018). The source of
transmission of these infectious diseases is through the air (airborne disease) (Farrell,
2017).

There are several things that are factors of exposure to TB disease, including:
(Apriadisiregar et al. (2018); Nafsi and Rahayu (2020); Suhartono et al. (2021)):

1. Socioeconomic Factors
Low socioeconomic levels are often associated with an increased risk of
TB. People living in neighborhoods with high levels of poverty tend to have
more limited access to health care, poor nutrition, and crowded environments,
all of which increase the risk of TB infection. Research shows that poverty,
unemployment, and low education are associated with higher TB prevalence.

2. Gender and Age
Adult men tend to be more at risk of developing TB than women, especially
in their productive years (15-54 years). This may be due to differences in
exposure to high-risk work environments and behaviors such as smoking or
alcohol use that are higher among men. In addition, children and the elderly
are also vulnerable due to weaker immune systems.

3. Population Density
Living in areas with high population density increases the risk of spreading
TB. Dense environments facilitate airborne transmission of bacteria, especially
in poorly ventilated places, such as slum housing or prisons.

4. Unhygienic Environment
A dirty and unhealthy environment increases the risk of TB infection as
bacteria spread easily in such conditions. Poor housing, poor ventilation, and
poor sanitation are important factors in the transmission of TB.

5. Lack of Access to Medical Care
Limited access to health facilities leads to delays in diagnosis and treatment,
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which allows the disease to spread further. In remote or poor areas, limited
medical services also lead to inappropriate or incomplete treatment, increasing
the risk of drug resistance.

6. Contact with TB Patients
People who are often in close contact with people with active TB (such
as family members or coworkers) have a higher risk of being infected.
Transmission can occur through inhalation of bacteria released by a person
with TB when coughing or sneezing.

7. Lack of Knowledge about TB Disease
Lack of knowledge about how TB is transmitted, prevented, and treated leads
to people not being aware of the risks and not seeking early medical care.
Lack of education also leads to stigmatization of TB sufferers, which results
in delays in diagnosis and treatment.

8. Incomplete Vaccines, Especially BCG Vaccine
Bacillus Calmette-Guerin (BCG) vaccination is an effective vaccine in
preventing severe tuberculosis in children. However, incomplete vaccination
or low vaccination coverage may increase the risk of infection, especially in
TB endemic areas.



CHAPTER III

RESEARCH METHODOLOGY

3.1 Research Time and Place

This research was conducted in the even semester of the 2024/2025 academic year
at the Department of Mathematics, Faculty of Mathematics and Natural Sciences,
Lampung University.

3.2 Research Data

The data used in this study are secondary, namely data on TB cases in North
Sumatra province in 2022 obtained from the website of the Central Bureau of
Statistics of North Sumatra Province and the Sectoral Statistics Book of the Office of
Communication and Information of North Sumatra Province. The variables involved
in this study are the number of TB cases per 100000 population as the response
variable and predictor variables including the number of children immunized with
BCG, population density per square (km2), the number of health workers and the
number of health facilities number of health facilities (public hospitals, puskesmas
clinics, etc.).
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Table 1. Spatial Data Research Variables

Research Variables Indicator Description
Dependent y Number of TB Cases

Independent

x1 BCG Immunization (number of Children)
x2 Population Density (people/km2)
x3 percentage of households with access to

adequate sanitation
x4 number of health workers (people)
x5 number of health facilities (unit)

Spatial (ui, vi) Coordinate Point (latitude, longitude)

3.3 Research Methods

The steps in this research method are as follows:

1. Describe the research variables, namely the dependent variable (Y ) and the
independent variable (X) which will be used in model building.

2. Detect multicollinearity between predictor variables using the VIF value.

3. Analyzing the regression model, with the following steps:

(a) Perform parameter estimation of linear regression models with the OLS
method.

(b) Perform assumption test.

(c) Testing the significance of linear regression model parameters with
simultaneous test in equation (2.5) and partial test according to equation
(2.6).

4. Detecting spatial heterogeneity with equation (2.7).

5. Analyzing the GWR model with the following steps:

(a) Calculate the Euclidean distance between observation locations based
on latitude and longitude coordinates with equation (2.10).

(b) Determine the optimum bandwidth for parameter estimation at the i-th
observation location, by selecting the minimum CV value based on
equation (2.11).

(c) Calculate the weight matrix with the fixed Gaussian kernel function in
equation (2.9).
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(d) Perform GWR model parameter estimation at the i-th location using the
optimum bandwidth obtained in the previous step (b).

(e) Test the significance of GWR model parameters both simultaneously and
partially using equations (2.15) and (2.16).

6. Selecting the best model based on the AIC value for each model using equation
(2.17).

7. Interpreting results.

The following is a flow chart of the research steps, which is shown in Figure 1.. The
analysis process in this study was carried out with the help of the R Program and
ArcGIS software.
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Figure 1. Flow chart of the research steps



CHAPTER V

CONCLUSION

Based on the results of GWR modeling research with fixed gaussian kernel function
weights on the number of tuberculosis in the North Sumatera in 2022, it can be
concluded that:

1. The results of modeling the number of TB cases in North Sumatra in 2022
using the GWR method with a fixed Gaussian kernel function are:

Ŷnias = −14.55542−0.00027x1+0.06292x2+0.59390x3+0.19263x4−0.38803x5

ŶAsahan = −38.48448−0.01319x1+0.0377x2+1.43914x3+0.07444x4+0.10814x5

ŶGunungsitoli = −28.748−0.00204x1+0.06228x2+0.70635x3+0.20128x4−0.367x5

Other models can be seen in the Appendix 5.

2. Based on the t-test, it can be concluded that the significant independent
variables are divided into eight groups.
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