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ABSTRAK

EVALUASI ALGORITMA CNN DAN FASTER R-CNN UNTUK
KLASIFIKASI OTOMATIS TINGKAT KEMATANGAN TANDAN BUAH
SEGAR KELAPA SAWIT

Oleh

Dinda Armeylia Putri

Derajat kematangan tandan buah segar (TBS) kelapa sawit menentukan tingkat
rendemen, kadar asam lemak bebas, dan stabilitas mutu minyak. Ketidaktepatan
panen dapat memicu kerugian nilai di sepanjang rantai pasok. Penilaian manual
terhadap tandan sawit yang akan dipanen bersifat subjektif dan tidak konsisten
karena dipengaruhi variasi pencahayaan, oklusi pelepah, jarak pengambilan, serta
heterogenitas varietas. Otomasi berbasis computer vision diperlukan agar
keputusan panen terstandar dan dapat diskalakan. Studi ini membandingkan tiga
pendekatan deep learning untuk klasifikasi kematangan TBS yaitu CNN standar,
CNN ber-backbone ResNet50, dan Faster R-CNN ResNet50. Tiga himpunan data
digunakan: dataset citra TBS dari perkebunan, 8.400 citra TBS beranotasi rapi dari
Roboflow, dan subset Roboflow 625 citra. Evaluasi mencakup akurasi, precision,
recall, F1-score, mean Average Precision (mAP), dan kecepatan inferensi (FPS),
sehingga trade-off presisi-kinerja dapat dinilai. Hasil pemodelan menegaskan
adanya perbedaan kinerja lintas domain. Pada dataset citra lapangan, CNN standar
memiliki keunggulan pada penerapan edge berdaya terbatas dengan nilai akurasi
83,87%, mAP 84,29%, dan 464 FPS. Spesifikasi ini cukup untuk klasifikasi tunggal
near real-time. Pada Roboflow 8.400 citra, Faster R-CNN ResNet50 menghasilkan
akurasi 92,72%, precision 100%, recall 91,73%, F1 95,63%, mAP 86,25%, dengan
396 FPS, dimana kinerja tinggi ini didorong anotasi bersih dan distribusi visual
lebih terkontrol, meski biaya komputasinya lebih besar karena proses deteksi dua
tahap dan penggunaan Region Proposal Network (RPN). Pada subset Roboflow 625
citra, model Faster R-CNN ResNet50 tetap terbaik (akurasi 92,42%, mAP 81,00%,
307 FPS). CNN ResNet50 konsisten berada di antara keduanya, merefleksikan
kapasitas fitur yang lebih kuat dari CNN standar namun tanpa mekanisme proposal
wilayah. Secara praktis, CNN standar cocok untuk inspeksi on-device berbiaya
rendah. Sedangkan Faster R-CNN tepat untuk deteksi multiobjek pada data
terstruktur. Pemilihan model sebaiknya mempertimbangkan karakteristik domain,
target latensi, serta ketersediaan komputasi.

Kata kunci: Kelapa Sawit, Klasifikasi , CNN, ResNet50, Faster R-CNN, Deep
Learning.



ABSTRACT

EVALUATION OF CNN AND FASTER R-CNN ALGORITHMS FOR
AUTOMATIC CLASSIFICATION OF OIL PALM FRESH FRUIT BUNCH
(FFB) RIPENESS LEVELS
BY

Dinda Armeylia Putri

Fresh fruit bunch (FFB) ripeness governs oil yield, free-fatty-acid formation, and
product stability; misgrading at harvest propagates losses along the supply chain.
Manual grading is subjective and inconsistent under varying illumination, frond
occlusion, camera distance, and cultivar heterogeneity. Scalable, computer-vision
automation is therefore needed to standardize harvest decisions. This study
compares three deep-learning approaches for FFB ripeness classification: standard
CNN, CNN with ResNet50 backbone, and Faster R-CNN ResNet50. Three datasets
are used: on-farm field dataset imagery, a curated Roboflow set of 8,400 annotated
images, and a Roboflow subset of 625 images. The models are evaluated in term of
accuracy, precision, recall, F1-score, mean Average Precision (mAP), and inference
speed (FPS) to quantify precision—throughput trade-offs. Results confirm domain-
dependent performance. On field imagery, the standard CNN is preferable for
resource-constrained edge deployment with 83.87% accuracy, 84.29% mAP, and
464 FPS. It is sufficient for single-object, near-real-time classification. In addition
to Roboflow-8,400, Faster R-CNN ResNet50 attains 92.72% accuracy, 100%
precision, 91.73% recall, 95.63% F1, and 86.25% mAP at 396 FPS. This robust
performance benefits from clean annotations and controlled visual distributions,
albeit with higher compute cost due to the two-stages detection and the used of
Region Proposal Network (RPN). On the 625-image Roboflow subset, the Faster
R-CNN ResNet50 model remains preeminent (92.42% accuracy, 81.00% mAP, 307
FPS). The ResNet50-based CNN consistently ranks between the two, reflecting
stronger feature capacity than the standard CNN but lacking region-proposal
mechanisms.Practically, the plain CNN suits low-cost on-device inspection,
whereas Faster R-CNN is better matched to multi-object detection on curated
datasets. Model selection should consider domain characteristics, target latency,
available compute, and operational risk tolerance.

Keywords: Oil Palm, Ripeness Classification, CNN, ResNet50, Faster R-CNN,
Deep Learning.
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BAB I PENDAHULUAN

1.1 Latar Belakang

Indonesia merupakan salah satu produsen minyak kelapa sawit terbesar di dunia.
CPO (Crude Palm Oil) merupakan salah satu bahan baku yang memiliki tingkat
daya guna yang tinggi baik dalam kebutuhan sehari-hari maupun industri.
Berdasarkan data dari United States Department of Agriculture (USDA), Indonesia
adalah produsen minyak sawit terbesar di dunia. USDA memproyeksikan produksi
CPO di Indonesia mencapai 45,5 juta metrik ton (MT) pada periode 2022/2023 [1].
Namun, permasalahan yang sering muncul pada industri kelapa sawit adalah
menurunnya kualitas CPO pada minyak kelapa sawit. Penyebab utama penurunan
kualitas CPO Indonesia adalah kandungan asam lemak bebas (ALB) yang tinggi.
Hal ini disebabkan buah kelapa sawit harus dipanen tepat waktu, jika terlalu matang
maka minyak yang dihasilkan mengandung ALB dalam jumlah tinggi (lebih dari
5%) sedangkan jika dipanen dalam keadaan belum matang maka tingkat ALB dan
rendemen minyak yang dihasilkan akan rendah. Penentuan tingkat kematangan
buah kelapa sawit secara umum ditentukan berdasarkan jumlah brondolan dan
warna. Warna menjadi panduan penting untuk menyatakan kandungan minyak,
sehingga penanganan panen buah kelapa sawit menjadi suatu kegiatan yang penting

dalam meningkatkan mutu CPO [2].

Buah kelapa sawit yang matang menghasilkan rendemen CPO yang lebih tinggi
dibandingkan dengan buah yang masih mentah atau setengah matang. Buah yang
masih mentah umumnya berwarna hitam pada seluruh permukaannya, sementara
buah yang cukup matang menunjukkan warna hitam kemerahan, dan buah yang
matang sempurna akan tampak merah jingga. Di perkebunan kelapa sawit, proses
panen masih banyak mengandalkan cara tradisional, yang sering dianggap kurang
efisien karena bersifat subjektif, lambat, dan tidak selalu akurat. Proses identifikasi

manual memerlukan waktu yang lama, dan ketelitian manusia sering kali



memungkinkan terjadinya kesalahan dalam menentukan kematangan buah secara
tepat. Untuk menjaga kualitas CPO dan meningkatkan hasil perkebunan, diperlukan
metode yang lebih efisien untuk mengidentifikasi buah kelapa sawit dengan tingkat

kematangan optimal.

Beberapa penelitian sebelumnya telah menggunakan citra buah untuk identifikasi
dan Kklasifikasi tingkat kematangan. Salah satunya adalah penelitian berjudul
“Klasifikasi Tingkat Kematangan Tandan Buah Segar Kelapa Sawit Menggunakan
Pendekatan Deep Learning” oleh [3], yang membahas penggunaan arsitektur
ResNet50 dalam mengklasifikasikan tingkat kematangan tandan buah segar (TBS)
kelapa sawit. Penelitian ini bertujuan mengatasi kesalahan yang kerap terjadi dalam
klasifikasi manual, yang rentan terhadap ketidakakuratan dan memakan waktu
lama. Klasifikasi TBS dalam penelitian ini dibagi menjadi empat kategori
kematangan: mentah, mengkal dan matang. Pengujian dilakukan menggunakan
berbagai skenario, seperti variasi alokasi data, pilihan optimizer (Adam dan SGD),
serta beberapa nilai learning rate. Hasil terbaik diperoleh dengan konfigurasi
alokasi data 90:10, optimizer Adam, dan learning rate 0,0001, dengan akurasi
mencapai 97%. Penelitian ini menunjukkan bahwa model ResNet50 memiliki
akurasi tinggi dalam klasifikasi kematangan TBS, tetapi membutuhkan data latih

yang besar dan teknik augmentasi data untuk menghindari overfitting.

Penelitian dengan menggunakan metode Faster R-CNN berjudul “Klasifikasi Mutu
Buah Pala (Myristica Fragrans Houtt) Berbasis Pengolahan Citra Menggunakan
Metode Deep Learning Arsitektur Faster R-CNN” yang dilakukan oleh [4]
bertujuan untuk meningkatkan efisiensi dan akurasi dalam proses sortasi buah pala
yang sebelumnya dilakukan secara manual. Penelitian ini berangkat dari tantangan
yang dihadapi dalam memenuhi permintaan ekspor buah pala akibat kualitas yang
tidak konsisten karena metode sortasi manual. Sortasi secara manual dinilai kurang
efektif karena bergantung pada tenaga manusia yang sering kali menghasilkan
ketidakkonsistenan, sehingga mempengaruhi nilai jual buah. Dengan menggunakan
1000 iterasi, metode Faster R-CNN dalam penelitian ini berhasil mencapai akurasi
hingga 95%, lebih tinggi dibandingkan metode CNN konvensional yang hanya

mencapai akurasi 87%. Selain itu, Faster R-CNN mampu mempercepat proses



pemrosesan secara signifikan, dengan waktu pemrosesan hanya 0,024 detik per

gambar.

Untuk mengatasi tantangan ini, teknologi deep learning menawarkan solusi dalam
mengotomatisasi klasifikasi kematangan buah dengan akurasi tinggi. Algoritma
Convolutional Neural Network (CNN) dan Faster R-CNN merupakan dua metode
populer yang mampu melakukan klasifikasi gambar secara efisien. Penelitian ini
bertujuan untuk membandingkan kinerja kedua algoritma tersebut dalam
mengklasifikasikan tingkat kematangan tandan buah segar kelapa sawit, guna
menentukan algoritma yang paling efektif dalam memberikan akurasi pemrosesan

terbaik.

1.2 Rumusan Masalah

Adapun rumusan masalah dari penelitian ini sebagai berikut:

1. Bagaimana cara mengklasifikasikan tingkat kematangan tandan buah segar
kelapa sawit menjadi matang, mengkal dan mentah menggunakan algoritma
CNN dan Faster R-CNN?

2. Bagaimana perbandingan kinerja algoritma CNN dan Faster R-CNN dalam
mengklasifikasikan tingkat kematangan tandan buah segar kelapa sawit
dengan menggunakan dua sumber data yang berbeda?

3. Bagaimana akurasi dan presisi dari kedua algoritma dalam mengklasifikasi

kematangan tandan buah segar kelapa sawit?

1.3 Tujuan Penelitian

Adapun tujuan dari penelitian ini sebagai berikut:

1. Mengklasifikasikan tingkat kematangan tandan buah segar kelapa sawit
menjadi matang, mengkal dan mentah menggunakan algoritma CNN dan
Faster R-CNN.

2. Membandingkan kinerja algoritma CNN dan Faster R-CNN dalam
mengklasifikasikan tingkat kematangan tandan buah segar kelapa sawit dari
dua sumber data yang berbeda.

3. Menentukan algoritma dengan kinerja terbaik untuk mengklasifikasi tingkat

kematangan tandan buah segar kelapa sawit.



1.4 Batasan Masalah

Adapun batasan masalah pada penelitian ini sebagai berikut:

1.
2.
3.

Data yang digunakan berekstensi .jpg/.jpeg .

Klasifikasi dilakukan berdasarkan warna dari citra buah kelapa sawit.
Output klasifikasi berupa tingkat kematangan yaitu mentah, mengkal, dan
matang.

Output penelitian berupa kedua model untuk didapatkan model terbaik.

1.5 Manfaat Penelitian

Adapun manfaat untuk petani dan industri kelapa sawit didalam penelitian ini

adalah sebagai berikut:

1.

Meningkatkan kualitas CPO yang dihasilkan dari buah kelapa sawit melalui
identifikasi tingkat kematangan yang akurat.
Mengurangi kesalahan dalam penentuan tingkat kematangan, sehingga

meningkatkan konsistensi dan nilai jual produk.

. Memberikan informasi dan teknologi yang dapat digunakan oleh petani

untuk meningkatkan hasil panen dan pendapatan.
Otomasi klasifikasi kematangan tandan buah segar kelapa sawit untuk

meningkatkan efisiensi industri kelapa sawit.

Adapun manfaat untuk akademis dan perkembangan teknologi didalam

penelitian ini adalah sebagai berikut:

1.

Memberikan kontribusi pada pengembangan teknologi deep learning,
khususnya pada penerapan algoritma CNN dan Faster R-CNN untuk
klasifikasi tingkat kematangan tandan buah segar kelapa sawit.

Menyediakan referensi bagi penelitian selanjutnya dalam mengembangkan

metode otomatisasi klasifikasi berbasis citra digital di sektor pertanian.

. Menjadi bahan pembelajaran bagi akademisi dan praktisi dalam memahami

kelebihan dan kekurangan algoritma CNN dan Faster R-CNN untuk

pengolahan citra.



4. Membantu memperluas wawasan dalam penggunaan teknologi A/ untuk
menyelesaikan masalah nyata di industri, khususnya yang memerlukan

akurasi tinggi dan efisiensi waktu.

1.6 Sistematika Penulisan

Untuk memudahkan penulisan dan pemahaman mengenai materi dari skripsi ini,

maka skripsi ini dibagi menjadi 5 bab yang terdiri dari:

BAB I. PENDAHULUAN
Berisikan latar belakang, tujuan penelitian, manfaat penelitian,perumusan

masalah,batasan masalah, dan sistematika penulisan.

BAB II. TINJAUAN PUSTAKA

Berisikan teori-teori yang digunakan dalam melakukan penelitian.

BAB IIIl. METODE PENELITIAN
Bab ini berisikan tentang hal-hal yang dilakukan dalam penelitian, seperti; waktu

dan tempat penelitian, metode dan proses pembuatan program.

BAB IV. HASIL DAN PEMBAHASAN
Berisikan hasil dari penelitian dan pembahasan dan perhitungan yang dilakukan

pada penelitian ini.

BAB V. KESIMPULAN DAN SARAN

Berisikan kesimpulan dari penelitian dan saran untuk penelitian selanjutnya

DAFTAR PUSTAKA

Berisikan daftar pustaka yang digunakan pada penulisan skripsi

LAMPIRAN

Berisikan lampiran dan hasil pemantauan dan program.



BAB II TINJAUAN PUSTAKA

2.1 Penelitian Terdahulu

Penelitian [3] dengan judul “Klasifikasi Tingkat Kematangan Tandan Buah Segar
Kelapa Sawit Menggunakan Pendekatan Deep Learning,” dimana mengeksplorasi
penggunaan arsitektur ResNet50 untuk mengklasifikasikan tingkat kematangan
tandan buah segar (TBS) kelapa sawit. Studi ini bertujuan mengatasi kekeliruan
dalam klasifikasi manual yang cenderung tidak akurat dan memakan waktu lama.
Kategori kematangan TBS dalam penelitian ini terdiri dari empat tingkat: mentah,
kurang matang, matang, dan terlalu matang. Pengujian dilakukan dengan berbagai
skenario, termasuk variasi alokasi data, pilihan optimizer (Adam dan SGD), serta
beberapa nilai learning rate. Hasil terbaik diperoleh dengan konfigurasi alokasi
data 90:10, optimizer Adam, dan learning rate 0,0001, mencapai akurasi sebesar
97%. Penelitian ini membuktikan bahwa model ResNet50 memiliki akurasi tinggi
dalam klasifikasi kematangan TBS, tetapi memerlukan data latih yang besar dan

teknik augmentasi untuk mencegah overfitting.

Penelitian [4] berjudul “Klasifikasi Mutu Buah Pala (Myristica Fragrans Houtt)
Berbasis Pengolahan Citra Menggunakan Metode Deep Learning Arsitektur Faster
R-CNN” bertujuan meningkatkan efisiensi dan akurasi dalam proses sortasi buah
pala, yang sebelumnya dilakukan secara manual. Tantangan utama dalam
memenuhi permintaan ekspor adalah kualitas buah yang tidak konsisten akibat
proses sortasi manual yang bergantung pada tenaga manusia, sering menghasilkan
ketidak konsistenan dan mempengaruhi nilai jual. Dalam penelitian ini, Faster R
CNN diuyji dengan 1000 iterasi dan berhasil mencapai akurasi hingga 95%,
mengungguli metode CNN konvensional yang hanya mencapai 87%. Faster R CNN
juga mampu mempercepat waktu pemrosesan menjadi hanya 0,024 detik per
gambar. Untuk menjawab tantangan ini, deep learning menawarkan solusi otomasi

dalam klasifikasi kematangan buah dengan akurasi tinggi. Algoritma Convolutional



Neural Network (CNN) dan Faster R-CNN merupakan metode populer yang efisien
dalam klasifikasi gambar. Penelitian ini bertujuan membandingkan kinerja kedua
algoritma dalam mengklasifikasikan tingkat kematangan TBS kelapa sawit, untuk
menentukan algoritma yang paling efektif dalam hal akurasi dan kecepatan

pemroscsan.

Penelitian [5] berjudul “4 Comparative Study of Different Architectural Models of
CNN for Plant Leaf Disease Detection” membahas perbandingan tiga model
Convolutional Neural Network (CNN), yaitu AlexNet, VGGI6Net, dan ResNet,
dalam mendeteksi penyakit pada daun tanaman. Penelitian ini menggunakan dataset
PlantVillage yang berisi 54.306 gambar daun sehat dan berpenyakit dari 38 kelas.
Setiap model diuji dengan 50 dan 100 epoch untuk menilai akurasi pelatihan,
akurasi validasi, serta kehilangan pelatihan dan validasi. Hasil penelitian
menunjukkan bahwa ResNet unggul dibandingkan AlexNet dan VGG 16Net, dengan
akurasi validasi tertinggi sebesar 96% pada 100 epoch. Selain itu, ResNet juga
memiliki nilai kehilangan pelatihan dan validasi yang lebih rendah, yang
menunjukkan bahwa model ini mampu mengenali pola penyakit dengan lebih
akurat. AlexNet dan VGGI6Net juga menunjukkan hasil yang cukup baik, tetapi

tidak seoptimal ResNet dalam mendeteksi penyakit tanaman.

Penelitian [6] berjudul “Klasifikasi Buah Segar Dan Busuk Menggunakan
Algoritma Convolutional Neural Network (CNN)” membahas tentang
pengembangan sistem klasifikasi otomatis untuk buah segar dan busuk
menggunakan algoritma Convolutional Neural Network (CNN). Bertujuan untuk
mengatasi keterbatasan metode inspeksi manual yang lambat, tidak efisien, dan
rentan terhadap kesalahan. Dengan menggunakan dataset berisi 13.619 gambar
buah dalam berbagai kondisi, peneliti melakukan pre-processing seperti
normalisasi dan augmentasi data, serta merancang arsitektur CNN dengan lapisan
Conv2D dan MaxPooling2D untuk ekstraksi fitur dan pengurangan dimensi data.
Hasil penelitian menunjukkan bahwa model CNN mampu mencapai akurasi hingga
96,67% pada data uji, yang membuktikan bahwa metode ini efektif dalam
mengidentifikasi kondisi buah secara konsisten. Akurasi yang tinggi ini

menunjukkan potensi CNN dalam mengotomatisasi klasifikasi kesegaran buah,



yang diharapkan dapat meningkatkan kualitas produk dan efisiensi dalam industri

pertanian.

Penelitian [7] berjudul "Faster R-CNN for Multi-class Fruit Detection using a
Robotic Vision System", yang bertujuan untuk mengembangkan sistem deteksi buah
secara otomatis menggunakan teknologi deep learning. Dalam penelitian ini,
dikembangkan kerangka kerja berbasis Faster R-CNN untuk mendeteksi berbagai
jenis buah dalam lingkungan perkebunan secara real-time. Penelitian ini mencakup
beberapa tahap utama, yaitu pembuatan pustaka citra buah, augmentasi data,
pembentukan model Faster R-CNN yang ditingkatkan, serta evaluasi kinerja model.
Hasil penelitian menunjukkan bahwa model yang diusulkan mampu meningkatkan
akurasi deteksi dan mengurangi waktu pemrosesan dibandingkan dengan metode
deteksi konvensional. Model yang dikembangkan menggunakan optimalisasi pada
lapisan konvolusi dan pooling untuk meningkatkan efisiensi dan presisi deteksi.
Dengan menganalisis lebih dari 4.000 gambar buah dari lingkungan nyata, sistem
ini berhasil mencapai akurasi tinggi dalam mendeteksi berbagai jenis buah dengan
lebih cepat dan andal. Penggunaan Faster R-CNN dalam deteksi buah multi-kelas
ini dapat diterapkan dalam sistem pertanian cerdas untuk meningkatkan efisiensi,
efektivitas, serta keandalan dalam mendeteksi dan mengelompokkan buah

berdasarkan jenisnya di lingkungan Perkebunan.

2.2 Kelapa Sawit

Kelapa sawit merupakan tanaman dari genus Elaeis yang terdiri atas dua spesies
utama, yaitu Elaeis melanococca atau Elaeis oleivera dari Amerika Selatan dan
Elaeis guineensis dari Afrika. Meskipun berasal dari luar Asia, tanaman ini mampu
tumbuh subur di daerah tropis seperti Asia Tenggara, termasuk Indonesia, Malaysia,
Papua Nugini, dan Thailand. Di negara-negara tropis ini, kelapa sawit bahkan
menunjukkan produktivitas yang lebih tinggi dibandingkan daerah asalnya,
sehingga menjadi komoditas unggulan perkebunan. Kelapa sawit di Indonesia
pertama kali diperkenalkan pada tahun 1848 oleh pemerintah Kolonial Belanda.
Bibit tanaman ini dibawa dari Mauritius dan Amsterdam, kemudian ditanam di
Kebun Raya Bogor. Sejak itu, kelapa sawit berkembang pesat dan menjadi salah

satu tanaman perkebunan yang penting bagi perekonomian Indonesia [8] [9].



Pohon kelapa sawit mulai menghasilkan buah saat berusia sekitar tiga tahun dan
memiliki masa produktif rata-rata hingga 25 tahun. Buah kelapa sawit dapat
dipanen sepanjang tahun, yaitu selama 12 bulan. Tanaman ini merupakan jenis
pohon dengan tinggi mencapai 0-24 meter. Bunga dan buahnya tumbuh dalam
bentuk tandan yang bercabang banyak. Buah kelapa sawit berukuran kecil dan akan
berubah menjadi merah kehitaman saat matang. Bagian daging dan kulit buahnya
mengandung minyak yang digunakan dalam berbagai produk seperti minyak
goreng, pembersih, dan lilin [10]. Semakin matang buahnya, semakin banyak
minyak yang dapat diperoleh dari proses ekstraksi daging buah. Namun, jika buah
dibiarkan terlalu matang, kadar asam lemak bebas (ALB) akan meningkat, biasanya
melebihi 5%. Oleh karena itu, panen kelapa sawit harus dilakukan tepat waktu

untuk menghindari tingginya kandungan ALB dalam minyak yang dihasilkan.

2.3 Kematangan Buah Kelapa Sawit

Panen merupakan faktor krusial dalam budidaya kelapa sawit karena
keberhasilannya berpengaruh langsung pada produktivitas tanaman. Buah kelapa
sawit mencapai kematangan sekitar enam bulan setelah proses penyerbukan dan
pembuahan. Penentuan kriteria kematangan panen biasanya didasarkan pada
perubahan warna buah. Panen dilakukan pada tingkat kematangan optimal, yaitu
ketika tandan buah segar (TBS) memiliki kandungan minyak dan kernel tertinggi
[11]. Mengetahui tingkat kematangan buah kelapa sawit dapat dilihat melalui fraksi

matang panen berikut.

2.3.1 Fraksi Matang Panen

Fraksi panen pada kelapa sawit sangat berpengaruh terhadap rendemen minyak dan
kadar asam lemak bebas (ALB). Semakin tinggi fraksi panen, yang menunjukkan
tingkat kematangan buah, maka rendemen minyak yang dihasilkan juga akan
meningkat [12] . Hal ini disebabkan oleh peningkatan kandungan minyak dalam
buah seiring dengan kematangan . Buah kelapa sawit yang matang sempurna
memiliki potensi untuk menghasilkan minyak yang lebih banyak dibandingkan

dengan buah yang belum matang [12].

Perbedaan tingkat kematangan buah kelapa sawit dapat diamati melalui citra yang

ditampilkan
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Gambar 2. 1 Perbandingan Citra Sawit Matang, Mengkal, dan Mentah

Gambar 2.1 menunjukan perbandingan citra sawit matang, mengkal, dan mentah

dimana terlihat perbedaan warna dari ketiga kategori yang ditetapkan.

2.4 Deep Learning

Deep learning adalah cabang dari machine learning dalam bidang Artificial
Intelligence (AI) yang memanfaatkan jaringan saraf tiruan atau Artificial Neural
Networks (ANN) untuk menganalisis dan mempelajari pola dari data. Algoritma ini
terinspirasi dari struktur otak manusia dan memungkinkan mesin untuk mengenali
pola dari data yang tidak terstruktur, seperti gambar, teks, audio, dan video. Dengan
menggunakan beberapa lapisan pemrosesan nonlinier yang bekerja secara paralel,
deep learning dapat secara otomatis mengekstraksi dan mempelajari fitur langsung
dari data tanpa perlu ekstraksi fitur manual seperti pada metode machine learning

klasik .

Beberapa arsitektur deep learning yang telah banyak diterapkan, antara lain
Convolutional Neural Network (CNN), Deep Neural Network (DNN), Recurrent
Neural Network (RNN), Deep Belief Network (DBN), dan Fully Convolutional
Network (FCN). Model-model ini telah menunjukkan performa unggul dalam
berbagai bidang, termasuk klasifikasi objek, pengenalan wajah, pemrosesan bahasa
alami, serta sektor pertanian [13]. Dalam bidang pertanian, deep learning
memungkinkan otomatisasi klasifikasi dan deteksi objek dengan akurasi tinggi,
menggantikan metode konvensional yang memerlukan ekstraksi fitur manual.
Teknologi ini berpotensi meningkatkan efisiensi dan akurasi dalam berbagai
aplikasi pertanian, seperti identifikasi tingkat kematangan buah dan deteksi
penyakit tanaman, sehingga berkontribusi pada peningkatan produktivitas dan

keberlanjutan pertanian [14]. Berikut merupakan gambar mengilustrasikan konsep
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machine learning dan deep learning. Setelah model dianggap akurat, model

tersebut akan digunakan untuk melakukan klasifikasi.

MACHINE LEARNING
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Gambar 2. 2 Machine Learning dan Deep Learning [15]

Gambar 2.2 menunjukan perbedaan arsitektur dari machine learning dan deep
learning. Perbedaan utama antara Machine Learning (ML) dan Deep Learning (DL)
terletak pada proses ekstraksi fitur. Dalam ML, ekstraksi fitur harus dilakukan
secara manual sebelum proses klasifikasi, yang membutuhkan waktu dan tenaga
yang cukup besar. Sementara itu, DL dapat secara otomatis mengekstrak fitur
langsung dari data menggunakan jaringan saraf tiruan yang dalam (deep neural
networks), sehingga meningkatkan efisiensi dan akurasi, terutama dalam
menangani data yang kompleks. Meskipun demikian, DL memerlukan jumlah data

yang lebih besar serta daya komputasi yang lebih tinggi dibandingkan ML.

Dalam penelitian ini, algoritma deep learning yang digunakan adalah Faster R-
CNN dengan ResNet sebagai backbone serta Convolutional Neural Network (CNN)
untuk meningkatkan akurasi dalam klasifikasi tingkat kematangan buah kelapa
sawit berdasarkan citra. Faster R-CNN memiliki keunggulan dalam deteksi objek

dengan kecepatan dan ketepatan tinggi, sementara CNN mampu mengenali pola
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serta mengekstrak fitur secara otomatis melalui lapisan konvolusi dan pooling.
Kombinasi kedua metode ini memungkinkan sistem untuk tidak hanya mendeteksi
buah kelapa sawit dalam citra tetapi juga mengklasifikasikan tingkat
kematangannya dengan lebih akurat dan efisien dibandingkan metode

konvensional.

2.5 Computer Vision

Computer Vision (CV) merupakan cabang dari Artificial Intelligence (Al) yang
dirancang untuk memungkinkan komputer menganalisis citra dan video guna
mengekstrak informasi serta memahami objek dengan cara yang mendekati atau
bahkan melampaui kemampuan penglihatan manusia [16]. CV berfokus pada
pemrosesan otomatis citra digital menggunakan kombinasi algoritma pengolahan
citra dan Teknik kecerdasan buatan untuk mengidentifikasi pola, mendeteksi objek,
serta mengekstraksi fitur penting. Melalui proses ini, sistem computer vision dapat
menghasilkan informasi yang akurat dan bermanfaat untuk berbagai aplikasi,

termasuk dalam bidang pertanian, medis, dan industry.

Pada Computer Vision (CV), terdapat beberapa aspek penting yang menentukan
efektivitas dan akurasi sistem dalam menganalisis citra dan video. Beberapa aspek

utama dalam CV meliputi:

1. Akuisisi Citra (Image Acquisition) : Proses pengambilan citra menggunakan
perangkat seperti kamera, sensor, atau drone. Kualitas citra yang diperoleh

sangat berpengaruh terhadap hasil analisis.

2. Pra-pemrosesan Citra (/mage Preprocessing) : Tahap ini mencakup Teknik
seperti peningkatan kualitas citra (image enhancement), normalisasi,
pengurangan noise, dan segmentasi untuk mempersiapkan citra sebelum

dianalisis lebih lanjut.

3. Ekstraksi Fitur (Feature Extraction) : Proses identifikasi dan pemilihan
karakteristik penting dalam citra, seperti bentuk, warna, tekstur, dan pola, yang

akan digunakan dalam proses klasifikasi atau deteksi objek.

4. Pengenalan dan Klasifikasi Objek (Object Recognition and Classification)
Penggunaan algoritma seperti Convolutional Neural Networks (CNN) dan
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Faster R-CNN untuk mengidentifikasi serta mengkategorikan objek dalam citra
berdasarkan fitur yang telah diekstraksi.

5. Segmentasi Citra (Image Segmentation) : Pemisahan bagian-bagian penting
dalam citra untuk memudahkan analisis, seperti memisahkan objek utama dari
latar belakang atau membedakan tingkat kematangan buah kelapa sawit dalam

penelitian pertanian.

6. Pelacakan Objek (Object Tracking) : Proses memantau pergerakan objek dalam
video atau citra berurutan untuk berbagai keperluan, seperti analisis

pertumbuhan tanaman atau pemantauan proses panen.

7. Interpretasi dan Pengambilan Keputusan (/nterpretation and Decision Making)
: Tahap akhir di mana sistem CV menginterpretasikan hasil analisis citra dan
memberikan keluaran yang dapat digunakan dalam pengambilan keputusan,
misalnya dalam menentukan waktu panen optimal berdasarkan klasifikasi

tingkat kematangan buah.

Aspek-aspek ini saling berhubungan dan membentuk sistem computer vision yang
efisien dalam berbagai aplikasi, termasuk klasifikasi tingkat kematangan buah

kelapa sawit untuk mendukung optimalisasi hasil panen.

2.6 Citra Digital

Citra merupakan representasi visual dari suatu objek yang dapat berbentuk foto
optik, sinyal video analog seperti tampilan pada layar televisi, atau format digital
yang tersimpan sebagai hasil sistem perekaman data. Dalam dunia digital, citra
diolah menggunakan komputer agar dapat dianalisis dan diproses secara digital agar
sesuai dengan kebutuhan. Secara matematis, citra adalah fungsi kontinu yang
merepresentasikan intensitas Cahaya pada bidang dua dimensi. Namun, agar dapat
diproses secara digital, citra harus dikonversi ke dalam bentuk numerik dengan nilai

diskrit melalui proses digitalisasi [17].

Citra digital adalah bentuk citra yang telah direpresentasikan dalam format numerik
sehingga dapat diolah oleh komputer. Citra ini terdiri dari matriks dua dimensi
dengan koordinat spasial (x, y), dimana setiap elemen dalam matriks disebut piksel

(picture element). Piksel merupakan unit terkecil dalam citra digital yang
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menyimpan informasi mengenai intensitas cahaya atau warna suatu titik pada
gambar. Proses digitalisasi citra mencakup dua tahap utama, yaitu diskritisasi
koordinat spasial (sampling), yang membagi citra kontinu menjadi titik-titik diskrit
dalam bentuk grid, serta diskritisasi tingkat kuantisasi (quantization), yang
mengubah intensitas Cahaya atau warna menjadi nilai numerik yang dapat dikenali

oleh komputer [18].

Representasi dengan berbasis piksel, citra digital dapat ditampilkan pada layer
komputer dan diproses lebih lanjut menggunakan berbagai Teknik pengolahan citra
serta kecerdasan buatan. Hal ini memungkinkan penerapan computer vision dalam
berbagai bidang, seperti pengenalan objek, analisis citra medis, serta klasifikasi dan

deteksi objek dalam sektor pertanian dan industri.

Pada penelitian ini, model Convolutional Neural Network (CNN) dan Faster R-
CNN digunakan, sehingga citra digital yang dipakai harus memenuhi sejumlah
kriteria agar mampu menghasilkan klasifikasi dan deteksi objek yang akurat.
Adapun karakteristik citra digital yang sesuai untuk kedua model tersebut Adalah

sebagai berikut:

1. Format Citra Digital
Citra yang digunakan dalam penelitian ini harus memiliki format yang umum
dalam pemrosesan gambar, seperti JPEG, PNG, atau TIFF. Format PNG lebih
disarankan karena mampu mempertahankan kualitas gambar tanpa kehilangan
informasi akibat proses kompresi. Pemilihan format ini penting untuk
memastikan data yang digunakan tetap optimal dalam proses pelatihan model.
Pada penelitian ini digunakan format citra gambar berupa jpg/jpeg.

2. Resolusi dan Kualitas Gambar
Resolusi dan kualitas gambar memainkan peran penting dalam kinerja CNN dan
Faster R-CNN. Kedua model ini bekerja lebih baik dengan citra beresolusi tinggi
karena detail yang lebih jelas dapat meningkatkan kemampuan dalam
mengekstraksi fitur. Resolusi gambar yang direkomendasikan untuk model CNN
dan Faster R-CNN umumnya berkisar antara 224x224 piksel hingga 1024x1024
piksel, tergantung pada kompleksitas objek yang dianalisis. Namun, citra dengan

resolusi yang terlalu tinggi dapat meningkatkan beban komputasi, sehingga
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diperlukan proses normalisasi ukuran gambar agar seragam dan sesuai dengan
kebutuhan model tanpa mengurangi informasi penting dalam gambar.

. Citra Red, Green, Blue (RGB)

Citra RGB merupakan jenis citra digital yang terdiri dari tiga komponen warna
utama, yaitu merah (Red), hijau (Green), dan biru (Blue). Setiap piksel dalam
citra RGB tersusun dari kombinasi ketiga warna tersebut, dengan masing-masing
nilai intensitas berada dalam rentang O hingga 255.Informasi setiap piksel
disimpan dalam format 1 byte per warna, di mana 8§ bit pertama
merepresentasikan warna merah, 8 bit berikutnya hijau, dan 8 bit terakhir biru.
Dengan demikian, setiap piksel dalam citra RGB memiliki kedalaman warna 24
bit, yang memungkinkan hingga 16.777.216 kombinasi warna (256 x 256 x 256)
[19] seperti yang ditunjukan pada gambar 2.3 berikut:

0.0.255

Gambar 2. 3 Warna RGB

Dalam penelitian ini, citra yang digunakan sebagai dataset untuk klasifikasi
tingkat kematangan tandan buah segar kelapa sawit menggunakan model
Convolutional Neural Network (CNN) dan Faster R-CNN berbasis deep
learning. Citra yang digunakan adalah citra berwarna RGB (True Color) dengan
format .jpg atau jpeg, karena format ini umum digunakan dalam pemrosesan
gambar serta memiliki keseimbangan antara kualitas dan ukuran file yang efisien
untuk keperluan pelatihan model. Faster R-CNN, sebagai salah satu model

deteksi objek yang canggih, akan memanfaatkan citra RGB untuk mendeteksi
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dan mengklasifikasikan objek daun I secara lebih presisi berdasarkan fitur warna

dan teksturnya.

2.7 Pengolaan Citra Digital

Pengolahan citra digital (PCD) adalah cabang ilmu yang mempelajari berbagai
metode untuk meningkatkan kualitas gambar, seperti penyesuaian kontras,
perubahan warna, dan restorasi gambar. PCD juga mencakup proses transformasi
dan augmentasi gambar, termasuk translasi, perubahan skala, dan transformasi
geometris seperti flipping, rotasi, cropping, scaling, serta zooming. Disiplin ini juga
berfokus pada pemilihan fitur gambar yang tepat untuk analisis, ekstraksi informasi,
deskripsi objek, dan identifikasi elemen dalam gambar. Selain itu, PCD turut
berperan dalam kompresi atau pengurangan ukuran data demi efisiensi

penyimpanan [20].

Adapun Teknik pengolahan citra digital yang diterapkan dalam penelitian ini

meliputi: 1. Resizing
2. Augmentasi

2.6.1 Resizing

Resizing adalah proses untuk mengubah ukuran pixse/ suatu gambar menjadi
panjang dan lebar sesuai kebutuhan, baik dengan mengecilkan ukuran gambar
(downscale) maupun memperbesar (upscale). Langkah ini diperlukan karena
ukuran gambar yang akan diproses tidak selalu seragam [21]. Dalam penelitian ini,
resizing dilakukan untuk mengecilkan ukuran gambar agar jumlah pixsel/ yang
diproses lebih sedikit, sehingga waktu komputasi dapat dipercepat. Semakin besar
jumlah pixsel, semakin banyak data yang harus diproses, yang pada akhirnya
memperlama waktu komputasi. Proses resizing dilakukan dengan menetapkan
terlebih dahulu ukuran input yang diinginkan, kemudian menghitung ukuran asli
setiap gambar . Selama tahap resizing, dilakukan interpolasi atau proses pembuatan
ulang data citra dari nilai-nilai antara pixe/ yang telah ditetapkan. Proses resizing
gambar ini dilakukan melalui Google Colaboratory.

Berikut merupakan contoh perhitungan proses resizing adalah sebagai berikut :
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Gambar 2. 4 Proses Perhitungan Resizing [22]

Gambar 2.4 menunjukkan proses perhitungan untuk mengubah ukuran citra 4 x 4
pixsel menjadi citra 2 x 2 pixsel melibatkan penghitungan nilai rata-rata dari empat
pixsel yang berdekatan, yang kemudian digunakan sebagai nilai piksel baru dalam
citra yang lebih kecil, yaitu 2 x 2. Berikut adalah rincian perhitungan dalam proses
resizing tersebut.

Pl =(224 +206 +204 +218):4=213

P2 =(202 + 194 + 198 + 220) : 4 =203

P3=(196+ 184 + 164 + 200) : 4 = 186

P4 = (204 + 136 +201 + 135):4=169

213 203

186 169

Gambar 2. 5 Nilai matriks setelah resizing [22]

Pada gambar 2.5 menunjukkan nilai pixe/ baru yang dihasilkan oleh perhitungan
resizing dengan matriks. Pada penelitian ini data citra yang dikumpulkan memiliki
ukuran asli 3060 x 4080 piksel dan ukuran file yang bervariasi, dengan rata-rata
sekitar 2 MB per gambar. Dalam penelitian ini, ukuran gambar diubah menjadi 300
x 300 pixsel untuk menghasilkan dataset yang seragam, memudahkan proses
pelatihan sistem, dan menghemat sumber daya komputasi. Proses resizing gambar

ini dilakukan melalui Google Colaboratory.

2.6.2 Augmentasi

Augmentasi adalah teknik yang digunakan untuk meningkatkan jumlah dan
keragaman data pelatihan dengan menghasilkan variasi dari data yang ada. Proses

augmentasi mencakup transformasi citra data asli, seperti memutar gambar pada
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interval tertentu, membalik gambar secara vertical dan horizontal, serta merotasi
gambar sebesar 90 derajat. Teknik ini membantu meningkatkan kuantitas dataset.
Augmentasi juga mengurangi risiko overfitting, yaitu model yang terlalu cocok
dengan data pelatihan, dengan memungkinkan model mempelajari fitur-fitur yang
lebih umum dan membantu model dalam menggeneralisasi data yang belum pernah
dilihat sebelumnya [23]. Teknik flip pada gambar adalah metode yang digunakan

untuk membalik atau merotasi gambar terhadap sumbu Aorizontal maupun vertical.

Rotasi 90 derajat adalah proses memutar gambar sesuai dengan sudut 90 derajat,
baik searah maupun berlawanan arah jarum jam. Berikut adalah tiga jenis rotasi

yang digunakan pada penelitian ini:

Clockwise (Searah Jarum Jam). Citra diputar sebesar 90° ke kanan. Dalam proses
ini:

- Sisi kanan citra menjadi sisi bawah.

- Sisi bawah citra menjadi sisi kiri.

- Sisi kiri citra menjadi sisi atas.
2.8 Convolutional Neural Network (CNN)

Convolutional Neural Network (CNN) merupakan salah satu algoritma deep
learning yang banyak digunakan. Dikembangkan sejak tahun 1960-an, CNN telah
menunjukkan performa yang unggul dalam bidang Computer Vision dan dikenal
sebagai salah satu jenis jaringan saraf yang paling merepresentasikan deep learning
[24]. Convolutional Neural Network (CNN) adalah salah satu metode deep learning
yang digunakan untuk mengenali dan mengklasifikasikan gambar. CNN termasuk
dalam kategori neural network yang dirancang khusus untuk memproses data
dengan struktur grid. Metode ini dapat diaplikasikan dalam berbagai bidang, seperti
pengenalan wajah, analisis dokumen, klasifikasi gambar, dan video. CNN bekerja
dengan memanfaatkan Kumpulan data berukuran besar yang mengandung jutaan
parameter. Data berupa gambar diolah sebagai input dan diproses menggunakan
filter untuk menghasilkan output sesuai dengan tujuan yang diinginkan seperti pada

gambar 2. 6 Arsitektur CNN [25].
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Gambar 2. 6 Arsitektur CNN [26]

Berdasarkan gambar 2.6, alur kerja CNN terdiri dari beberapa tahapan utama.
Proses dimulai dengan menerima input gambar (contohnya, gambar mobil), yang
kemudian melewati serangkaian lapisan tersembunyi (hidden layers). Tahap
pertama pertama konvolusi, di mana kernel dengan ukuran tertentu digunakan
untuk mengekstrak fitur-fitur penting dari gambar, seperti tepi, bentuk, dan tekstur.
Jumlah kernel yang diterapkan harus disesuaikan dengan jumlah fitur yang ingin
dihasilkan. Setelah itu, fungsi aktivasi ReLU (Rectified Linear Unit) diterapkan
untuk meningkatkan non-linearitas model. Selanjutnya, proses dilanjutkan dengan
pooling, yang berfungsi untuk mereduksi dimensi fitur tanpa kehilangan informasi
penting. Tahapan ini dapat diulang beberapa kali hingga diperoleh peta fitur yang
cukup representatif. Setelah ekstraksi fitur selesai, hasilnya diratakan (flatten) dan
diteruskan ke lapisan fully connected untuk melakukan klasifikasi akhir. Lapisan
output (softmax) kemudian memberikan probabilitas terhadap setiap kelas yang
mungkin (misalnya, mobil, truk, van, atau sepeda). Dengan demikian, CNN mampu
mengenali pola dalam gambar dan mengklasifikasikannya berdasarkan pola
tersebut. Penjelasan lebih lanjut mengenai fungsi setiap lapisan akan dibahas dalam

sub-bab berikutnya.

2.8.1 Convolutional Layer

Convolutional Layer merupakan komponen dasar dalam arsitektur CNN yang
berperan dalam proses ekstraksi fitur. Lapisan ini terdiri dari kernel atau filter yang
pada awalnya memiliki bobot acak dan akan mengalami perubahan bobot selama

proses pelatihan model. Filter tersebut diterapkan dengan melakukan operasi
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konvolusi pada seluruh bagian citra, yaitu dengan menggeser dan mengalikannya
dari kiri atas ke kanan bawah. Tujuan utama dari Convolutional Layer adalah
mengekstraksi fitur penting dari citra input, seperti tepi, sudut, dan tekstur. Hasil

dari proses ini disebut sebagai feature map .

Fungsi konvolusi menghasilkan satu output berupa feature map dengan dua
argumen input, yaitu citra sebagai data masukan dan kernel atau filter yang
digunakan dalam operasi konvolusi. Lapisan ini menentukan dimensi data dalam
bentuk Tensor 3D, terutama untuk pemrosesan gambar, seperti ukuran (224, 224, 3)
yang menunjukkan tinggi 224 piksel, lebar 224 piksel, dan tiga saluran warna RGB
(Red, Green, Blue). Fungsi utama layer ini adalah menyiapkan data agar dapat
diproses oleh lapisan-lapisan selanjutnya tanpa melibatkan perhitungan yang

kompleks. Ilustrasi mengenai layer input dapat dilihat pada gambar 2.7.

Nour Channels
VAN

Height: 4 Units
(Pixels)

> AV

Width: 4 Units
(Pixels)

Gambar 2. 7 Layer Input [27]

Gambar 2.7 di atas menggambarkan ilustrasi dengan 3 channel yang memiliki
tinggi 4 piksel dan lebar 4 piksel, meskipun ukuran lebar dan tinggi dapat
menyesuaikan dengan gambar yang dimasukkan. Selanjutnya, lapisan konvolusi
pada CNN memanfaatkan filter kernel untuk melakukan operasi konvolusi pada
gambar input, dengan tujuan mengekstraksi fitur-fitur dasar dari gambar tersebut.
Filter in1 memiliki dimensi yang sama, tetapi ukurannya lebih kecil dibandingkan
dengan gambar input dan memiliki parameter tetap [28].

Pada gambar 2.6 , proses konvolusi dilakukan dengan menggeser matriks 3x3 (filter
atau kernel) secara bertahap pada matriks input (gambar). Pada setiap posisi,

elemen-elemen dalam filter dan matriks input dikalikan, kemudian dijumlahkan
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untuk menghasilkan satu nilai dalam matriks output. Proses ini terus berulang
hingga seluruh bagian gambar terkonvolusi, menghasilkan matriks fitur yang

mampu menangkap informasi lokasi dari gambar input.

Lapisan konvolusi memiliki tiga parameter utama yang menentukan cara kerjanya.
Ukuran kernel mengacu pada dimensi filter yang digunakan dalam pemrosesan.
Stride atau panjang Langkah menentukan seberapa jauh kernel bergeser sebelum
menghitung hasil perkalian untuk setiap piksel output. Sementara itu, padding
adalah Teknik menambahkan bingkai nol di sekitar input guna mempertahankan
dimensi output yang dihasilkan. Ilustrasi lebih lanjut mengenai proses komputasi

ini dapat dilihat pada gambar 2.8.

ol 1| 1[1T0]0]0

ool 1]1]1]0]0 —
oojof1/1[1]0 (1] o] 1] };]J:ji
0/ 0] 0| TH0] 01 [0 1| o} [3F>1 3[4 1
00 1/1/0] 0 0t~ 170}] 371311
of1/1/0[o/0]0] 3037110
if170]ofo]o]o0]

Gambar 2. 8 Convolution Layer [29]

Pada gambar 2.8, proses konvolusi dilakukan tanpa penambahan padding pada
gambar input. Matriks 3x3 digeser dengan stride sebesar 1 piksel secara bertahap
di sepanjang matriks input. Pada setiap langkah, elemen-elemen dalam filter dan
matriks input dikalikan satu per satu, lalu hasilnya dijumlahkan untuk menghasilkan
satu nilai dalam matriks oufput, misalnya diperoleh nilai 3. Proses ini terus berulang
hingga seluruh area gambar diproses, membentuk matriks fitur yang menangkap

informasi Lokasi dari gambar input [30].
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Ketika proses konvolusi selesai, kemudian dilakukan aktivasi menggunakan fungsi
aktivasi ReLU (Rectified Linear Unit). ReLU adalah fungsi aktivasi linear yang
umum digunakan dalam CNN. Fungsi ini mengubah nilai piksel pada feature map
yang masuk dengan menetapkan nilai negatif dari layer sebelumnya menjadi 0 [25].

Hasil dari fungsi ReLU terhadap hasil konvolusi terdapat pada Gambar 2.9.

Matriks masukan Matriks setelah ReLU
-1228 | 1.844 | 0.845 | 0333 0 1844 | 0845 | 0333
-1216 | 2350 | 0.723 | 0357 U 0 2350 | 0.723 | 0357
-1.145 | 2538 | 0686 | 0310 | ——p 0 2.538 | 0686 | 0510
-1.004 | 1.812 | 0658 | 0616 0 1812 [ 0638 0616

Gambar 2. 9 Aktivasi ReLU [29]

Proses ini dapat direpresentasikan dengan persamaan berikut.

F(X) = MaAX(0,X)0ctiieeiieeeeeeeeeeeee e e (2.1)

Dimana:

e f(x) 22 adalah output fungsi ReLU.
o Jika x > 0, maka f(x)=x, yang berarti nilai input tetap diteruskan tanpa
perubahan.

e Jika x <0, maka f(x)=0, yang berarti nilai negatif diubah menjadi nol.

Persamaan tersebut menunjukkan bahwa fungsi ReLU memiliki dua kemungkinan
output berdasarkan nilai inputnya: jika input bernilai positif, maka nilai tersebut
diteruskan tanpa perubahan; sedangkan jika input bernilai nol atau negatif, maka
output menjadi nol. Hal ini tidak hanya menyederhanakan perhitungan dalam
jaringan saraf tiruan, tetapi juga mempermudah analisis optimasi, terutama dalam
perhitungan gradien selama proses pembelajaran menggunakan algoritma

backpropagation.

2.8.2 Pooling Layer

Lapisan ini berfungsi menangkap informasi yang diperoleh melalui proses ekstraksi

fitur secara bertahap, dengan tujuan mengurangi ukuran representasi data. Selain
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itu, lapisan ini juga mengurangi jumlah parameter untuk menekan kompleksitas
komputasi model. Metode pooling yang sering digunakan adalah max pooling, yang
mengambil nilai terbesar, dan average pooling, yang menghitung nilai rata-rata
[31]. Penelitian ini menggunakan pooling dengan matriks berukuran 2x2 dan stride
2. Dengan demikian, pooling akan bergerak sejauh 2 indeks dan memilih nilai

terbesar dari region pooling, yang disebut dengan max pooling.

Max Pool

—_— z
Filter - (2 x 2)
Stride - (2, 2) 8

Gambar 2. 10 Max Pooling [33]

Pada ilustrasi gambar 2.10 di atas, feature map yang awalnya berisi 16 piksel
dikompresi menjadi hanya 4 piksel melalui proses max-pooling. Meskipun
ukurannya berkurang, informasi krusial, terutama lokasi fitur dengan nilai tertinggi,
tetap dipertahankan. Proses ini menggunakan region berukuran 2x2, di mana setiap
region diwakili oleh nilai tertinggi yang ditemukan di dalamnya, seperti nilai 6,

yang kemudian menjadi representasi dari area tersebut pada feature map yang baru.

2.8.3 Fully Connected Layer

Fully connected layer merupakan lapisan ketiga yang terdiri dari hasil-hasil yang
diperoleh melalui proses konvolusi. Citra akan menjadi input pada fully connected
layer setelah melewati tahap konvolusi. Proses di fully connected layer terjadi di
bagian akhir arsitektur Convolutional Neural Network (CNN). Pada tahap ini,
prosesnya melibatkan perkalian antara matriks sederhana dengan input, diikuti oleh
penambahan vector bias, kemudian diikuti dengan penerapan fungsi non-linear

[32].
2.8.4 Activation Function

Fungsi aktivasi adalah operasi matematis yang diterapkan pada output yang telah
difilter untuk memberikan transformasi tambahan [33]. Pada lapisan output, fungsi

aktivasi yang umum digunakan adalah
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softmax. Lapisan ini berperan dalam menghasilkan hasil akhir dari model, terutama
dalam tugas klasifikasi, seperti memprediksi kategori suatu objek. Seperti yang
ditunjukkan pada Gambar 2.11, lapisan Fully Connected dan lapisan Output
divisualisasikan dengan warna yang berbeda. Lapisan output biasanya berbentuk
lapisan dense yang menggunakan fungsi aktivasi sesuai dengan jenis prediksi yang

diinginkan, misalnya sofimax untuk klasifikasi multikelas.

Output Volume Output Volume
588x1 20x1

Output Nodes

5x1
Output Volume

14x14x3
RelU Activation Fn.
Volume-28x28x3

elolele
ejolele

50
®

Convolution

layer Stride 1 . . Q
. . /

Max Pool

Fully connected Soft-Max

Class 1

Class 2

Class 3

Class 4

Class 5

. /
layer Stride 2 Q Q Soft-max Layer

Input Volume Flattenlayer | . erReLU Activation Activation Fn

32x32x1 Fn.

Gambar 2. 11 Fully Connected Layer [34]

Gambar 2.11 di atas menggambarkan proses kerja Fully Connected Layer dalam
arsitektur CNN. Proses dimulai dengan input gambar grayscale berukuran
32x32x1, yang kemudian melewati Convolution Layer dengan stride 1,
menghasilkan fitur berukuran 28x28x3 setelah diterapkan fungsi aktivasi ReLU.
Selanjutnya, fitur tersebut dikurangi dimensinya melalui Max Pooling Layer
dengan stride 2, sehingga ukurannya menjadi 14x14x3. Hasil dari proses ini
kemudian diratakan pada Flatten Layer menjadi vektor 1D (588x1), yang
selanjutnya diproses dalam Fully Connected Layer dengan aktivasi ReLU untuk
mendeteksi pola yang lebih kompleks. Pada tahap akhir, Sofimax Layer
menghasilkan probabilitas untuk masing-masing dari 5 kelas, di mana kelas dengan

probabilitas tertinggi dipilih sebagai hasil klasifikasi
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2.9 Region Convolutional Neural Network (R-CNN)

Region Convolutional Neural Network (R-CNN) adalah metode berbasis deep
learning yang digunakan untuk mendeteksi objek dalam pemrosesan citra.
Dibandingkan dengan CNN, R-CNN menawarkan perbaikan dalam cara memproses

citra input. Berikut merupakan gambar arsitektur dari R-CNN .

R-CNN: Regions with CNN features
warchd region .

7

i=sl > [person?yes |
=l 7 __ CNN:N, :
1. Input 2. Extract region 3. Compute 4. Classify
image  proposals (~2k) CNN features regions

Gambar 2. 12 Arsitektur R-CNN [35]

Gambar 2.12 merupakan arsitektur dari R-CNN dimana pada R-CNN, citra dibagi
menjadi 2000 wilayah (region) berdasarkan fitur seperti tekstur, warna, dan
intensitas, sehingga proses deteksi menjadi lebih terfokus dan efisien. Sementara
itu, pada metode CNN, pembagian wilayah citra dilakukan dalam skala besar, yang
menyebabkan proses pemrosesan citra menjadi lambat. R-CNN menggunakan
algoritma yang bertugas menemukan dua wilayah yang memiliki kemiripan tinggi,
kemudian menggabungkannya. Algoritma ini diterapkan dalam teknik selective

search [36].

2.10 Fast Region Convolutional Neural Network (Fast R-CNN)

Fast R-CNN, yang dikembangkan oleh Ross Gershick pada tahun 2015, merupakan
pengembangan lanjutan dari metode R-CNN. Metode ini mampu melakukan proses
training dan testing data dengan lebih cepat dibandingkan R-CNN. Tidak seperti R-
CNN, Fast R-CNN hanya menggunakan satu CNN. Fungsi R-CNN sebagai classifier
dengan ROI Pooling dan fully connected layer digantikan oleh SVM [36].



26

Outputs: bb OX
softmax regressor

Rol =3 FC
pooling
N

layer FCs
| HH]

Rol feature
vector For each Rol

Gambar 2. 13 Arsitektur Fast R-CNN [35]

Gambar 2.13 merupakan arsitektur dari Fast R-CNN, dalam Fast R-CNN, hasil
feature map dicocokkan dengan ROI (Region of Interest) sebelum dilakukan proses
klasifikasi kelas. Pendekatan ini menggunakan satu CNN pada feed-forward
network dan ROI Pooling Layer, yang memberikan kemampuan tambahan bagi R-
CNN untuk menjadi end-to-end differentiable. Hal ini mempermudah proses

pelatihan model.

2.11 Faster Region Convolutional Neural Network (Faster R-CNN)

Penelitian ini menggunakan metode Faster Region Convolutional Neural Network
(Faster R-CNN), yang merupakan pengembangan dari algoritma Fast R-CNN. Baik
R-CNN maupun Fast R-CNN memerlukan waktu tambahan untuk menentukan
region proposal menggunakan selective search. Sebagai solusinya, Faster R-CNN
menghilangkan kebutuhan akan algoritma selektif tersebut dan memungkinkan

jaringan untuk mempelajari proposal wilayah secara langsung [37].

For Each Rol |
MultiClass
Classification }

DBnunding Box |

Regressor

Input Feature Feature Maps: ER T e
4 Extract Features Projected Region Classification
Image Maps “Pronasals

Gambar 2. 14 Arsitektur Umum Faster R-CNN [38]

Gambar 2.14 merupakan arsitektur umum dari Faster R-CNN, pada Faster R-CNN,
citra diinput dan diproses melalui lapisan CNN menggunakan pre-trained model
ResNet5(0. Proses konvolusi menghasilkan feature map yang menyediakan peta fitur

konvolusional. Proposal wilayah kemudian diproses menggunakan Region
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Proposal Network (RPN), yang memiliki 9 anchors untuk menilai apakah area
tertentu merupakan objek atau bukan. RPN ini kemudian diprediksi, diolah Kembali
melalui lapisan ROI pooling, lalu digunakan untuk mengklasifikasikan objek pada

region proposal dan memperkirakan nilai offset pada bounding box.
Berikut adalah bagian-bagian dan cara kerja Faster R-CNN:

o Convolutional Layer

Lapisan ini terdiri dari filter dua dimensi dengan ukuran panjang dan lebar.
Fungsinya adalah mempelajari karakteristik yang menjadi ciri khas suatu objek dan
menghasilkan feature map dari objek tersebut.

. Feature Map

Berisi informasi berupa representasi vektor dari citra yang telah diolah. Komponen
ini dihasilkan oleh convolutional layer.

. Region Proposal Network (RPN)

Region Proposal Network (RPN) adalah tugas yang cepat dan berguna untuk
mencari kemungkinan lokasi objek dalam sebuah gambar. Posisi objek dalam
gambar ini biasanya dibatasi oleh area yang disebut region of interest (ROI). RPN
menerima gambar dengan berbagai ukuran sebagai input dan menghasilkan
sekumpulan proposal objek berbentuk persegi panjang, di mana setiap proposal
dilengkapi dengan skor yang menunjukkan seberapa besar kemungkinan itu adalah
objek yang dimaksud [39].

2k scores 4k coordinates e k anchor boxes

cls layer \ ’ reg layer

\ 256-d
' intermediate layer

sliding window

conv feature map

Gambar 2. 15 Arsitektur Region Proposal Network (RPN)

Pada gambar 2.15 Arsitektur Region Proposal Network (RPN), gambar pertama-
tama dimasukkan ke dalam jaringan Convolutional Neural Network (CNN).
Gambar input kemudian diteruskan ke layer konvolusional terakhir, yang

menghasilkan feature map. Sliding window diterapkan pada setiap bagian dari
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feature map. Ukuran sliding window biasanya berupa masker nn. Untuk setiap
sliding window, secara bersamaan dilakukan prediksi untuk beberapa region
proposal, dengan jumlah maksimum proposal untuk setiap lokasi dilambangkan
sebagai k. Layer regresi (reg) menghasilkan output 4k yang mengkodekan
koordinat kotak, sementara layer klasifikasi (cls) menghasilkan 2k yang
memperkirakan probabilitas apakah ada objek atau tidak di setiap proposal. Setiap
anchor diposisikan di Tengah sliding window. Secara default, digunakan 3 skala
dan 3 rasio aspek, yang menghasilkan k=9 anchor untuk setiap sliding window .
Klasifikasi menunjukkan probabilitas 0 atau 1 yang menunjukkan apakah wilayah
tersebut mengandung objek atau tidak [43].

o ROI Pooling

Lapisan pooling Rol menggunakan max pooling untuk mengubah fitur dalam
Region of Interest (Rol) menjadi feature maps dengan ukuran spasial tetap H x W
(misalnya, 7 x 7), di mana H dan W merupakan parameter sistem untuk Ro/ tertentu.
Rol sendiri adalah jendela persegi yang diambil dari feature map hasil konvolusi.
Setiap Rol didefinisikan oleh empat nilai tuple (r, ¢, h, w), yang menunjukkan posisi
sudut kiri atas (r, ¢) serta tinggi dan lebar (h, w) dari Rol tersebut. Lapisan pooling
Rol ini bekerja dengan cara menerapkan max pooling pada area yang valid dalam
Rol untuk menghasilkan peta fitur kecil dengan ukuran spasial tetap, seperti H x W.
. Classification Layer

Tahap akhir dalam proses klasifikasi, yang bertugas mengidentifikasi objek
berdasarkan deteksi RPN dan memberikan label pada objek yang telah
diklasifikasikan.

2.12 Resnet-50

Residual Network (ResNet) merupakan salah satu jaringan saraf dalam deep
learning yang memiliki kontribusi signifikan dalam meningkatkan pembelajaran
dan kinerja model. Dalam arsitektur deep learning, jaringan dengan kedalaman
lebih besar digunakan untuk mengenali pola yang lebih kompleks serta
mengekstraksi fitur tingkat tinggi. Namun, peningkatan kedalaman ini sering kali
menimbulkan permasalahan gradien menghilang saat backpropagation, sehingga
proses pelatthan menjadi kurang optimal. Untuk mengatasi masalah tersebut,

ResNet dikembangkan dengan inovasi utama berupa residual connections, yang
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memungkinkan jaringan untuk melewati beberapa lapisan tertentu guna menjaga

aliran gradien tetap stabil [40].

ResNet pertama kali diperkenalkan sebagai solusi atas kesulitan dalam melatih
jaringan saraf yang sangat dalam dan berhasil memenangkan tantangan ImageNet
pada tahun 2015. Model ini membuktikan bahwa dengan adanya residual
connections, performa jaringan dapat terus meningkat seiring bertambahnya
kedalaman, dengan berbagai varian seperti ResNet-18, ResNet-32, ResNet-50,
ResNet-101, dan ResNet-152. Pada penelitian ini, digunakan ResNet-50, salah satu
arsitektur dalam keluarga Residual Networks yang memiliki 50 lapisan. ResNet-50
sangat efektif dalam tugas klasifikasi citra, termasuk klasifikasi citra biner, yang
sering menghadapi kendala hilangnya gradien, terutama saat menggunakan fungsi

aktivasi sigmoid.

Keunggulan utama ResNet-50 terletak pada kemampuannya dalam
mempertahankan aliran gradien yang lebih stabil melalui penggunaan skip
connections, yang memungkinkan gradien mengalir lebih efisien selama proses
backpropagation. Dengan struktur ini, ResNet-50 mampu mengoptimalkan jaringan
lebih baik dan mencapai tingkat akurasi yang lebih tinggi dibandingkan model
konvensional lainnya. Oleh karena itu, arsitektur ResNet-50 menjadi pilihan yang
tepat dalam penelitian ini untuk meningkatkan efektivitas klasifikasi citra. Gambar

berikut menunjukkan arsitektur ResNet-50 yang digunakan dalam penelitian ini.
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Gambar 2. 16 Arsitektur ResNet50 [41]

Berdasarkan gambar 2.16 secara umum, arsitektur ResNet-50 terdiri dari lapisan

konvolusi awal, diikuti oleh beberapa blok residu. Setiap blok residu mencakup
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beberapa lapisan konvolusi dengan shortcut connection. Setelah blok residu
terakhir, terdapat lapisan pooling global yang bertujuan untuk mengurangi dimensi
spasial dari fitur-fitur yang dihasilkan. Fitur-fitur tersebut kemudian dihubungkan

ke lapisan fully connected yang menghasilkan output untuk klasifikasi [42].

2.13 Google Colaboratory

Google Colab (Colaboratory) adalah sebuah platform berbasis cloud yang
dikembangkan oleh Google untuk mempermudah pengguna dalam menjalankan
dan berbagi kode Python, khususnya dalam pengolahan data dan pengembangan

model pembelajaran mesin.

Gambar 2. 17 Google Colaboratory

Gambar 2.17 merupakan logo dari Google Colaboratory. Platform ini
memungkinkan pengguna untuk menulis dan menjalankan kode dalam format
notebook interaktif langsung dari browser tanpa perlu menginstal perangkat lunak
apa pun. Colab menyediakan akses gratis ke sumber daya komputasi seperti GPU
dan TPU, yang sangat berguna untuk pelatthan model deep learning yang
membutuhkan pemrosesan intensif. Selain itu, pengguna dapat menyimpan
notebook yang dibuat langsung di Google Drive, sehingga memudahkan kolaborasi
dan penyimpanan data dengan aman Platform ini juga mendukung instalasi
berbagai library eksternal melalui pip, serta memungkinkan visualisasi data secara

interaktif menggunakan Pustaka seperti Matplotlib dan Seaborn.

2.14 Python

Python adalah bahasa pemrograman yang bersifat interpretatif, memiliki semantik

yang jelas, dan mendukung pemrograman dinamis.
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Gambar 2. 18 Logo Software Pyhton

Gambar 2.18 merupakan logo dari software python. Desainnya dirancang untuk
meningkatkan keterbacaan kode, sehingga mempermudah pengembang dalam
memahami source code. Dengan sintaks yang sederhana, Python memungkinkan
programmer untuk menciptakan berbagai aplikasi modern, didukung oleh koleksi

library yang sangat lengkap.
2.15 TensorFlow

TensorFlow adalah sebuah platform open-source yang dikembangkan oleh Google
untuk mendukung pengembangan dan implementasi model pembelajaran mesin

dan kecerdasan buatan.

| r\
Tensor

Gambar 2. 19 Logo TensorFlow

Gambar 2.19 merupakan logo dari platform TensorFlow, platform ini dirancang
untuk memenuhi kebutuhan komputasi numerik dengan menggunakan pendekatan
berbasis grafik aliran data (data flow graph), di mana setiap node dalam grafik
mewakili operasi matematis, dan setiap edge mewakili aliran data antar operasi
tersebut. TensorFlow mendukung berbagai jenis algoritma pembelajaran, seperti
jaringan saraf tiruan (Artificial Neural Networks), jaringan saraf konvolusional
(Convolutional Neural Networks), dan jaringan saraf berulang (Recurrent Neural
Networks). Dengan fleksibilitasnya, TensorFlow dapat digunakan untuk
membangun model pembelajaran sederhana hingga model berskala besar yang

memerlukan komputasi intensif.
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2.16 Keras

Keras adalah sebuah framework atau library yang digunakan untuk pengembangan
deep learning. Framework ini dirancang untuk mempermudah pengguna serta
mengurangi tingkat kerumitan dalam membangun model deep learning. Keras
dibuat dengan tujuan untuk mendukung algoritma seperti RNN, CNN, dan
kombinasi keduanya, yang dapat dijalankan baik pada perangkat GPU maupun
CPU. Sejak diluncurkannya TensorFlow versi 2.0, Keras telah menjadi API resmi
tingkat tinggi dari TensorFlow, sehingga Keras kini dapat digunakan sebagai bagian

terpadu dalam ekosistem pengembangan TensorFlow.

2.17 Optimizer Adam

Optimasi pada neural network adalah proses penyesuaian parameter model, seperti
bobot dan bias, untuk meminimalkan /oss selama pelatihan. Tujuan algoritma
optimasi adalah menemukan bobot optimal yang mampu meminimalkan /oss dan
memaksimalkan akurasi. Selama pelatihan, parameter model diubah untuk
menekan nilai loss function, yang mengukur tingkat akuratan model dalam
memprediksi data uji. Algoritma optimasi menggabungkan /loss function dan
parameter model untuk melakukan pembaruan model. Secara sederhana, algoritma
optimasi membentuk model yang lebih akurat melalui pemanfaatan bobot. Proses
ini melibatkan metode seperti gradient descent, yang digunakan untuk menghitung
gradien /oss terhadap parameter dan memperbarui parameter tersebut agar /oss
berkurang.

Adam Optimizer merupakan salah satu algoritma optimasi yang banyak digunakan
dalam deep learning. Algoritma ini memperbarui bobot dengan learning rate yang
dapat berubah selama proses pelatthan. Adam menggabungkan keunggulan
Momentum dan RMSProp untuk mengatasi masalah gradien jarang (sparse
gradient) sehingga mencapai kinerja yang baik. Dalam deep learning, pemilihan
optimizer berpengaruh terhadap tingkat akurasi model. Adam, yang merupakan
singkatan dari Adaptive Moment Estimation, memiliki kemampuan untuk
memperbarui bobot dan /earning rate secara adaptif. Dengan demikian, selama
pelatihan menggunakan Adam Optimizer, nilai learning rate dapat berubah-ubah

sesuai sifat adaptif yang dimilikinya.
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2.18 Siklus proyek 47

Dalam pengembangan solusi berbasis Artificial Intelligence (Al), prosesnya perlu
dibagi ke dalam beberapa tahap untuk memastikan efisiensi dan efektivitas.
Kerangka kerja Siklus Proyek A/ menyediakan pendekatan sistematis dengan
membagi tahapan pengembangan proyek A/, khususnya dalam domain Computer
Vision (CV), sehingga setiap Langkah dapat dilakukan secara lebih terstruktur dan

terorganisir.

Problem
Scoping

Data
Exploration

Evaluation

Data
Acquisition

Modelling

Gambar 2. 20 Siklus Proyek A7

2.18.1 Problem Scoping

Tahapan ini bertujuan untuk mengidentifikasi dan memahami permasalahan yang
akan diselesaikan menggunakan solusi 4/, Dalam proses ini, pengguna harus
merumuskan permasalahan serta menetapkan tujuan dari proyek agar arah
pengembangan menjadi lebih jelas. Dengan pendekatan yang terstruktur, A/ dapat
diterapkan secara efektif dan efisien untuk mengatasi permasalahan yang dihadapi.

Pada penelitian ini berfokus dalam bidang bidang perkebunan kelapa sawit.

2.18.2 Data Acquicition

Tahapan ini mencakup proses pemilihan sumber data yang akan digunakan dalam
melatih model CNN dan Faster R-CNN dengan backbound ResNet50. Proses
pengumpulan data dilakukan dengan teknik web scraping serta mengambil data
langsung dari Perkebunan kelapa sawit untuk pelatihan dan evaluasi dari model

yang telat dibuat.
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2.18.3 Data Exploration

Setelah proses pengumpulan, data perlu dieksplorasi dan dianalisis untuk
memastikan keakuratan serta menghindari adanya kesalahan atau kerusakan. Tahap
ini mencakup filter guna menjaga kualitas data. Selain itu, visualisasi data sering
digunakan untuk mendeteksi pola dan tren yang dapat memengaruhi hasil akhir,

sehingga membantu dalam pengambilan keputusan yang lebih tepat.
2.18.4 Modelling

Pada tahap ini, pemilihan model 4/ yang sesuai dilakukan untuk memastikan
performa yang optimal. Model kemudian dilatih menggunakan data yang telah
dikumpulkan dan melalui proses preprocessing pada tahap sebelumnya. Proses ini
mencakup pemilihan algoritma yang tepat serta optimasi model agar mencapai
kinerja terbaik. Dalam penelitian ini, digunakan model CNN dan Faster R-CNN
dengan backbone ResNet50, yang dirancang untuk meningkatkan akurasi dalam

tugas deteksi dan klasifikasi objek.

2.18.5 Evaluation

Setelah proses pelatihan selesai, evaluasi kinerja model dilakukan untuk mengukur
efektivitas dan efisiensinya. Tahap ini mencakup pengujian model menggunakan
data uji guna memastikan kemampuannya dalam melakukan generalisasi terhadap
data baru. Hasil evaluasi akan menjadi dasar dalam menentukan apakah model
perlu dilakukan penyesuaian, pelatihan ulang, perbaikan pada dataset, atau sudah
siap untuk digunakan. Umumnya, kinerja model dinilai berdasarkan metrik evaluasi

tertentu yang digunakan dalam pengembangan A/.
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2.19 Confussion Matrix

Confusion matrix adalah metode yang digunakan untuk menilai kinerja dalam
masalah klasifikasi yang menghasilkan output dengan dua kelas atau lebih.
Perbedaan antara nilai prediksi dan nilai aktual pada confusion matrix
menghasilkan empat kombinasi. Tabel confusion matrix dapat dilihat pada gambar

berikut.
Actual Values

Positive (1)  Negative (0)

TP FP

Positive (1)

FN TN

Predicted Values

Negative (0)

Gambar 2. 21 Tabel Confusion Matrix [43]

Berdasarkan gambar 2.20 tabel confusion matrix, hasil dari proses klasifikasi dapat

dijelaskan dalam empat istilah, yaitu:

True Positive (TP) terjadi ketika model menebak bahwa buah kelapa sawit sudah
matang, dan kenyataannya memang benar matang. Misalnya, model memprediksi
buah sawit siap panen, dan setelah diperiksa secara manual, buah tersebut memang

berada pada tingkat kematangan yang sesuai untuk dipanen.

True Negative (TN) terjadi ketika model menebak bahwa buah kelapa sawit belum
matang, dan kenyataannya memang benar belum matang. Contohnya, model
mengklasifikasikan buah sebagai masih mentah atau mengkal, dan setelah

dilakukan pengecekan, buah tersebut memang belum siap untuk dipanen.

False Positive (FP) terjadi ketika model menebak bahwa buah kelapa sawit sudah
matang, tetapi kenyataannya belum matang. Kesalahan ini dapat menyebabkan
panen prematur yang berisiko menghasilkan minyak sawit dengan kualitas rendah
dan volume yang lebih sedikit. Misalnya, model memprediksi buah siap panen,
namun saat diperiksa, buah masih mentah atau belum mencapai tingkat kematangan

optimal.
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d) False Negative (FN) terjadi ketika model menebak bahwa buah kelapa sawit belum
matang, tetapi kenyataannya sudah matang. Kesalahan ini dapat menyebabkan
keterlambatan panen, yang berisiko menurunkan kualitas minyak sawit atau bahkan
membuat buah membusuk di pohon. Sebagai contoh, model mengklasifikasikan
buah sebagai belum matang, tetapi saat diperiksa, ternyata buah sudah berada pada

kondisi terbaik untuk dipanen.

Kesalahan False Positive dan False Negative harus diminimalkan agar proses
panen dapat dilakukan dengan tepat waktu dan menghasilkan minyak sawit

berkualitas tinggi.

Confusion matrix juga digunakan untuk menghitung berbagai performance metrics,

salah satunya adalah:

2.19.1 Accuracy

Accuracy adalah metode untuk mengukur sejauh mana model dapat
mengklasifikasikan data dengan benar. Persamaan untuk menghitung accuracy

dapat dilihat pada Persamaan berikut [44].

TP+ TN
Accuracy = X 100% coooveni
TP+ TN + FP + FN

2

Accuracy juga menunjukkan seberapa dekat nilai prediksi dengan nilai aktual.
Semakin banyak data yang diprediksi dengan benar, maka semakin tinggi pula

akurasi model dalam suatu penelitian.

2.19.2 Precision

Presisi mengukur seberapa akurat model dalam mengklasifikasikan sampel sebagai
positif. Persamaan untuk menghitung precision dapat dilihat pada Persamaan

berikut [44].

TP
X TO0%0 oo 23)

Precision =

Precision adalah metode yang digunakan untuk menghitung perbandingan antara

jumlah data yang benar-benar sesuai dengan hasil yang diperoleh oleh sistem,
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dibandingkan dengan jumlah total data yang dibaca oleh sistem, baik yang sesuai

maupun yang tidak sesuai.

2.19.3 Recall

Recall mengukur seberapa baik model dalam mendeteksi semua instance yang
sebenarnya positif. Persamaan untuk menghitung recall dapat dilihat pada

Persamaan berikut [44].

Recall adalah metode yang digunakan untuk menghitung perbandingan antara
jumlah data yang benar-benar sesuai dengan hasil yang diberikan oleh sistem,
dibandingkan dengan seluruh data yang relevan dalam kumpulan data, baik yang

terbaca maupun yang tidak terbaca oleh sistem.

2.19.4 F]-Score

F1-Score merupakan metode yang digunakan untuk menghitung perbandingan dari
rata-rata precision dan recall yang dibobotkan. Adapun persamaan dari -/ Score

terdapat pada Persamaan berikut [48].

Recall x Precision

Fl -Score=2x Rocall T Procisiom = e 2.5)

F1-Score berguna dalam kasus di mana terdapat ketidakseimbangan kelas dalam
dataset. Jika hanya presisi yang tinggi, tetapi recall rendah, atau sebaliknya, F1-
Score membantu menemukan titik keseimbangan yang optimal antara kedua metrik
tersebut. Metrik ini sering digunakan dalam berbagai aplikasi pembelajaran mesin,
terutama ketika penting untuk mempertimbangkan baik False Positive maupun

False Negative.

2.19.5 Mean Average Precision

Mean Average Precision (mAP) merupakan metrik yang digunakan untuk
mengevaluasi seberapa akurat suatu model dalam mengklasifikasi tingkat

kematangan tandan buah segar kelapa sawit dari berbagai kelas dalam sebuah
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dataset. Adapun persamaan dari Mean Average Precision (mAP) terdapat pada

Persamaan berikut [44].

Semakin tinggi nilai mAP, maka semakin baik kinerja model dalam
mengidentifikasi dan mengklasifikasi tingkat kematangan kelapa sawit secara tepat
dan menyeluruh. Nilai m4P merupakan rata-rata dari Average Precision (AP) pada
semua kelas. Dimana 4Api merupakan AP untuk kelas ke-I dan N merupakan total

kelas yang dievaluasi.



BAB III METODOLOGI PENELITIAN

3.1 Waktu dan Tempat Penelitian

Adapun penelitian ini dilaksanakan di Laboratorium Telekomunikasi,
Laboratorium Terpadu Jurusan Teknik Elektro, Universitas Lampung, dimulai pada

bulan November 2024 sampai dengan bulan Mei 2025.

3.2 Alat dan Bahan Penelitian

Adapun alat dan bahan yang digunakan dalam penelitian ini adalah sebagai berikut

1. Satu buah handphone Android Samsung A0S, yang digunakan untuk
mengambil citra tandan buah segar kelapa sawit di Pesawaran,
Lampung.

2. Satu laptop Lenovo ideapad Slim 5 Pro dengan prosesor Ryzen 7 yang
digunakan untuk pelatihan model dan soffware untuk mendeteksi objek.

3. Software Roboflow yang digunakan untuk ekplorasi data.

4. Software Google Colab yang digunakan untuk melatih model.

5. CNN dan Faster CNN dengan backbone ResNet50 yang digunakan
untuk mendeteksi dan mengklasifikasi tingkat kematangan tandan buah

segar kelapa sawit.

3.3 Diagram Alir Penelitian

Adapun tahapan yang dilakukan pada penelitian ini dijelaskan melalui diagram

alir pada gambar 3.1
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Problem Seoping
Studi hiteratur

Pengujian data

Data Acquisition : Pengumpulan dataset dan Roboflow dan
Perkebunan langsung
¢ Y
Diperolch data hasil
Datu Exploration : Labelling,
Resizing, dan Augmentasi
Modelling :
Perancangan dan menjalankan .
model CNN dan Faster RCNN Analisis dan Pembahasan

|

Apakah model sesuai?

Gambar 3. 1 Diagram Alir Penelitian

Diagram alir ini menggambarkan tahapan pengembangan sistem klasifikasi tingkat
kematangan tandan buah segar kelapa sawit menggunakan model CNN dan Faster
RCNN. Proses diawali dengan tahap Problem Scoping, yaitu studi literatur untuk
memahami masalah serta menentukan solusi yang relevan. Selanjutnya, dilakukan
Data Acquisition, yaitu pengumpulan dataset dari platform seperti Roboflow
maupun dari Perkebunan secara langsung. Data yang telah terkumpul kemudian
dieksplorasi melalui tahap Data Exploration, yang mencakup pelabelan,
pengubahan ukuran (resizing), dan augmentasi data untuk meningkatkan kualitas
dataset. Setelah itu, tahap Modelling dilakukan dengan merancang dan menjalankan
model CNN serta Faster RCNN. Model yang telah dibuat akan dievaluasi untuk
memastikan apakah performanya sesuai dengan kebutuhan. Jika performanya
belum memadai, proses kembali ke tahap eksplorasi data dan pembangunan model
untuk dilakukan perbaikan. Namun, jika model telah sesuai, sistem dilanjutkan ke
tahap Pengujian Data, dimana model diuji menggunakan data tertentu untuk
mendapatkan hasil yang diharapkan. Data hasil pengujian tersebut kemudian

dianalisis pada tahap Analisis dan Pembahasan guna memperoleh wawasan dan
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kesimpulan terkait performa sistem. Proses ini diakhiri dengan tahap Selesai, yang

menjadi penutup dari pengembangan sistem.

3.4 Prosedur Penelitian

Dalam perancangan sistem pengolahan citra ini dilakukan Langkah-langkah kerja

sebagai berikut :

3.4.1 Studi literatur

Tahap awal dari penelitian ini adalah melakukan studi literatur. Studi literatur
bertujuan untuk mengidentifikasi masalah, mencari sumber-sumber yang relevan
dengan penelitian, serta menyediakan landasan teori sebagai acuan dalam
melakukan penelitian. Studi literatur dilakukan melalui tinjauan literatur yang
berfokus pada klasifikasi tandan buah kelapa sawit menggunakan algoritma CNN
dan Faster R-CNN dengan data masukan berupa gambar. Pencarian literatur
dilakukan melalui platform Google Scholar dan ResearchGate dengan
menggunakan kata kunci yang tepat. Kata kunci tersebut dibagi menjadi lima
kategori, yaitu: a) “classification”, b) “CNN”, c) “Faster R-CNN”, d)
“productivity”, dan e) “Oil Palm Fruit Bunch”.
Kriteria pemilihan literatur yang digunakan adalah sebagai berikut:

a. Literatur merupakan publikasi ilmiah.

b. Literatur membahas tentang klasifikasi tandan buah segar kelapa sawit.

c. Literatur berasal dari publikasi ilmiah berbahasa Indonesia dan Inggris.

d. Literatur menggunakan pendekatan berbasis citra (image-based).
3.4.2 Pengumpulan data

Kegiatan pengumpulan data dilakukan dengan mengumpulkan data yang
diperlukan dalam pembuatan desain program dan data gambar tandan buah segar
kelapa sawit. Data input yang digunakan berupa gambar tandan buah segar kelapa
sawit yang didapat dari platform open dataset yaitu Roboflow. Data gambar yang
diambil dari Roboflow akan digunakan sebagai data fraining, dimana seluruh data
berekestensi .jpg/.jpeg dengan jumlah total data sebanyak 8.400 gambar. Kemudian
data gambar tandan buah segar kelapa sawit yang didapat dari Perkebunan

digunakan sebagai data validation dengan jumlah total data sebanyak 625 gambar.
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Contoh gambar tandan buah segar kelapa sawit yang digunakan pada penelitian ini

dapat dilihat pada Tabel 3.1

Tabel 3. 1 Data Citra Tandan Buah Segar Kelapa Sawit

No Gambar Tingkat Kematangan
1 Matang
2 Mengkal
3 Mentah

3.5 Perencanaan Program

Proses perencanaan program dilakukan menggunakan Google Colaboratory,

dengan mengacu pada berbagai referensi seperti GitHub, StackOverflow, YouTube,

dan sumber lainnya. Pengembangan program dibagi menjadi dua bagian utama,

yaitu implementasi menggunakan metode CNN dan metode Faster R-CNN. Tujuan

dari pengembangan ini adalah untuk mengevaluasi performa kedua metode dalam
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mengklasifikasikan tingkat kematangan tandan buah segar kelapa sawit secara

otomatis.
3.6 Data Acquisition

Langkah awal dalam penelitian ini adalah data asquisition. Pada tahap ini, data
gambar kelapa sawit dikumpulkan sebagai input awal. Penelitian ini memanfaatkan
gambar tandan buah segar kelapa sawit dengan berbagai tingkat kematangan, yaitu
mentah, mengkal dan matang. Berikut merupakan dataset Roboflow dengan jumlah
8.400 yang telah dikumpulkan.

8400 Total Images

View All Images -

& 7 g
Y e rodd
= sl b
PR [ g
{ 4 é £

TRAIN SET O VALID SET TEST SET

6736 Images M8 Images 546 Images

OENERAL Dataset Split

Preprocessing  Auto-Orient: Applied

© Dataset 2 Resize: Stretch to 64exsse

Augmentations Qutputs per training example: 2

Flip: Horizontal, Vertical

Gambar 3. 2 Data Roboflow 8400

Gambar 3.2 merupakan data yang diperoleh dari platform open dataset Roboflow
dengan jumlah data 8.400 gambar dengan splitting data train set 80% dengan
jumlah 6.736 data, valid set 13% dengan jumlah 1118 data dan fest set 7 % dengan
jumlah 546 data.

Dataset berikutnya merupakan data yang diperoleh dari Roboflow dengan jumlah
625 data, yang merupakan hasil pengurangan dari dataset sebelumnya menjadi 625

data.
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557 Images 51 Images 17 Images

Resize: Stretch to G4dx64e

Augmentations Outputs per training mple: 3
Locks Upside Down

roboflow

Gambar 3. 3 Data Roboflow 625

Gambar 3.3 menampilkan data yang diperoleh dari platform open dataset Roboflow
dengan total 625 gambar. Dataset tersebut dibagi menjadi train set sebesar 89%
dengan jumlah 557 gambar, validation set sebesar 8% dengan jumlah 51 gambar,

dan fest set sebesar 3% dengan jumlah 17 gambar.

Kemudian data juga diambil dari lahan pertanian kelapa sawit milik seorang petani
di Pesawaran. Berikut merupakan dataset Perkebunan yang diambil secara

langsung dan dikumpulkan.

€ Back 625 Total Images View All Images
°
DATA SAWIT MA...

Dataset Split

557 Images 51 Images 17 Images

oaTa

Preprocessing Auto-Orient: Applied
O Dataset 1 Resize: Stretch to 640x640

Augmentations  Outputs per training example: 3
DEPLOY 90° Rotate: Clockwise, Counter-Clockwise, Upside Down

Gambar 3. 4 Data Perkebunan
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Gambar 3.4 merupakan data perkebunan yang diambil dari lahan pertanian kelapa
sawit milik seorang petani di Pesawaran dengan jumlah 625 gambar dengan
splitting menjadi data train set 89% dengan jumlah data 557 data, valid set 8%
dengan jumlah 51 data dan fest set 3% dengan jumlah 17 data. Seluruh gambar

berekstensi .jpg/.jpeg.
3.7 Data Exploration

Tahapan ini bertujuan untuk memproses dataset yang telah dikumpulkan.
Pengolahan gambar dilakukan agar format setiap gambar memenuhi persyaratan
yang dibutuhkan oleh algoritma deteksi yang digunakan. Proses eksplorasi data ini

dapat dilihat pada diagram alir pada gambar 3.4 berikut.

t Mulai ’

4

Mengumpulkan dataset citra buah sawit

v

Fork dataset di Roboflow untuk pengelolaan
data

/ Input dataset pada Robojflow /

v

Annotasi citra buah sawit berdasarkan
tingkat kematangan

v

Augmentasi data untuk meningkatkan
variabilitas gambar

v

Membagi dataset menjadi training,
validation dan testing set

Gambar 3. 5 Diagram Alir Data Exploration
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Proses pengolahan data dalam penelitian ini diawali dengan pengumpulan citra
digital buah kelapa sawit. Citra yang telah dikumpulkan kemudian diunggah ke
Roboflow, di mana dilakukan proses fork dataset untuk mempermudah pengelolaan
data. Setelah itu, dataset dimasukkan ke dalam Roboflow untuk dilakukan cropping,
yang bertujuan meningkatkan jumlah sampel data yang digunakan dalam validasi.
Setelah proses cropping selesai, citra diekspor dalam format .jpg atau .jpeg untuk

digunakan dalam tahap selanjutnya.

Selanjutnya, citra hasil cropping diproses lebih lanjut dalam Roboflow, di mana
dilakukan anotasi dan pelabelan bounding box pada objek buah kelapa sawit.
Setelah proses anotasi selesai, dataset dibagi menjadi training set, validation set,
dan test set sesuai kebutuhan dalam proses pelatihan model. Untuk meningkatkan
jumlah dan variasi dataset, dilakukan augmentasi data dengan menerapkan
transformasi citra seperti flip horizontal, flip vertikal,, dan rotasi 90°. Teknik
augmentasi ini bertujuan untuk mengurangi risiko overfitting dan meningkatkan

kemampuan model dalam mengenali berbagai variasi objek.

Pada tahap preprocessing, citra diubah ukurannya menjadi 640 x 640 piksel untuk
memastikan konsistensi ukuran dataset serta mengoptimalkan efisiensi komputasi
selama proses pelatihan. Jika citra yang dihasilkan tidak memenuhi rasio tersebut,
latar belakang putih ditambahkan agar tetap proporsional. Proses resizing ini
dilakukan menggunakan interpolasi citra guna memastikan kualitas gambar tetap

optimal.

Dataset yang telah diproses ini kemudian digunakan dalam pelatihan model
Convolutional Neural Network (CNN) dan Faster R-CNN dengan backbone
ResNet50. CNN digunakan untuk klasifikasi tingkat kematangan buah kelapa sawit
berdasarkan fitur warna dan tekstur, sedangkan Faster R-CNN diterapkan untuk
deteksi serta identifikasi kematangan buah sawit dengan lebih akurat melalui
penggunaan Region Proposal Network (RPN) dan fitur yang diekstraksi oleh
ResNet50.



47

3.6 Modelling

Pada tahap selanjutnya merupakan modelling, dimana tahapan modelling ini dapat

dilihat pada diagram alir berikut.

8

/ Import library Tensorflow, Keras, Numpy, OpenCV, Matplotiib, dll / Data Loader dan membagi dataset
¥
/ Import dataseian Roboflow / Load model CNN dan Faster R-CNN dengan backbone Resnet50
* Proses compiiling model
Maanjemen file dan path folder
v
Generate visualisasi klasifikasi data
v
Transformasi data gambar ke format TensorFlow Menyimpan model
v
@ analisis confision matrix

Gambar 3. 6 Diagram Alir Modelling

Tahapan pemodelan dimulai dengan mengimpor berbagai /ibrary penting seperti
TensorFlow, Numpy, OpenCV, dan Matplotlib untuk membaca, memproses, serta
melatih model deep learning. Setelah itu, dataset yang telah diimpor dari Roboflow
dikelola dengan melakukan manajemen file dan path folder guna memastikan data
tersusun dengan baik. Selanjutnya, dilakukan visualisasi klasifikasi data untuk
memastikan bahwa anotasi dan bounding box pada citra buah sawit sudah sesuai
sebelum diproses lebih lanjut. Setelah itu, dataset dikonversi ke dalam format
TensorFlow untuk meningkatkan efisiensi pemrosesan dan mempercepat pelatihan

model.

Pada tahap selanjutnya, dataset dibagi menggunakan Dataloader agar dapat
dikelompokkan menjadi training set, validation set, dan test set sehingga lebih
optimal dalam proses pelatihan dan evaluasi model. Model yang digunakan dalam

penelitian ini adalah Convolutional Neural Network (CNN) dan Faster R-CNN
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dengan backbone ResNet5(0, yang di-load untuk proses klasifikasi dan deteksi objek

buah kelapa sawit berdasarkan tingkat kematangannya.

Proses berikutnya adalah compiling model, yaitu tahap di mana model diuji dan
dilakukan validasi awal untuk menentukan apakah parameter yang digunakan sudah
sesuai. Jika model belum menunjukkan hasil yang optimal, maka dilakukan
penyesuaian parameter seperti jumlah epoch, ukuran batch, dan jenis optimizer
untuk meningkatkan performa model. Setelah model sesuai dengan kriteria yang
diharapkan, model tersebut disimpan untuk digunakan dalam proses prediksi lebih

lanjut.

Tahap akhir dari pemodelan adalah analisis error menggunakan confusion matrix,
yang melibatkan pengukuran metrik seperti accuracy, precision, recall, F1-score
dan mAP guna mengevaluasi kinerja model dalam mengklasifikasikan dan

mendeteksi tingkat kematangan buah sawit secara akurat.

3.8 Evaluation

Analisis data mencakup perbandingan performa model berdasarkan metrik yang
telah ditentukan, seperti accuracy, precision, recall, Fl1-score dan mAP, untuk
menilai seberapa baik masing-masing model dalam tugas klasifikasi. Hasil dari
analisis ini kemudian divisualisasikan dengan menggunakan confusion matrix,
yang memberikan gambaran tentang distribusi kesalahan prediksi antara kelas yang
berbeda, serta grafik performa seperti kurva ROC atau grafik perbandingan metrik

untuk memudahkan pemahaman kinerja model secara keseluruhan.



BAB V PENUTUP

5.1 KESIMPULAN

Adapun Kesimpulan pada penelitian ini adalah sebagai berikut:

1.

Model CNN standar menunjukkan performa terbaik pada dataset
perkebunan dengan akurasi 83,87%, precision 77,93%, recall 75,03%,
Fl-score 75,24%, dan nilai mAP sebesar 84,29%. Model ini bekerja efektif
dalam klasifikasi satu objek per gambar, yakni satu tandan buah sawit, dan
memiliki kecepatan pemrosesan yang tinggi, yaitu 464 FPS menjadikannya
sangat cocok untuk implementasi langsung di lapangan dengan keterbatasan
komputasi dan klasifikasi tingkat kematangan buah sawit pada sistem yang

hanya memerlukan klasifikasi tunggal.

Model Faster R-CNN ResNet5(0 menunjukkan performa terbaik pada dataset
Roboflow 8.400 gambar dengan akurasi 92,72%, precision 100%, recall
91,73%, FI score 95,63%, dan nilai mAP sebesar 86,25%. Berkat
penggunaan Region Proposal Network, model ini mampu melakukan
deteksi objek dengan presisi sempurna, bahkan pada variasi tingkat
kematangan dan kondisi gambar yang beragam. Meskipun kecepatan
pemrosesan hanya 396 FPS, performa akurasi dan presisinya yang tinggi
menjadikannya sangat cocok untuk implementasi pada sistem yang
memerlukan deteksi tingkat kematangan buah sawit secara detail dan multi-
objek.

Ketika jumlah data disamakan menjadi 625 gambar, dataset Roboflow
unggul pada mAP (93,94%) dan precision (92,12%), sedangkan dataset
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4. perkebunan unggul pada recall (85,53%) dan kecepatan inferensi (464

FPS). Keunggulan dataset Roboflow disebabkan tingkat variasi kematangan
buah dan keragaman gambar yang lebih tinggi dibanding dataset
perkebunan, sehingga model dapat belajar mengenali pola objek secara
lebih detail. Sementara itu, keunggulan dataset perkebunan pada recall
menunjukkan kemampuan model untuk lebih adaptif pada kondisi lapangan
yang nyata meskipun variasi datanya lebih terbatas.

Berdasarkan hasil penelitian, dapat disimpulkan bahwa pemilihan model
terbaik sangat bergantung pada struktur dan kualitas dataset. CNN dasar
sangat cocok diterapkan untuk klasifikasi citra dengan satu objek.
Sebaliknya, model seperti Faster R-CNN sangat efektif pada data dengan
banyak objek per gambar dan anotasi yang konsisten, seperti pada dataset

Roboflow.

5.2 SARAN

Adapun saran yang dapat diberikan untuk pengembangan dan penelitian

selanjutnya adalah sebagai berikut:

1.

Diperlukan pengumpulan dataset yang lebih besar dan lebih bervariasi

untuk meningkatkan generalisasi model terhadap kondisi nyata di lapangan.

Penelitian selanjutnya dapat mengeksplorasi arsitektur model lain seperti
EfficientNet, MobileNet, atau kombinasi dengan teknik segmentasi untuk

meningkatkan akurasi dan efisiensi sistem.

. Disarankan untuk mengintegrasikan model klasifikasi ini ke dalam sistem

berbasis perangkat keras seperti kamera atau drone untuk pengaplikasian

langsung di perkebunan.

Pengembangan antarmuka pengguna berbasis web atau aplikasi mobile
dapat mendukung penggunaan model ini oleh petani atau pengelola kebun

secara lebih praktis.
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