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ABSTRACT 

 

 

 

 

PHYSICS-INFORMED NEURAL NETWORKS DISCRITE TIME FOR 

TWO DIMENSIONAL WAVE EQUATION 

 

 

By 

 

 

Muhammad Imron Rosadi 

 

 

This study implements Physics-Informed Neural Networks (PINNs) with a discrete-

time approach to approximate the solution of the two-dimensional wave equation. 

The model is trained on a domain x, y ∈ [−1,1], t ∈ [0,1] with initial conditions 

u(x, y, 0) = sin(πx)sin(πy, ∂u/ ∂t (x, y, 0) = 0, and homogeneous Dirichlet 

boundary conditions. Using 4 hidden layers of 100 neurons and the Adam optimizer 

for 70,000 epochs, the model achieves good accuracy, with mean squared error 

reaching zero at some points and up to 0.002 in others. The method is accurate for 

single-point predictions but less stable across the entire domain. These results 

demonstrate that discrete-time PINNs can effectively approximate solutions to the 

2D wave equation and offer potential for more complex future applications. 

 

 

Keywords: Physics-Informed Neural Networks (PINNs), two-dimensional wave 

equation, discrete time, partial differential equation, numerical method, deep 

learning, Dirichlet boundary condition, neural network approximation. 

  



 
 

 
 

 

 

 

 

 

 

ABSTRAK 

 

 

 

 

PHYSICS-INFORMED NEURAL NETWORKS WAKTU DISKRIT PADA 

PERSAMAAN GELOMBANG DUA DIMENSI 

 

 

Oleh 

 

 

Muhammad Imron Rosadi 

 

 

Penelitian ini mengimplementasikan metode Physics-Informed Neural Networks 

(PINNs) dengan pendekatan waktu diskrit untuk mendekati solusi dari persamaan 

gelombang dua dimensi. Domain permasalahan berada pada x, y ∈ [−1,1], t ∈

[0,1] dengan kondisi awal u(x, y, 0) = sin(πx)sin(πy, ∂u/ ∂t (x, y, 0) = 0, serta 

syarat batas berupa Dirichlet homogen. Model jaringan saraf terdiri dari 4 hidden 

layer dengan masing-masing 100 neuron dan dioptimasi menggunakan algoritma 

Adam selama 70.000 epoch. Hasil menunjukkan bahwa model mampu mendekati 

solusi analitik dengan akurasi yang baik, di mana nilai mean squared error (MSE) 

mencapai nol pada beberapa titik dan maksimal sekitar 0.002 di titik lainnya. 

Metode ini cukup akurat untuk prediksi titik tunggal namun kurang stabil di seluruh 

domain. Secara keseluruhan, pendekatan PINNs waktu diskrit menunjukkan 

potensi dalam menyelesaikan persamaan gelombang dua dimensi dan dapat 

dikembangkan lebih lanjut untuk kasus yang lebih kompleks. 

 

 

Kata-kata Kunci: Physics-Informed Neural Networks (PINNs), persamaan 

gelombang dua dimensi, waktu diskrit, persamaan diferensial parsial, metode 

numerik, pembelajaran dalam, syarat batas Dirichlet, pendekatan jaringan saraf.  
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I. PENDAHULUAN 

 

 

 

 

1.1. Latar Belakang 

 

 

 

Persamaan diferensial adalah persamaan yang melibatkan variabel-variabel 

tak bebas dan derivatif-derivatifnya terhadap variabel-variabel bebas 

(Lumbantoruan J. H. 2019). Persamaan diferensial memegang peranan 

penting dalam rekayasa, fisika, matematika, ilmu ekonomi, dan berbagai 

macam disiplin ilmu lain. Terdapat dua persamaan diferensial yaitu, 

persamaan diferensial biasa (PDB) dan persamaan diferensial parsial (PDP). 

Pada PDP terdapat berbagai persamaan, salah satunya yaitu persamaan 

gelombang. 

 

Persamaan gelombang dua dimensi merupakan salah satu persamaan yang 

terdapat pada persamaan gelombang. Persamaan gelombang merupakan 

persamaan matematis yang menggambarkan propagasi gelombang, seperti 

gelombang suara, gelombang air, atau gelombang elektromagnetik (Evans, 

Lawrence C., 1993). Persamaan gelombang dua dimensi sering digunakan 

untuk menggambarkan perambatan gelombang di permukaan air, suara, dan 

fenomena gelombang lainnya dalam dua dimensi. Salah satu bentuk 

umumnya adalah persamaan gelombang dua dimensi pada bidang 𝑥𝑦. Solusi 

untuk penyelesaian persamaan gelombang dua dimensi ini, dapat diselesaikan 

dengan metode analitik, namun terdapat persamaan gelombang dua dimensi 

yang sangat kompleks sehingga diperlukan suatu metode lainnya, yaitu 

metode numerik. 
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Metode numerik adalah teknik untuk menyelesaikan permasalahan-

permasalahan yang diformulasikan secara matematis dengan cara operasi 

hitungan (arithmetic)( Triatmodjo, B. 2010). Metode ini umumnya digunakan 

untuk menyelesaikan masalah yang sulit atau bahkan tidak dapat diselesaikan 

secara analitik. Dalam metode numerik, masalah matematis dipecahkan 

dengan cara mendekati solusi numerik menggunakan algoritma dan 

komputasi. 

 

Dalam dunia penyelesaian persamaan diferensial parsial (PDP), neural 

network telah muncul sebagai metode numerik yang efektif dan inovatif. 

Artificial neural network pada dasarnya adalah model komputasi paralel 

masif yang meniru fungsi otak manusia (Dongare A.D., et al 2012), dapat 

digunakan untuk mendekati dan menyelesaikan PDP yang seringkali 

kompleks dan sulit dipecahkan dengan metode tradisional. Keunggulan 

utama neural network dalam konteks ini terletak pada kemampuannya untuk 

secara otomatis menyesuaikan diri dan menangkap struktur dan pola dari data 

spasial dan temporal, tanpa memerlukan persamaan eksplisit. Dengan 

memanfaatkan teknik pembelajaran mesin, neural network menyajikan 

pendekatan yang adaptif dan kuat dalam menangani tantangan penyelesaian 

PDP, menjadikannya sebagai alat yang sangat relevan dan inovatif dalam 

penelitian ilmiah dan aplikasi teknik. 

 

Sehingga, dalam penelitian ini akan dibahas mengenai salah satu metode yang 

ada pada neural network, yaitu physics-informed neural networks (PINNs). 

Metode ini akan digunakan untuk mencari solusi yang mendekati dari 

persamaan gelombang dua dimensi dalam waktu diskrit.( Raissi, M., et al 

2021). PINNs merupakan pendekatan inovatif yang menggabungkan 

pengetahuan fisika dengan kapabilitas neural network, sehingga diharapkan 

dapat memberikan hasil yang lebih akurat dan efisien dalam pemodelan 

fenomena fisika kompleks. 
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1.2. Rumusan Masalah 

 

 

 

Bagaimana model physics-informed neural networks pada waktu diskrit 

melakukan interpolasi untuk mendekati solusi dari persamaan diferensial 

gelombang dua dimensi? 

 

 

 

1.3. Tujuan Penelitian 

 

 

 

Penelitian ini bertujuan untuk mengimplementasikan metode physics-

informed neural networks pada model waktu diskrit untuk menginterpolasi 

solusi persamaan diferensial gelombang dua dimensi. 

 

 

 

1.4. Batasan Masalah 

 

 

 

Dalam penelitian ini, penulis akan memberikan batasan masalah agar 

penelitian lebih terarah. Adapun batasan masalah dalam penelitian ini adalah 

sebagai berikut : 

 

1. Dalam skripsi ini akan membahas solusi pendekatan persamaan 

gelombang dua dimensi dengan machine learning berupa neural network 

physics-informed neural networks, dan solusi analitik sebagai 

pembanding dengan menggunakan metode pemisahan variabel. 

 

2. Fokus utama akan diarahkan pada implementasi algoritma physics-

informed neural networks, pengujian, dan evaluasi hasil yang diperoleh 

dari metode tersebut. 
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3. Persamaan diferensial parsial yang digunakan adalah persamaan 

gelombang dua dimensi : 

𝜕2𝑢

𝜕𝑡2
= 𝑐2 (

𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
) , 𝑥 ∈ [−1,1], 𝑦 ∈ [−1,1], 𝑡 ∈ [0,1]      (1.1) 

 

dengan kondisi awal : 

𝑢(𝑥, 𝑦, 0) = sin(πx) sin(𝜋𝑦)                                     (1.2) 

 

dengan kecepatan awal : 

𝜕𝑢

𝜕𝑡
(𝑥, 𝑦, 0) = 0                                                    (1.3) 

 

untuk syarat batas pada penelitian ini digunakan syarat batas Dirichlet 

yang homogen: 

𝑢(−1, 𝑦, 𝑡) = 𝑢(1, 𝑦, 𝑡) = 0                                     (1.4) 

𝑢(𝑥,−1, 𝑡) = 𝑢(𝑥, 1, 𝑡) = 0                                     (1.5) 

 

 

 

1.5. Manfaat Penelitian 

 

 

 

Penulis berharap melalui penelitian ini dapat mengetahui kegunaan physics-

informed neural networks dalam mencari solusi untuk persamaan diferensial 

gelombang dua dimensi. 

  



 
 

 
 

 

 

 

 

 

 

II. TINJAUAN PUSTAKA 

 

 

 

 

2.1. Persamaan Diferensial (PD) 

 

 

 

Menurut Darmawijoyo (2019) persamaan diferensial adalah persamaan yang 

memuat derivatif (turunan) dari suatu fungsi.  

 

Persamaan diferensial (PD) secara umum persamaan yang menghubungkan 

suatu fungsi yang tidak diketahui dengan turunan-turunannya. Bentuk umum 

dari sebuah persamaan diferensial dalam berbagai buku dan artikel 

diklasifikasikan menjadi persamaan diferensial biasa (PDB) dan persamaan 

diferensial parsial (PDP). 

 

Berikut beberapa persamaan umum persamaan diferensial. 

1. Bentuk Umum Persamaan Diferensial Biasa (PDB) Orde ke-n 

Untuk Persamaan Diferensial Biasa (PDB), yang hanya melibatkan 

turunan terhadap satu variabel bebas (misalnya 𝑥), bentuk umum orde ke-

𝑛 adalah: 

𝐹 (𝑥, 𝑦,
𝑑𝑦

𝑑𝑥
,
𝑑2𝑦

𝑑𝑥2
, … ,

𝑑𝑛𝑦

𝑑𝑥𝑛
) = 0                            (2.1) 

Di mana: 

• 𝑥 adalah variabel bebas. 

• 𝑦 adalah fungsi tak diketahui dari 𝑥, yaitu 𝑦(𝑥). 

• 
𝑑𝑦

𝑑𝑥
,
𝑑2𝑦

𝑑𝑥2
, … ,

𝑑𝑛𝑦

𝑑𝑥𝑛
 adalah turunan pertama, kedua, hingga ke-𝑛 dari 𝑦 

terhadap 𝑥. 

• 𝐹 adalah fungsi yang menghubungkan 𝑥, 𝑦, dan turunan-turunannya. 
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• Orde 𝑛 adalah orde turunan tertinggi yang muncul dalam persamaan. 

 

Kadang-kadang, PDB juga ditulis dalam bentuk eksplisit untuk turunan 

tertinggi: 

𝑑𝑛𝑦

𝑑𝑥𝑛
= 𝑓 (𝑥, 𝑦,

𝑑𝑦

𝑑𝑥
,
𝑑2𝑦

𝑑𝑥2
, … ,

𝑑𝑛−1𝑦

𝑑𝑥𝑛−1
)                      (2.2) 

 

PDB orde ke-n adalah yang paling umum digunakan untuk memodelkan 

fenomena yang melibatkan laju perubahan suatu kuantitas terhadap satu 

variabel (Boyce, DiPrima, & Meade, 2017). 

 

2. Bentuk Umum Persamaan Diferensial Parsial (PDP) 

Untuk persamaan diferensial parsial, yang melibatkan turunan parsial 

terhadap dua atau lebih variabel bebas, bentuk umumnya akan jauh lebih 

kompleks. Sebagai contoh, untuk fungsi 𝑢 yang bergantung pada variabel 

bebas 𝑥, 𝑦, 𝑧, 𝑡: 

𝐹 (𝑥, 𝑦, 𝑧, 𝑡, 𝑢,
𝜕𝑢

𝜕𝑥
,
𝜕𝑢

𝜕𝑦
,
𝜕𝑢

𝜕𝑧
,
𝜕𝑢

𝜕𝑡
,
𝜕2𝑢

𝜕𝑥2
,
𝜕2𝑢

𝜕𝑥𝑦
, …) = 0          (2.3) 

 

PDP digunakan untuk memodelkan fenomena yang bervariasi dalam 

ruang dan waktu, seperti difusi panas, gelombang suara, atau dinamika 

fluida (Finley, 2024). 

 

 

 

2.2. Persamaan Diferensial Parsial (PDP) 

 

 

 

Persamaan Diferensial Parsial (PDP) adalah suatu persamaan diferensial yang 

memuat fungsi yang tidak diketahui (variabel tak bebas) yang bergantung 

pada dua atau lebih variabel bebas, dan melibatkan turunan parsial dari fungsi 

tersebut terhadap variabel-variabel bebasnya (Zill & Cullen, 2017). 
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Berbeda dengan Persamaan Diferensial Biasa (PDB) yang hanya melibatkan 

turunan terhadap satu variabel bebas, PDP digunakan untuk memodelkan 

fenomena yang bervariasi dalam banyak dimensi, baik itu ruang (dua atau tiga 

dimensi) maupun waktu (Finley, 2024). 

 

Contoh Persamaan Diferensial Parsial: 

Berikut adalah beberapa contoh PDP yang sering muncul dalam berbagai 

bidang ilmu pengetahuan dan teknik: 

 

Persamaan laplace (PDP Orde 2): 

Persamaan ini sering digunakan dalam fisika dan teknik untuk 

menggambarkan distribusi potensial dalam medan listrik atau gravitasi di 

daerah bebas muatan, atau distribusi suhu dalam keadaan tunak (steady-

state). 

𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
= 0                                            (2.4) 

 

Di sini, 𝑢 adalah fungsi dari 𝑥 dan 𝑦. 

 

Persamaan gelombang (PDP Orde 2): 

Persamaan ini memodelkan fenomena gelombang, seperti gelombang suara, 

gelombang cahaya, atau getaran pada tali atau membran. 

𝜕2𝑢

𝜕𝑥2
=
1

𝑣2
𝜕2𝑢

𝜕𝑡2
                                              (2.5) 

 

Di sini, 𝑢 adalah fungsi dari posisi (𝑥) dan waktu (𝑡), dan 𝑣 adalah kecepatan 

gelombang. 

 

Persamaan panas / difusi (PDP Orde 2): 

Persamaan ini menggambarkan bagaimana panas atau konsentrasi suatu zat 

menyebar melalui suatu medium seiring waktu. 

𝜕𝑢

𝜕𝑡
= 𝛼 (

𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
+
𝜕2𝑢

𝜕𝑧2
)                                (2.6) 
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Di sini, 𝑢 adalah fungsi dari posisi (𝑥, 𝑦, 𝑧) dan waktu (𝑡), dan 𝛼 adalah 

konstanta difusivitas termal atau difusi. 

 

 

 

2.3. Persamaan Gelombang 

 

 

 

Persamaan gelombang merupakan persamaan matematis yang 

menggambarkan propagasi gelombang, seperti gelombang suara, gelombang 

air, atau gelombang elektromagnetik. Bentuk persamaan umum gelombang 

adalah : 

𝑢𝑡𝑡 − ∆𝑢 = 0                                             (2.7) 

 

Bergantung pada syarat awal dan kondisi batas. Di mana 𝑡 > 0 dan 𝑥 ∈ 𝑈, di 

mana 𝑈 ⊂  ℝ𝑛 terbuka. 𝑈̅  × [0,∞) → ℝ, 𝑢 = 𝑢(𝑥, 𝑡), dan Laplacian ∆ 

diambil sehubungan dengan variable spasial 𝑥 = (𝑥1, … , 𝑥𝑛). Biasanya 

ditulis sebagai berikut 

∎𝑢 = 𝑢𝑡𝑡 − ∆𝑢.                                           (2.8) 

(Evans, Lawrence C., 1993) 

 

 

 

2.3.1. Persamaan Gelombang Dua Dimensi 

 

 

 

Gelombang dua dimensi adalah gelombang yang merambat dalam dua 

arah pada sebuah permukaan atau bidang. Persamaan umum gelombang 

dua dimensi adalah 

𝜕2𝑢

𝜕𝑡2
= 𝑐2 (

𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
)                           (2.9) 

(Bachrun, R. S., Khaeruddin, K., & Mahie, A. G. 2015) 

 

di mana : 
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- 𝑢 adalah fungsi perpindahan gelombang pada titik (𝑥, 𝑦) pada waktu 

𝑡. 

- 𝑐 adalah kecepatan rambat gelombang. 

- 
𝜕2𝑢

𝜕𝑡2
 adalah percepatan gelombang. 

- 
𝜕2𝑢

𝜕𝑥2
 dan 

𝜕2𝑢

𝜕𝑦2
 adalah perubahan kedua dari perpindahan gelombang 

terhadap koordinat 𝑥 dan 𝑦. 

 

 

 

2.4. Artificial Neural Network (ANN) 

 

 

 

Artificial neural network pada dasarnya adalah model komputasi paralel 

masif yang meniru fungsi otak manusia. Sebuah ANN terdiri dari sejumlah 

besar prosesor sederhana yang dihubungkan oleh koneksi berbobot. Dengan 

analogi, node pemrosesan dapat disebut “neuron”. Output setiap node hanya 

bergantung pada informasi yang tersedia secara lokal di node, baik yang 

disimpan secara internal atau tiba melalui koneksi berbobot. Setiap unit 

menerima input dari banyak node lain dan mengirimkan output nya ke node 

lain. Dengan sendirinya, satu elemen pemrosesan tidak terlalu kuat; itu 

menghasilkan output skalar dengan nilai numerik tunggal, yang merupakan 

fungsi non-linier sederhana dari input nya. 

 

Saat membuat model fungsional neuron biologis, ada tiga komponen dasar 

yang penting. Pertama, sinapsis neuron dimodelkan sebagai bobot. Kekuatan 

hubungan antara input dan neuron ditentukan oleh nilai bobotnya. Nilai bobot 

negatif mencerminkan hubungan penghambatan, sedangkan nilai positif 

menunjukkan hubungan rangsang. Dua, komponen berikutnya memodelkan 

aktivitas sebenarnya di dalam sel neuron. Penambah merangkum semua input 

yang diubah berdasarkan bobotnya masing-masing. Kegiatan ini disebut 

sebagai kombinasi linier. Terakhir, fungsi aktivasi mengontrol amplitudo 

output neuron. Kisaran output yang dapat diterima biasanya antara 0 (nol) 
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dan 1 (satu), atau -1 (minus satu) dan 1 (satu). Secara matematis, proses ini 

dijelaskan pada gambar 2.1 

 

 
Gambar 2. 1. Model matematika ANN 

 

Dari model ini interval aktivitas neuron dapat ditunjukan, 

𝑣𝑘 =∑𝑤𝑘𝑗𝑥𝑗

𝑝

𝑗=1

                                          (2.10) 

 

Output dari neuron, 𝑌𝑘, oleh karena itu, merupakan hasil dari beberapa 

fungsi aktivasi pada nilai 𝑉𝑘 (Dongare A.D., et al. 2012). 

 

 

 

2.4.1. Feed Forward Networks 

 

 

 

Ini adalah subkelas jaringan akrilik di mana koneksi diperbolehkan dari 

node di lapisan i hanya ke node di lapisan i+1 seperti yang ditunjukkan 

pada Gambar.2.2. Jaringan-jaringan ini digambarkan secara ringkas 

dengan urutan angka yang menunjukkan jumlah node di setiap lapisan. 
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Misalnya saja jaringan yang ditunjukkan pada Gambar 2.2 adalah feed-

forward networks 3-2-3-2; berisi tiga node pada lapisan input (layer 

nol), dua node pada lapisan tersembunyi pertama (layer satu), tiga node 

pada lapisan tersembunyi kedua (layer dua), dan dua node pada lapisan 

output (layer tiga). 

 

Jaringan-jaringan ini, umumnya tidak lebih dari empat lapisan, 

merupakan salah satu jaringan saraf yang paling umum digunakan, 

sedemikian rupa sehingga beberapa pengguna mengidentifikasi frasa 

"neural network" sebagai jaringan feed-forward saja. Secara 

konseptual, node di lapisan yang lebih tinggi secara berturut-turut 

mengabstraksi fitur tingkat yang lebih tinggi dari lapisan sebelumnya. 

 

Dalam literatur tentang jaringan saraf, istilah "feed-forward" kadang-

kadang digunakan untuk merujuk pada jaringan berlapis atau akrilik 

(Dongare A.D., et al. 2012).  

 

 

Gambar 2. 2. Feed feed-forward networks 
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2.4.2. Back Propagation Network 

 

 

 

Algoritma back propagation digunakan dalam ANN feed-forward 

berlapis. Ini berarti bahwa neuron buatan disusun berlapis-lapis, dan 

mengirimkan sinyalnya "feed-forward", dan kemudian kesalahan 

disebarkan ke belakang. Jaringan menerima input oleh neuron pada 

lapisan input, dan output jaringan diberikan oleh neuron pada lapisan 

output. Mungkin ada satu atau lebih lapisan tersembunyi perantara. 

 

Algoritma back propagation menggunakan pembelajaran terawasi, 

artinya kita memberikan contoh input dan output yang ingin dihitung 

oleh jaringan kepada algoritma, lalu kesalahan (perbedaan antara hasil 

aktual dan yang diharapkan) dihitung. 

 

Ide dari algoritma back propagation adalah untuk mengurangi 

kesalahan ini, hingga ANN mempelajari data pelatihan. Pelatihan 

dimulai dengan bobot acak, dan tujuannya adalah untuk 

menyesuaikannya sehingga kesalahannya minimal. 

 

Jaringan back propagation menjadi penting karena kekurangan 

jaringan lain yang tersedia. Jaringan merupakan jaringan multi lapisan 

(multi layer perception) yang memuat paling sedikit satu hidden layer 

selain lapisan input dan output. Jumlah hidden layer & jumlah neuron 

di setiap hidden layer harus ditetapkan berdasarkan aplikasi, 

kompleksitas masalah, dan jumlah input dan output. Penggunaan fungsi 

transfer log-sigmoid non-linier memungkinkan jaringan untuk 

mensimulasikan non-linier dalam sistem praktis. Karena banyaknya 

keuntungan ini, jaringan back propagation dipilih untuk algoritma 

pekerjaan ini.  

 

Implementasi model back propagation terdiri dari dua tahap. Fase 

pertama disebut pelatihan, sedangkan fase kedua disebut pengujian. 
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Pelatihan dalam back propagation didasarkan pada aturan gradien yang 

layak yang cenderung menyesuaikan bobot dan mengurangi kesalahan 

sistem dalam jaringan. Input layer memiliki jumlah neuron yang sama 

dengan input. Demikian pula, neuron output layer sama jumlahnya 

dengan jumlah output. Jumlah neuron hidden layer ditentukan dengan 

metode coba-coba menggunakan data eksperimen (Dongare A.D., et al. 

2012). 

 

 

 

2.4.3. Multi Layer Perceptron 

 

 

 

Multi Layer Perceptron merupakan salah satu varian dari artificial 

neural network. Arsitektur MLP dapat terdiri dari satu atau lebih hidden 

layer (lapisan tersembunyi). Proses pelatihan (training) pada MLP 

terdiri dari dua bagian utama: yaitu perhitungan maju (feed-forward) 

dan perhitungan mundur (backward). Perhitungan maju digunakan 

untuk menghitung output dari masing-masing hidden layer berdasarkan 

nilai input, nilai bobot saat ini, dan berdasarkan fungsi aktivasi yang 

digunakan. Sedangkan perhitungan mundur digunakan untuk 

memperbarui nilai bobot sesuai dengan nilai error yang telah 

ditentukan. Proses pelatihan akan berhenti saat nilai MSE (Mean 

Square Error) sudah dapat diterima (Naf'an, M. Z., & Arifin, J. 2017). 

 

 

 

2.4.4. Fungsi Aktivasi 

 

 

 

Dalam neural network, setiap node pada hidden layer dan output node 

menggunakan suatu fungsi linear atau nonlinier yang fungsinya untuk 

menentukan nilai dari output node tersebut. Fungsi tersebut dikenal 

dengan fungsi aktivasi (Goodfellow I., Bengio Y., & Courville A. 

2016). 
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Fungsi aktivasi dalam jaringan saraf tiruan memperkenalkan non-

linearitas, memungkinkan jaringan untuk memodelkan dan belajar dari 

pola-pola kompleks dalam data. Ini juga membantu mengendalikan 

output jaringan dalam rentang tertentu, yang sangat penting untuk 

tugas-tugas seperti klasifikasi. Berikut adalah beberapa fungsi aktivasi 

yang umum digunakan dalam neural network, 

 

1. Sigmoid 

𝜎(𝑥) =
1

1 + 𝑒−𝑥
                                 (2.11) 

 

2. Tanh (Hyperbolic Tangent) 

tanh(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
                           (2.12) 

 

3. ReLU (Rectified Linear Unit) 

𝑅𝑒𝐿𝑢(𝑥) = max(0, 𝑥)                               (2.13) 
 

4. Leaky ReLU 

𝐿𝑒𝑎𝑘𝑦 𝑅𝑒𝐿𝑈(𝑥) = {
𝑥
𝛼𝑥
         

𝑗𝑖𝑘𝑎 𝑥 > 0
𝑗𝑖𝑘𝑎 𝑥 ≤ 0

               (2.14) 

 

dengan 𝛼 adalah nilai kecil seperti 0.001. 
 

5. Softmax 

𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑥𝑖) =
𝑒𝑥𝑖

∑ 𝑒𝑥𝑗𝑁
𝑗=1

                          (2.15) 

 

 

 

2.5. Mean Squared Error 

 

 

 

Mean squared error (MSE) adalah metrik evaluasi yang umum digunakan 

dalam statistik dan machine learning untuk mengukur seberapa akurat sebuah 

model regresi dalam memprediksi nilai numerik. MSE menghitung selisih 

antara nilai prediksi model dan nilai analitik dari data, kemudian 

mengkuadratkan selisih tersebut agar tidak ada selisih yang bernilai negatif. 
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Kemudian, selisih kuadrat dijumlahkan dan diambil rata-rata dari semua 

sampel data. 

 

Secara matematis, MSE dapat dihitung dengan menggunakan persamaan 

berikut: 

𝑀𝑆𝐸 =
1

𝑁
∑(𝑦𝑛 − 𝑦̂𝑛)

2                                     

𝑁

𝑛=1

(2.16) 

 

di mana N adalah jumlah sampel data, 𝑦𝑛 adalah nilai sebenarnya dari data 

ke-n, dan 𝑦̂𝑛 adalah nilai prediksi dari model untuk data ke-n (Liu, B. et al. 

2021). 

 

 

 

2.6. Physics-Informed Neural Networks (PINNs) 

 

 

 

Physics informed neural networks (PINNs) adalah kelas model pembelajaran 

mesin di mana PDP yang mengatur dipenuhi melalui MSE . Kemampuan 

optimasi dan prediksi jaringan saraf yang efisien dieksploitasi dalam 

pendekatan PINN. Dalam PINN, jaringan saraf dilatih untuk memprediksi 

solusi pada titik mana pun di seluruh domain spasial-temporal. Perhatikan 

bentuk umum persamaan diferensial parsial 𝑚𝑡ℎ orde (PDP) : 

𝑢𝑡 = 𝐹 (𝑢(𝑥, 𝑡), 𝑢𝑥
(1)(𝑥, 𝑡), 𝑢𝑥

(2)(𝑥, 𝑡), … , 𝑢𝑥
(𝑚)(𝑥, 𝑡)) , 𝑥 ∈ Ω ⊂ ℝ, 𝑡 ∈ (0, 𝑇] 

 (2.17) 

 

Di mana, Ω adalah himpunan terbuka ℝ. F adalah fungsi non linier solusi dari 

𝑢(𝑥, 𝑡) dan turunan spasial (𝑢𝑥
(1)(𝑥, 𝑡), 𝑢𝑥

(2)(𝑥, 𝑡), … , 𝑢𝑥
(𝑚)(𝑥, 𝑡)) di mana 𝑥 

dan 𝑡 masing masing adalah koordinat ruang dan waktu. Kondisi batas dan 

awal yang sesuai adalah 

𝑢(𝑥, 0) = 𝜙(𝑥), 𝑥 ∈ 𝛺 (2.18) 

𝑢(−𝑥, 𝑡) = 𝑢(𝑥, 𝑡), (𝑥, 𝑡) ∈ 𝑇 × (0, 𝑇] (2.19) 
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𝑢𝑥
(1)(−𝑥, 𝑡) = 𝑢𝑥

(1)(𝑥, 𝑡), (𝑥, 𝑡) ∈ 𝑇 × (0, 𝑇] (2.20) 

 

Di mana, 𝑇 adalah batas dari Ω. PD, kondisi awal dan batas (ditunjukan pada 

(2.12-2.13) membentuk masalah syarat awal dan batas yang 

dipertimbangkan. Kondisi batas diambil secara periodik dan kondisi awal 

merupakan fungsi real. 

 

PINNs memperkirakan peta antar titik dalam domain spatio-temporal dengan 

solusi PDP. Parameter neural network diinisialisasi secara acak dan 

diperbarui secara berulang dengan meminimalkan MSE yang menerapkan 

PDP. MSE PINNs terdiri dari tiga komponen kesalahan, untuk prediksi 

neural network seperti pada kondisi awal, kondisi batas, dan PDP. Misalkan 

𝑢̂(𝑥, 𝑡) adalah output neural network. Tiga komponen MSE PINNs diberikan 

di bawah ini: 

• MSE pada kondisi awal 

MSE𝐼 =
1

𝑁𝑖
∑(𝑢̂(𝑥𝑘

𝑖 , 0) − 𝑢𝑘
𝑖 )
2
, 𝑥𝑘

𝑖 ∈ Ω

𝑁𝑖

𝑘=1

           (2.21) 

 

di mana 𝑢̂(𝑥𝑘
𝑖 , 0) adalah keluaran jaringan saraf dan 𝑢𝑘

𝑖  adalah kondisi 

awal yang diberikan pada (𝑥𝑘
𝑖 , 0). Di sini, superskrip, (•)𝑖 berarti kondisi 

awal. 

• MSE pada kondisi batas 

MSE𝐵 =
1

𝑁𝑏
∑∑(𝑢̂(𝑑−1)(𝑥𝑘

𝑏 , 𝑡𝑘
𝑏) − 𝑢̂(𝑑−1)(−𝑥𝑘

𝑏 , 𝑡𝑘
𝑏))

2

,

𝑛𝑑

𝑑=1

𝑁𝑏

𝑘=1

 

(𝑥𝑘
𝑏 , 𝑡𝑘

𝑏) ∈ 𝑇 × (0, 𝑇] (2.22) 

 

di mana 𝑛𝑑 adalah turunan tertinggi yang periodisitasnya diterapkan pada 

batasnya, T. Di sini, superskrip (•)𝑏 berarti kondisi batas. 

• MSE akibat sisa persamaan diferensial parsial 

𝑅 ≔ 𝑢̂𝑡 − 𝐹(𝑢̂, 𝑢̂𝑥
(1)
, 𝑢̂𝑥
(2)
, … , 𝑢̂𝑥

(𝑚)
) 
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MSE𝑅 =
1

𝑁𝑟
∑ (𝑅(𝑥𝑘

𝑟 , 𝑡𝑘
𝑟))

2
,

𝑁𝑟
𝑘=1  (𝑥𝑘

𝑟 , 𝑡𝑘
𝑟) ∈ Ω × (0, T] (2.23) 

 

Superskrip, (•)𝑟 adalah singkatan dari sisa PDP. 𝑥𝑘
𝑖  dan (𝑥𝑘

𝑏 , 𝑡𝑘
𝑏), mewakili 

himpunan titik di mana kesalahan awal dan batas dihitung. Kesalahan 

sisa/kolokasi dihitung pada titik kolokasi (𝑥𝑘
𝑟 , 𝑡𝑘

𝑟). Titik-titik pada domain 

dan batas ini diperoleh dengan menggunakan pendekatan latin hypercube 

sampling. Oleh karena itu, MSE total neural network diberikan dengan 

menambahkan semua MSE yang disebutkan di atas. 

MSE = MSE𝐼 +MSE𝐵 +MSE𝑅 (2.24) 

 

Setelah PINNs dilatih, keakuratan solusi yang diprediksi dihitung 

sehubungan dengan solusi yang benar/tepat pada titik yang tidak diketahui 

(disebut titik pengujian). Solusi yang sangat akurat dari masalah nilai batas 

awal diperoleh dengan algoritma numerik berbasis polinomial chebyshev 

dan dianggap sebagai solusi numerik. Kesalahan total relatif (𝜀𝑡𝑜𝑡𝑎𝑙) dari 

prediksi PINNs pada seluruh domain diperoleh dengan menormalkan 

kesalahan terhadap solusi sebenarnya sebagai 

𝜀𝑡𝑜𝑡𝑎𝑙 =
[
1
𝑁
∑ (𝑢̂(𝑥𝑘, 𝑡𝑘) − 𝑢(𝑥𝑘, 𝑡𝑘))

2𝑁
𝑘=1 ]

1/2

[
1
𝑁
∑ (𝑢(𝑥𝑘, 𝑡𝑘))2
𝑁
𝑘=1 ]

1/2
 

 (2.25) 

 

Kesalahan relatif (𝜀) prediksi PINNs pada setiap titik diperoleh dengan 

menormalkan kesalahan absolut terhadap solusi analitiknya sebagai 

𝜀(𝑥𝑘, 𝑡𝑘) =
|𝑢̂(𝑥𝑘, 𝑡𝑘) − 𝑢(𝑥𝑘, 𝑡𝑘)|

[∑ (𝑢(𝑥𝑘, 𝑡𝑘))2
𝑁
𝑘=1 ]1/2

 

 (2.26) 

 

Di mana 𝑢(𝑥𝑘, 𝑡𝑘) adalah solusi sebenarnya dan 𝑢̂(𝑥𝑘, 𝑡𝑘) adalah prediksi 

jaringan saraf untuk himpunan N titik pengujian {(𝑥𝑘, 𝑡𝑘)}𝑘=1
𝑁 , (𝑥𝑘, 𝑡𝑘) ∈

Ω × (0, 𝑇] Untuk semua perbandingan antara solusi yang benar dan solusi 
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yang diprediksi, kesalahan total relatif '𝜀𝑡𝑜𝑡𝑎𝑙 ' dan kesalahan relatif '𝜀' 

digunakan (Mattey, R., & Ghosh, S. 2021). 

 

 

 

2.6.1 Model Waktu PINNs 

 

 

 

Dalam PINNs terdapat dua kelas masalah utama (Raissi, M., et al 

2021): solusi berbasis data dan penemuan berbasis data dari 

persamaan diferensial parsial. Bergantung pada sifat dan pengaturan 

data yang tersedia, Raissi et al merancang dua jenis algoritma yang 

berbeda, yaitu model waktu kontinu dan model waktu diskrit. 

1. Waktu Kontinu 

Pada model waktu kontinu membentuk keluarga baru dari 

aproksimator fungsi spasial-temporal yang efisien terhadap data. 

Karakteristik pendekatan waktu kontinu menganggap waktu (𝑡) 

sebagai variabel kontinu, yang merupakan bagian dari domain 

input neural network. Persamaan diferensial parsial (PDP) yang 

digunakan untuk mendeskripsikan fenomena fisik diperlakukan 

dalam ruang-waktu kontinu. Derivatif terhadap waktu (
𝜕

𝜕𝑡
) 

dihitung menggunakan teknik diferensiasi otomatis langsung 

pada jaringan. 

 

Model menerima input berupa pasangan (𝑥, 𝑡), di mana 𝑥 adalah 

posisi spasial dan 𝑡 adalah temporal. PDP yang memodelkan 

sistem fisik dievaluasi pada output jaringan. Misalnya, persamaan 

panas: 

𝜕𝑢

𝜕𝑡
− 𝛼∆𝑢 = 0 

 

di mana turunan waktu 
𝜕𝑢

𝜕𝑡
 dan turunan spasial ∆𝑢 dihitung secara 

otomatis oleh jaringan. 
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Keuntungan waktu kontinu tidak memerlukan diskritisasi waktu, 

cocok untuk masalah di mana solusi kontinu atau halus 

diinginkan, dan fleksibilitas lebih tinggi untuk berbagai domain 

waktu. 

2. Waktu Diskrit 

Pada model waktu diskrit memungkinkan penggunaan skema 

penjejakan waktu Runge–Kutta implisit yang sangat akurat 

dengan jumlah tahap yang tidak terbatas. 

 

Karakteristik pendekatan waktu diskrit memandang waktu dalam 

langkah-langkah diskrit (𝑡𝑛, 𝑡𝑛+1, 𝑡𝑛+2, … ), pendekatan ini 

menggunakan teknik semidiskritisasi, di mana waktu 

diperlakukan sebagai diskrit tetapi variabel spasial tetap kontinu, 

turunan waktu 
𝜕𝑢

𝜕𝑡
 diaproksimasi menggunakan skema numerik 

seperti metode beda hingga. 

 

Diskritisasi waktu pada rentang waktu ([0, 𝑇]) dibagi menjadi 

beberapa langkah diskrit 𝑡𝑛, 𝑡𝑛+1, 𝑡𝑛+2, …, dan untuk diskritisasi 

PDP kontinu diubah menjadi bentuk diskrit untuk waktu, tetapi 

tetap kontinu dalam ruang. Contohnya: 

𝑢(𝑥, 𝑡𝑛+1) − 𝑢(𝑥, 𝑡𝑛)

∆𝑡
− 𝛼∆𝑢 = 0 

 

di mana ∆𝑡 adalah langkah waktu diskrit. 

 

Kelebihan dari model waktu diskrit lebih cocok untuk masalah 

dengan perubahan waktu yang diskrit atau kasus dengan langkah 

waktu eksplisit dan mengurangi kompleksitas turunan terhadap 

waktu dalam jaringan.  



 
 

 
 

 

 

 

 

 

 

III. METODE PENELITIAN 

 

 

 

 

3.1. Tempat dan Waktu Penelitian 

 

 

 

Penelitian ini dilakukan di Jurusan Matematika Fakultas Matematika dan 

Ilmu pengetahuan Alam Universitas Lampung dan waktu penelitian 

dilakukan pada semester genap tahun akademik 2024/2025 

 

 

 

3.2. Metodologi Penelitian 

 

 

 

Physics informed neural networks (PINNs) adalah kelas model pembelajaran 

mesin di mana PDP yang mengatur dipenuhi melalui MSE neural network. 

Kemampuan optimasi dan prediksi neural network yang efisien dieksploitasi 

dalam pendekatan PINNs. Dalam PINNs, jaringan saraf dilatih untuk 

memprediksi solusi pada titik mana pun di seluruh domain spasial-temporal 

(Mattey, R., & Ghosh, S. 2021). Berikut langkah langkah dalam penelitian 

ini: 

 

1. Menentukan persamaan gelombang dua dimensi yang akan digunakan. 

Persamaan gelombang secara umum: 

𝜕2𝑢

𝜕𝑡2
= 𝑐2 (

𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
)                                 (3.1) 

 

dengan kondisi awal : 
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𝑢(𝑥, 𝑦, 0) = 𝑓(𝑥, 𝑦)                                    (3.2) 

 

dengan kecepatan awal : 

𝜕𝑢

𝜕𝑡
(𝑥, 𝑦, 0) = 𝑔(𝑥, 𝑦)                                      (3.3) 

 

untuk syarat batas pada penelitian ini digunakan syarat batas Dirichlet 

yang homogen: 

𝑢(𝑥𝑚𝑖𝑛, 𝑦, 𝑡) = 𝑢(𝑥𝑚𝑎𝑥, 𝑦, 𝑡) = 0 (3.4) 

𝑢(𝑥, 𝑦𝑚𝑖𝑛, 𝑡) = 𝑢(𝑥, 𝑦𝑚𝑎𝑥 , 𝑡) = 0 (3.5) 

 

2. Diskritisasi spasial dan temporal. 

Untuk mendefinisikan grid diskrit bagi sebuah domain, kita perlu 

menentukan langkah diskrit untuk dimensi spasial dan temporal. 

 

1. Diskritisasi spasial 

Dalam dimensi spasial, domain dibatasi oleh interval 𝑥 ∈

[𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥]dan 𝑦 ∈ [𝑦𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥]. Untuk mendiskritisasi interval ini, 

kita membaginya menjadi 𝑁𝑥 dan 𝑁𝑦 titik diskrit, masing-masing 

untuk 𝑥 dan 𝑦. Jika kita misalkan 𝑖 = 0,1, … ,𝑁𝑥 dan 𝑗 = 0,1, … , 𝑁𝑦, 

maka langkah diskrit spasial 𝛥𝑥 dan 𝛥𝑦 dapat dihitung sebagai: 

𝛥𝑥 =
𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

𝑁𝑥
                                 (3.6)  

 

Dan 

𝛥𝑦 =
𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛

𝑁𝑦
                                 (3.6)  

 

Dengan langkah diskrit ini, titik-titik grid spasial 𝑥i dan 𝑦j 

didefinisikan sebagai: 

𝑥𝑖 = −1 + 𝑖∆𝑥 dengan 𝑖 = 0,1,2, … ,𝑁𝑥 (3.8) 

 

Dan 
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𝑦𝑗 = −1 + 𝑗∆𝑦 dengan 𝑗 = 0,1,2, … , 𝑁𝑦 (3.9) 

 

2. Diskritisasi temporal 

Di dimensi temporal, domain dibatasi oleh interval 𝑡 ∈ [𝑡𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥]. 

Interval ini dibagi menjadi 𝑁𝑡 titik diskrit. Jika kita misalkan 𝑘 =

0,1, … ,𝑁𝑡, maka langkah diskrit temporal 𝛥𝑡 adalah: 

𝛥𝑡 =
𝑡𝑚𝑎𝑥 − 𝑡𝑚𝑖𝑛

𝑁𝑡
                                 (3.10) 

 

Selanjutnya, grid waktu 𝑡𝑘 didefinisikan sebagai: 

𝑡𝑘 = −1 + 𝑘∆𝑡 dengan 𝑘 = 0,1,2, … , 𝑁𝑦 (3.9) 

 

3. Membuat struktur physics-informed neural networks yang sesuai. 

Untuk membuat struktur physics-informed neural networks pertama, pilih 

model struktur jaringan yang diinginkan. Kedua, pilih model physics-

informd neural networks dan lapisan-lapisan input, hidden, dan output 

serta jumlah neuron setiap lapisan. 

 

4. Memformulasikan MSE. 

Formulasikan MSE yang menggabungkan error dari PDP, kondisi awal, 

dan kondisi batas. 

 

• Persmaan gelombang dua dimensi 

𝜕2𝑢

𝜕𝑡2
= 𝑐2 (

𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
) 

 

• Kondisi awal : 

𝑢(𝑥, 𝑦, 0) = 𝑓(𝑥, 𝑦) 

𝜕𝑢

𝜕𝑡
(𝑥, 𝑦, 0) = 𝑔(𝑥, 𝑦)  

 

• Syarat batas : 
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𝑢(𝑥𝑚𝑖𝑛, 𝑦, 𝑡) = 𝑢(𝑥𝑚𝑎𝑥, 𝑦, 𝑡) = 0 

𝑢(𝑥, 𝑦𝑚𝑖𝑛, 𝑡) = 𝑢(𝑥, 𝑦𝑚𝑎𝑥, 𝑡) = 0 

 

Formulasikan MSE: 

• MSE dari PDP: 

𝑀𝑆𝐸𝑅 = 
1

𝑁𝑟
∑(

𝜕2𝑢̂

𝜕𝑡2
(𝑥𝑘
𝑟 , 𝑦𝑘

𝑟 , 𝑡𝑘
𝑟)

𝑁𝑟

𝑘=1

− 𝑐2 (
𝜕2𝑢̂

𝜕𝑥2
(𝑥𝑘
𝑟 , 𝑦𝑘

𝑟 , 𝑡𝑘
𝑟) +

𝜕2𝑢̂

𝜕𝑦2
(𝑥𝑘
𝑟 , 𝑦𝑘

𝑟 , 𝑡𝑘
𝑟)))

2

 

 (3.12) 

 

• MSE dari kondisi awal: 

𝑀𝑆𝐸𝐼 =
1

𝑁𝑖
∑((𝑢̂(𝑥𝑘

𝑖 , 𝑦𝑘
𝑖 , 0) − sin(𝜋𝑥𝑘) sin(𝜋𝑦𝑘))

2

𝑁𝑖

𝑘=1

+ (
𝜕𝑢̂

𝜕𝑡
(𝑥𝑘
𝑖 , 𝑦𝑘

𝑖 , 0))

2

) 

 (3.13) 

 

• MSE dari kondisi batas: 

𝑀𝑆𝐸𝐵 =
1

𝑁𝑏
∑(𝑢̂(𝑥𝑘

𝑏 , 𝑦𝑘
𝑏 , 𝑡𝑘

𝑏))
2

+ (𝑢̂(𝑥𝑘
𝑏 , 𝑦𝑘

𝑏 , 𝑡𝑘
𝑏))

2
𝑁𝑏

𝑘=1

+ (𝑢̂(𝑥𝑘
𝑏 , 𝑦𝑘

𝑏 , 𝑡𝑘
𝑏))

2

+ (𝑢̂(𝑥𝑘
𝑏 , 𝑦𝑘

𝑏 , 𝑡𝑘
𝑏))

2

 

 (3.14) 

 

Gabungkan semua MSE menjadi MSE total: 

𝑀𝑆𝐸 = 𝑀𝑆𝐸𝑅 +𝑀𝑆𝐸𝐼 +𝑀𝑆𝐸𝐵 (3.15) 

 

5. Pelatihan physics-informed neural networks. 
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Pilih optimasi seperti Adam, L-BFGS, Evolusioner, dll. Serta gunakan 

software yang ada untuk menjalankan progam dan pilih fungsi aktivasi. 

 

6. Evaluasi dan validasikan. 

Setelah pelatihan, evaluasi performa model dengan membandingkan hasil 

prediksi dengan solusi analitik atau solusi numerik dari metode 

konvensional. 

 

7. Analisis. 

Analisis kecepatan konvergensi, akurasi solusi, dan kestabilan metode. 

  



 
 

 
 

 

 

 

 

 

 

V. KESIMPULAN DAN SARAN 

 

 

 

 

5.1. Kesimpulan 

 

 

 

Berdasarkan hasil analisis, model physics-informed neural networks pada 

waktu diskrit pada persamaan diferensial gelombang dua dimensi dapat 

mendekati nilai solusi. Ditunjukan dengan gambar 4.4.(Plot perbandingan 

solusi PINNs dengan solusi analitik) yang memiliki bentuk yang sama, yang 

berarti metode dapat mendekati solusi persamaan gelombang dua dimensi 

untuk 𝑥, 𝑦 ∈ [−1,1] dan 𝑡[0,1], serta syarat awal berupa 𝑢(𝑥, 𝑦, 0) =

sin(𝜋𝑥) sin(𝜋𝑦) dan 𝜕𝑢 𝜕𝑡⁄ (𝑥, 𝑦, 0) = 0, dengan syarat batas berupa batas 

Dirichlet homogen. 

 

Model dengan 4 hidden layer 100 neuron yang di optimasi oleh optimasi 

Adam terdiri dari 70000 epoch berhasil dengan waktu sekitar 6 jam, yang 

menghasilkan MSE yang ditunjukan pada gambar 4.4, dengan warna yang 

mana semakin cerah nilai MSE akan semakin besar, yaitu sampai dengan 

0.002 dan paling kecil sampai mendekati 0. Maka metode physic-informed 

neural networks dapat mendekati solusi dengan akurat di sepanjang interval 

titik-titik 𝑥, 𝑦 dengan waktu 𝑡 = 0.1 serta 𝑐 = 1. 

 

Kemudian untuk kasus titik tunggal yang direpresentasikan tabel 4.1. dan 

gambar grafik 4.5 serta tabel 4.2 dan gambar grafik 4.5 menunjukan MSE 

sama dengan 0. Hasil tersebut menunjukan keakuratan metode PINNs untuk 

kasus titik tunggal baik untuk 𝑡 = 0.1 ataupun 𝑡 = 0.5. 
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Dan penelitian ini diharapkan dapat memberikan kontribusi dalam penerapan 

PINNs pada simulasi fisika dua dimensi dan membuka peluang untuk 

perluasan pada kasus nonlinier atau domain kompleks. 

 

 

 

5.2. Saran 

 

 

 

Berdasarkan analisis hasil, penulis memberikan saran untuk peneltian 

selanjutnya dapat menambah jumlah hidden layer dan jumlah neuron setiap 

hiden layer-nya, juga menambahkan epoch yang lebih tinggi, dan dapat 

menggunakan optimasi L-BFGS untuk fine tuning agar MSE error-nya 

semakin kecil, namun diperlukan RAM, CPU, dan GPU yang cukup agar 

proses berjalannya algoritma lebih stabil dan meminimalkan waktu yang 

diperlukan algoritma ketika dijalankan. Serta penulis memberikan saran 

untuk menggunakan persamaan diferensial parsial lainnya, baik yang 

homogen maupun non-homogen, dengan dimensi yang lebih tinggi dan 

menggunakan model waktu lainnya yaitu waktu kontinu. 
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