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ABSTRACT

PREDICTING 1-DIMENSIONAL LAKE BATUR TEMPRATURE USING
DEEP LEARNING AND PHYSICS INFORMED NEURAL NETWORK

COMBINED APPROACH

By

Naufal Hafizd Prayoga

Lake Batur in Bali, Indonesia, experiences periodic mass fish mortality events
caused by lake turnover, where rapid mixing brings sulfur-rich bottom water to the
surface. This research develops a predictive model for Lake Batur’s one-dimensional
water temperature profile using a hybrid approach combining Deep Learning and
Physics-Informed Neural Networks (PINN). Five models were evaluated: Random
Forest (RF), Long Short-Term Memory (LSTM), Convolutional Neural Network
(CNN), PINN, and PINN-LSTM. The PINN-LSTM model, which integrates LSTM’s
temporal pattern recognition with physics-based constraints from the heat diffusion
equation, achieved the best overall performance with an RMSE of 0.203°C, NSE
of 0.819, and physical inconsistency of only 3.42%. This research confirms a
trade-off between data-driven accuracy and physical consistency, where pure
data-driven models (LSTM, CNN) achieve high accuracy but exhibit 12-14%
physical inconsistency, while the pure PINN model maintains physical consistency
but performs poorly (negative NSE). The optimal configuration uses 72 hours of
historical data (np = 72) as input and predicts 12 hours ahead (nf = 12), providing
sufficient lead time for early warning systems. Only the PINN-LSTM model was
capable of reproducing the critical transition from stratification to mixing events.
These findings demonstrate that hybrid physics-informed deep learning approaches
offer an effective solution for lake temperature prediction and early warning system
development.

Keywords: PINN-LSTM, Lake Temperature Prediction, Physics-Informed Neural
Network, Deep Learning, Early Warning System



ABSTRAK

PREDIKSI SATU DIMENSI SUHU DANAU BATUR DENGAN
MENGGUNAKAN PENGGABUNGAN METODE DEEP LEARNING DAN

PHYSICS INFORMED NEURAL NETWORK

Oleh

Naufal Hafizd Prayoga

Danau Batur di Bali, Indonesia, mengalami peristiwa kematian ikan massal
secara periodik yang disebabkan oleh fenomena pencampuran danau, di mana
pencampuran cepat membawa air dasar yang kaya belerang ke permukaan.
Penelitian ini mengembangkan model prediksi profil suhu air satu dimensi Danau
Batur menggunakan pendekatan hybrid yang menggabungkan Deep Learning
dan Physics-Informed Neural Networks (PINN). Lima model dievaluasi: Random
Forest (RF), Long Short-Term Memory (LSTM), Convolutional Neural Network
(CNN), PINN, dan PINN-LSTM. Model PINN-LSTM, yang mengintegrasikan
kemampuan pengenalan pola temporal LSTM dengan batasan berbasis fisika dari
persamaan difusi panas, mencapai performa terbaik secara keseluruhan dengan
RMSE sebesar 0.203°C, NSE sebesar 0.819, dan ketidakkonsistenan fisika hanya
3.42%. Penelitian ini mengkonfirmasi adanya trade-off antara akurasi berbasis
data dan konsistensi fisika, di mana model berbasis data murni (LSTM, CNN)
mencapai akurasi tinggi tetapi menunjukkan ketidakkonsistenan fisika 12-14%,
sedangkan model PINN murni mempertahankan konsistensi fisika tetapi memiliki
performa buruk (NSE negatif). Konfigurasi optimal menggunakan 72 jam data
historis (np = 72) sebagai input dan memprediksi 12 jam ke depan (nf = 12),
memberikan waktu tunggu yang cukup untuk sistem peringatan dini. Hanya model
PINN-LSTM yang mampu mereproduksi transisi kritis dari stratifikasi ke peristiwa
pencampuran. Temuan ini menunjukkan bahwa pendekatan hybrid physics-informed
deep learning menawarkan solusi yang efektif untuk prediksi suhu danau dan
pengembangan sistem peringatan dini.

Kata-kata kunci: PINN-LSTM, Prediksi Suhu Danau, Physics-Informed Neural
Network, Deep Learning, Sistem Peringatan Dini
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BAB I

PENDAHULUAN

1.1 Latar Belakang Masalah

Perubahan iklim global telah menjadi pendorong utama perubahan dalam ekosistem

akuatik di seluruh dunia. Bukti empiris menunjukkan bahwa danau dan waduk tidak

hanya mengalami pemanasan suhu permukaan secara global (Golub et al., 2022),

tetapi juga peningkatan frekuensi dan durasi gelombang panas danau (Wang et al.,

2023). Perubahan iklim juga memengaruhi proses hidrologis di daerah aliran sungai

sehingga mengubah kuantitas dan kualitas air yang masuk ke danau. Kemudian,

peningkatan suhu udara dan perubahan pola angin juga mengubah perilaku fisika

danau, seperti memperkuat stratifikasi suhu dan mengurangi tutupan es yang pada

akhirnya mengubah lingkungan ekosistem akuatik (Ozersky et al., 2025; Chowdhury

et al., 2023).

Salah satu konsekuensi paling signifikan dari perubahan ini adalah perubahan pada

dinamika pencampuran vertikal danau. Perubahan ini yang dapat memicu fenomena

ekstrem seperti upwelling dan eutrofikasi. Secara limnologis, danau tropis dalam

seperti Danau Batur memiliki karakteristik stratifikasi termal yang unik, dimana

lapisan atas (epilimnion) yang hangat mengisolasi lapisan bawah (hypolimnion) yang

dingin (Wetzel, 2001). Stratifikasi yang stabil ini bertindak sebagai ”tutup” yang

mencegah oksigen berdifusi ke dasar, menyebabkan kondisi tanpa oksigen (anoksia)

dan penumpukan senyawa toksik seperti hidrogen sulfida (H2S) dari dekomposisi

organik (Boehrer and Schultze, 2008).

Bencana kematian ikan massal terjadi ketika ”tutup” ini terbuka akibat mekanisme

pencampuran (overturn) yang dipicu oleh angin kencang atau pendinginan

permukaan yang drastis. Saat pencampuran terjadi, massa air anoksik dari dasar
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naik ke permukaan (upwelling), menyebabkan penurunan kadar oksigen terlarut

secara tiba-tiba yang mematikan bagi biota (Santoso et al., 2025a). Oleh karena

itu, memprediksi suhu permukaan saja tidaklah cukup. Kunci mitigasi bencana

ini terletak pada pemahaman struktur vertikal suhu air. Prediksi profil suhu satu

dimensi (1D) menjadi krusial untuk mendeteksi seberapa kuat stabilitas stratifikasi

dan kapan ”titik kritis” pencampuran akan terjadi. Model berbasis data murni

seringkali gagal menangkap dinamika stabilitas ini karena mengabaikan hukum

kekekalan energi yang mengatur transisi tersebut, sehingga pendekatan berbasis

fisika (Physics-Informed) menjadi solusi yang mendesak.

Fenomena eutrofikasi dan upwelling yang saling memperkuat ini sudah terjadi

selama bertahun-tahun pada Danau Batur (Fajar, 2021). Surplus nutrisi dari aktivitas

antropogenik memperparah kondisi anoksia di dasar, sementara upwelling mendaur

ulang nutrisi tersebut kembali ke zona fotik. Konsekuensi fatal dari dinamika ini

terlihat pada kasus kematian ikan massal tanggal 14 Juli 2025 (Wirawan, 2025;

Wiradana et al., 2022) dengan estimasi kerugian 9 hingga 70 ton ikan. Gambar 1.1

menunjukan dampak visual dari peristiwa tersebut.

Gambar 1.1 Ribuan ikan nila atau ikan mujair mati di Danau Batur, Kintamani, Kabupaten
Bangli, Bali (Posmerdeka, 2025)
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Berbagai studi telah dilakukan untuk menjawab permasalahan danau di Indonesia,

terutama Danau Batur. Berbagai studi tersebut meliputi aspek pencegahan,

pengawasan atau monitoring, dan perbaikan atau korektif. Contoh studi untuk

meningkatkan pengawasan, yaitu pengembangan Geographic Information System

(GIS) sebagai alat bantu pengambilan keputusan dalam pengelolaan KJA yang

berkelanjutan di Danau Batur (Yustiati and Lusia, 2025) dan Decision Support

System (DSS) (Pen, 2024) untuk mengendalikan pencemaran lingkungan di Danau

Batur. Studi lainnya adalah pengembangan model numerik berbasis web untuk

mensimulasikan varibel-variabel utama terkait kualitas air menggunakan General

Lake Model (GLM) dengan modul Aquatic Ecological Dynamic (AED) (Sunaryani

et al., 2023). Dari berbagai sistem yang telah dikembangkan tersebut, kemampuan

untuk memprediksi menjadi penting agar sistem tidak hanya memberikan laporan

kejadian tetapi juga memberikan masukan pengambil keputusan untuk mencegah

kejadian atau mengurangi dampak dari suatu kejadian.

Di sisi lain, machine learning, terutama deep learning, telah berkembang dan terbukti

mampu memprediksi berbagai data time-series dengan kemampuan komputasi yang

efisien sehingga menjadi alternatif metode atau model konvensional. Berbagai model

machine learning yang digunakan dalam studi danau antara lain Long Short-Term

Memory (LSTM) (Qiu et al., 2021; Wang et al., 2022), Convolutional Neural

Networks (CNN) (Zhu et al., 2024; Barzegar et al., 2020), Random Forest (RF)

(Heddam et al., 2020; Dyba et al., 2022), Gated Recurrent Unit (GRU) (Hao et al.,

2023b; He and Yang, 2025), Physics Informed Machine Learning (PIML) (Lawal

et al., 2022; He and Yang, 2025), dan Physics Guided Machine Learning (Daw

et al., 2021; Jia et al., 2020). Adapun variabel yang dipredikasi dalam berbagai studi

tersebut adalah suhu danau yang merupakan indikator krusial dalam monitoring

kejadian upwelling (Kayastha et al., 2023; Willard et al., 2022). Studi-studi tersebut

dilakukan pada berbagai danau, waduk, dan sungai di seluruh dunia, yang mencakup

studi kasus pada Danau Qiandaohu (He and Yang, 2025), Waduk Nuozhadu (Wang

et al., 2022), dan Waduk Xiaowan (Wang et al., 2022) di Tiongkok; Danau Mendota

(Jia et al., 2020; Read et al., 2019; Daw et al., 2021), Danau Mille Lacs (Daw

et al., 2021), Danau Sparkling (Read et al., 2019), dan Danau-Danau Besar (the
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Great Lakes) (Kayastha et al., 2023) di Amerika Serikat; Danau Kasumigaura (Zhu

et al., 2024) di Jepang; Waduk Sau (Mercado-Bettı́n et al., 2021) di Spanyol, Waduk

Wupper (Mercado-Bettı́n et al., 2021) di Jerman, Waduk Mt. Bold di Australia,

Danau Vansjø (Mercado-Bettı́n et al., 2021) di Norwegia; serta berbagai danau di

Polandia (Zhu et al., 2020), dan Yunani (Barzegar et al., 2020).

Dari berbagai studi yang telah dilakukan terlihat bahwa pengembangan model

prediksi berbasis machine learning untuk danau di Indonesia belum banyak

dilakukan. Berdasarkan aspek limnologi, danau di Indonesia sebagai danau tropis

memiliki perbedaan fundamental dengan danau bersuhu dingin di wilayah subtropis

dalam dinamika pemisahan (stratifikasi) dan pencampuran (mixing) air di dalam

danau (Pu et al., 2025). Studi terbaru oleh Santoso et al. (2025a) menunjukkan

bahwa Danau Batur memiliki siklus polimiktik (polymictic) dengan empat periode

musiman: stratifikasi awal (Oktober-Desember), pencampuran (Desember-Maret),

stratifikasi kuat (Maret-Mei), dan pencampuran sering (Mei-Oktober). Pencampuran

vertikal ini dapat membawa air anoksik yang kaya sulfida dari dasar danau ke

permukaan, mengakibatkan kematian ikan massal (Santoso et al., 2025a). Terlebih

lagi Danau Batur yang memiliki keunikan berupa tidak adanya aliran masuk (inlet)

dan aliran keluar (outlet), serta tinggi belerang. Oleh karena itu, dibutuhkan sistem

peringatan dini yang mampu memprediksi kejadian pencampuran ini sebelum terjadi.

Salah satu metode yang dapat menjawab kebutuhan ini adalah Physics-Informed

Neural Networks (PINN). PINN merupakan sebuah arsitektur deep learning

yang menggunakan pendekatan hibrida antara model berbasis data dan berbasis

hukum-hukum fisika. Dengan berbasis PINN, model yang dikembangkan diharapkan

tidak hanya mengenali pola pada data, tetapi juga sesuai dengan siklus biogeokimia

pada danau sehingga dapat diterima oleh para limnologis (He and Yang, 2025).

Namun, PINN tidak dapat digunakan untuk waktu jangka panjang (He and

Yang, 2025). maka dari itu terdapat model baru yang disebut PINN-LSTM,

yang menggabungkan PINN dengan kemampuan LSTM dalam memodelkan

data sekuensial. Arsitektur hibrida ini terinspirasi oleh keberhasilan penerapan

PINN-LSTM untuk peramalan gelombang laut (Lawal et al., 2025), namun dengan
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modifikasi untuk mensimulasikan dinamika suhu danau. PINN-LSTM ini akan

dibandingkan dengan model machine learning lainnya yang sudah berhasil dalam

memprediksi suhu danau, yaitu LSTM, CNN, dan RF. Model tesebut akan digunakan

untuk memprediksi profil suhu air di Danau Batur.

1.2 Tujuan Penelitian

Berdasarkan latar belakang dan perumusan masalah pada bagian sebelumnya, tujuan

penelitian yang akan dilakukan adalah sebagai berikut.

1. Mengembangkan arsitektur deep learning yang menggabungkan hukum fisika

dalam proses pelatihannya untuk memprediksi secara time-series profil suhu

di Danau Batur dengan akurat dan cepat.

2. Mengevaluasi kinerja arsitektur yang akan dikembangkan dan

membandingkan hasil prediksi model dengan berbagai arsitektur model yang

digunakan dalam penelitian-penelitian sebelumnya, seperti RF, LSTM, CNN,

dan PINN.

1.3 Manfaat Penelitian

Penelitian ini diharapkan dapat memberikan manfaat sebagai berikut.

1. Memberikan pemahaman yang lebih dalam tentang kekuatan dan kelemahan

berbagai arsitektur machine learning untuk pemodelan limnologi, khususnya

prediksi profil suhu danau.

2. Menghasilkan alternatif metode untuk memprediksi suhu danau sebagai bagian

dari sistem monitoring untuk fenomena upwelling dan kematian ikan.

3. Memberikan rekomendasi berbasis bukti mengenai pemilihan model untuk

para peneliti dan praktisi di bidang limnologi dan pemodelan lingkungan.



BAB II

TINJAUAN PUSTAKA

2.1 Eutrofikasi Danau

Menurut Akinnawo (2023), Eutrofikasi (eutrophication) berasal Yunani dari kata

eutrophic yang memiliki arti “kaya-nutrisi”. Eutrofikasi didefinisikan sebagai kondisi

perairan yang memiliki konsentrasi nutrisi yang tinggi, termasuk nitrogen dan

fosfor, yang menyebabkan terjadinya ledakan alga, sehingga menurunkan kualitas

air dalam ekosistem perairan. Eutrofikasi adalah proses dapat didasari atas faktor

alami maupun antropogenik (faktor manusia). Faktor antropogenik dapat berupa

penuaan alami suatu badan air hingga perubahan status eutrofik (Sonarghare et al.,

2020). Namun, pembuangan limbah serta beban nutrisi terbatas seperti nitrogen

dan fosfor yang berasal dari aktivitas manusia telah mempercepat laju dan skala

eutrofikasi. Sehingga dengan konsekuensi yang merugikan air danau sumber air

minum, kehidupan perairan, serta rekreasi (Zhang et al., 2023). Ilustrasi eutrofikasi

terlihat pada Gambar 2.1

Gambar 2.1 Ilustrasi Eutrofikasi (Earthhow, 2017)
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2.2 Upwelling Danau

Menurut definisi yang diberikan oleh Merriam-Webster (2025), Upwelling

merupakan proses pergerakan air dari dasar laut ke atas menuju permukaan laut.

Pergerakan ini membawa air yang dingin, kaya nutrisi, namun sedikit oksigen terlarut

ke arah lepas permukaan. Fenomena upwelling terjadi akibat perbedaan distribusi

panas di lapisan-lapisan danau. Angin di udara dapat menghasilkan energi kinetik

besar di perairan, menyebabkan pergerakan massa air dan pencampuran di danau

secara horizontal dan vertikal. Hal ini terjadi terutama untuk danau dengan kondisi

stratifikasi (Shintani et al., 2010; Li et al., 2021). Gaya Coriolis dan geometri danau

menjadi pengaruh utama dalam bentuk pola upwelling di danau (Roberts et al., 2021).

Ilustrasi fenomena upwelling tersaji dalam Gambar 2.2.

Gambar 2.2 Ilustrasi Upwelling (Wiradana et al., 2022)

2.3 Pemodelan Danau Satu Dimensi

Salah satu penelitian penting adalah penelitian yang menerapkan GLM-AED dalam

simulasi perairan Danau Batur. GLM merupakan salah satu metode numerik yang
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dikembangkan untuk melakukan simulasi terhadap berbagai hal di danau (Hipsey

et al., 2019). Contoh simulasi yang dapat digunakan GLM seperti stratifikasi suhu

vertikal, pencampuran suhu, dan aliran masuk atau keluar air, serta pemanasan dan

pendinginan permukaan danau. Luaran dari model GLM beragam, seperti suhu

danau, oksigen terlarut, klorofil-a, fosfat, amonia, nitrit, nitrogen total, fosfor total,

dan lain lain (Sunaryani et al., 2023).

Salah satu luaran yang utama dalam GLM adalah suhu danau. Hal ini dikarenakan

suhu danau merupakan salah satu variabel terpenting dalam memahami proses

pencampuran dan biogeokimia. Suhu memiliki korelasi terhadap jumlah oksigen

yang terlarut dalam danau. Lapisan permukaan bertindak sebagai sumber oksigen

untuk danau dan lapisan dasar tidak dapat memproduksi oksigen sehingga

menghabiskan oksigen melalui mineralisasi bahan organik dan sedimen (Müller et al.,

2012). Kemampuan untuk memprediksi suhu air danau secara akurat adalah langkah

pertama untuk memahami dan mengantisipasi kejadian ekologis yang merugikan

seperti kematian ikan massal yang terjadi pada Danau Batur.

Model fisika danau yang digunakan di GLM dalam memprediksi suhu danau

adalah model satu dimensi (1D) vertikal. Model-model ini didasarkan pada prinsip

konservasi energi dan melakukan penyederhanaan dalam dinamika danau dengan

mengasumsikan bahwa variasi terjadi terutama pada arah vertikal (kedalaman),

sementara kondisi horizontal dianggap seragam (Hipsey et al., 2019). Hal ini

dikarenakan kompleksitas dari koefisien yang ada dan adanya sumber panas

eksternal.

GLM telah digunakan secara luas dan menunjukkan kinerja yang baik di banyak

danau, terutama di wilayah subtropis (Hipsey et al., 2019; Feldbauer et al., 2025).

Namun, model-model ini seringkali membutuhkan kalibrasi yang ekstensif dan

biaya komputasi yang tinggi. Kalibrasi yang GLM butuhkan seperti ketebalan

lapisan danau, koefisien pertukaran panas, efisiensi pencampuran suhu pada danau,

turbulensi danau, dan lain lain (Hipsey et al., 2019). GLM juga dapat mengalami

penurunan akurasi pada danau-danau tropis yang kompleks (Guo et al., 2023;

Pu et al., 2025) seperti Danau Batur dan Danau Towuti dikarenakan minimnya
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pengumpulan observasi di daerah tersebut.

2.3.1 Persamaan Satu Dimensi Difusi Panas

Perubahan suhu air danau (T ) terhadap waktu (t) dan kedalaman (z) diatur oleh

persamaan satu dimensi difusi panas. Persamaan ini digunakan untuk menjaga

keseimbangan antara penyimpanan panas dengan transpor panas vertikal dan sumber

panas dari radiasi matahari (He and Yang, 2025; Guo et al., 2020). Persamaan ini

umumnya tidak memiliki solusi analitis dan diselesaikan menggunakan metode

numerik (LeVeque, 2007).

cw
∂T

∂t
=

∂

∂z

(
τ
∂T

∂z

)
− dϕ

dz
(2.3.1)

dimana:

• T adalah suhu air danau (K)

• t adalah waktu (s)

• z adalah kedalaman (m).

• cw adalah kapasitas panas volumetrik air (J m−3 K−1).

• τ adalah difusivitas panas total (m2 s−1), yang mencakup difusivitas molekuler

dan difusivitas turbulen (eddy diffusivity) yang terutama disebabkan oleh

angin.

• ϕ adalah fluks radiasi matahari (W m−2) pada kedalaman z.

Untuk menggunakan persamaan 2.3.1, terdapat asumsi yang diperlukan, yaitu

asumsi homogenitas horizontal yang menyatakan bahwa untuk setiap lapisan

kedalaman, suhu air diasumsikan seragam secara horizontal. Dengan kata lain,

suhu pada kedalaman z tertentu tidak bervariasi terhadap koordinat horizontal (x, y),

sehingga T = T (z, t). Asumsi ini digunakan karena Danau Batur memiliki ukuran
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danau relatif kecil (≈ 7 km), di mana pencampuran horizontal terjadi lebih cepat

dibandingkan dengan stratifikasi termal secara vertikal (Imberger and Csanady,

2015; Santoso et al., 2025a).

2.3.2 Atenuasi Radiasi Matahari

Fluks radiasi matahari berkurang secara eksponensial seiring dengan bertambahnya

kedalaman. Fenomena ini dijelaskan oleh Hukum Beer-Lambert (Swinehart, 1962),

dimana sebagian dari radiasi gelombang pendek diserap di permukaan dan sisanya

menembus ke dalam lapisan air.

ϕ(z) = (1− β)Isole
−ηz (2.3.2)

dimana:

• Isol adalah total radiasi matahari gelombang pendek yang mencapai permukaan

air (W m−2).

• β adalah fraksi radiasi yang diserap di lapisan permukaan.

• η adalah koefisien atenuasi cahaya (m−1), yang menentukan tingkat kejernihan

air.

Berdasarkan Persamaan 2.3.2, fluks radiasi matahari pada kedalaman yang

berbeda dapat dihitung. Hal ini menjelaskan mengapa lapisan permukaan memiliki

variabilitas suhu yang tinggi sedangkan lapisan dalam memiliki suhu yang relatif

stabil sepanjang tahun. Sebagai contoh, dengan asumsi β = 0.4 dan η = 0.15 m−1,

diperoleh

• ϕ(0) = 0.6× Isol (Kedalaman 0 meter)

• ϕ(10) = 0.6× Isol × e−1.5 ≈ 0.134× Isol (Kedalaman 10 meter)

• ϕ(20) = 0.6× Isol × e−3.0 ≈ 0.030× Isol (Kedalaman 20 meter)

• ϕ(55) ≈ 0 (Kedalaman 55 meter)
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2.4 Artificial Neural Network (ANN)

Artificial Neural Network (ANN) yang terinspirasi oleh struktur dan fungsi jaringan

saraf biologis di otak manusia (McCulloch and Pitts, 1943). Struktur ANN disajikan

dalam Gambar 2.3. ANN terdiri dari unit-unit pemrosesan sederhana yang disebut

neuron, yang diorganisir dalam beberapa lapisan (layers). Lapisan-lapisan ini

umumnya terbagi menjadi tiga jenis: lapisan masukan (input layer), satu atau lebih

lapisan tersembunyi (hidden layers), dan lapisan keluaran (output layer) (Rosenblatt,

1958).

Secara matematis, operasi dalam satu neuron dapat direpresentasikan sebagai

berikut:

y = σ

(
n∑

i=1

wixi + b

)
(2.4.3)

di mana:

• y adalah output dari neuron.

• xi adalah input ke-i.

• wi adalah bobot yang terkait dengan input ke-i.

• b adalah bias.

• n adalah jumlah input.

• σ adalah fungsi aktivasi (misalnya, fungsi sigmoid, ReLU, atau tanh) yang

memperkenalkan non-linearitas ke dalam model.

Untuk keseluruhan lapisan, operasi ini dapat diekspresikan dalam bentuk matriks:

y = σ(Wx+ b) (2.4.4)
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2.4.1 Fungsi Aktivasi

Fungsi aktivasi merupakan komponen krusial dalam sebuah neuron yang berfungsi

untuk memperkenalkan non-linearitas ke dalam model. Tanpa fungsi aktivasi

non-linear, sebuah jaringan saraf, tidak peduli berapa banyak lapisannya, secara

matematis akan setara dengan model regresi linear sederhana (Goodfellow et al.,

2016).

Terdapat beberapa fungsi aktivasi yang umum digunakan, di antaranya (Goodfellow

et al., 2016):

• Fungsi Sigmoid

Fungsi ini memetakan nilai input ke dalam rentang antara 0 dan 1. Fungsi

ini sering digunakan pada lapisan keluaran untuk klasifikasi biner. Namun,

fungsi ini dapat terjadi masalah vanishing gradient, dimana gradien menjadi

sangat kecil untuk nilai input yang sangat besar atau sangat kecil, sehingga

memperlambat proses pelatihan.

σ(x) =
1

1 + e−x
(2.4.5)

• Fungsi Tangen Hiperbolik (Tanh)

Mirip dengan sigmoid, tetapi memetakan input ke rentang antara -1 dan 1.

Karena luarannya berpusat di nol (zero-centered), Tanh konvergen lebih cepat

daripada Sigmoid, Namun tetap rentan terhadap masalah vanishing gradient.

tanh(x) =
ex − e−x

ex + e−x
(2.4.6)

• Rectified Linear Unit (ReLU)

Fungsi ini mengembalikan nilai input jika positif, dan nol jika negatif. ReLU

merupakan fungsi aktivasi paling populer untuk hidden layer karena efisiensi

komputasi dan kemampuannya untuk mengatasi masalah vanishing gradient
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pada arah positif.

ReLU(x) = max(0, x) (2.4.7)

Pemilihan fungsi aktivasi yang tepat merupakan salah satu aspek penting dalam

desain arsitektur jaringan saraf, karena dapat memengaruhi kecepatan konvergensi

dan performa akhir model (Goodfellow et al., 2016).

Setiap koneksi antar neuron memiliki bobot (weight) yang menentukan seberapa

besar nilai yang dikeluarkan. Selama proses pelatihan, model menyesuaikan

bobot-bobot ini untuk meminimalkan perbedaan antara output yang diprediksi

dan output yang sebenarnya, sebuah proses yang dikenal sebagai backpropagation

(Rumelhart et al., 1986).

Gambar 2.3 Struktur ANN

Algoritma backpropagation merupakan algoritma penting yang digunakan untuk

hampir seluruh model DL. Backpropagation juga digunakan dalam suatu teknik yang

disebut Automatic Differentiation (AD). Mekanisme ini memungkinkan jaringan

untuk belajar dari data dengan menyesuaikan parameter internalnya secara iteratif

untuk meminimalkan kesalahan prediksi.
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2.4.2 Prinsip Matematis Backpropagation

Backpropagation, yang merupakan singkatan dari “backward propagation of errors”,

adalah metode untuk menghitung gradien dari loss function terhadap seluruh bobot

dan bias dalam jaringan saraf secara efisien (Rumelhart et al., 1986). Proses ini pada

dasarnya adalah pengaplikasian dari aturan rantai (chain rule) yang dibagi menjadi

dua tahap:

1. Forward Pass.

Input data dimasukan ke dalam jaringan dari beberapa lapisan. Setiap lapisan

akan dihitung output berdasarkan bobot, bias, dan fungsi aktivasi. Output

akhir dari jaringan dibandingkan dengan nilai sebenarnya untuk menghitung

nilai kesalahan total, yang diukur oleh sebuah loss function.

2. Backward Pass

Hasil dari loss function akan dihitung gradien terhadap output lapisan tersebut.

Kemudian, dengan menggunakan aturan rantai, gradien ini disebarkan mundur

(propagated backward) melalui jaringan setiap lapisan. Gradien dari loss

terhadap bobot dan bias lapisan tersebut dihitung. Gradien ini kemudian

digunakan oleh algoritma optimisasi untuk memperbarui nilai bobot dan bias

ke arah yang akan mengurangi kesalahan.

Dengan mengulangi kedua tahap ini berulang kali untuk seluruh data pelatihan,

jaringan secara bertahap “belajar” untuk menghasilkan output yang semakin

mendekati nilai target. Contoh matematis tersaji pada Gambar 2.4.

Salah satu tantangan signifikan dalam melakukan machine learning adalah masalah

vanishing gradient. Selama fase backward pass, gradien dari loss function dihitung

terhadap setiap bobot dengan menggunakan aturan rantai. Jika jaringan memiliki

banyak lapisan, proses ini melibatkan perkalian berulang dari banyak turunan

kecil. Apabila nilai gradien secara konsisten kurang dari 1, hasil perkaliannya akan

menurun secara eksponensial mendekati nol saat mencapai lapisan-lapisan awal

jaringan. Akibatnya, bobotnya tidak dapat diperbaharui dengan nilai baru (Bengio
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Gambar 2.4 Contoh Backpropagation

et al., 1994; Goodfellow et al., 2016).

2.5 Recurrent Neural Network (RNN)

Recurrent Neural Network (RNN) merupakan pengembangan dari ANN yang

dirancang khusus untuk menangani data sekuensial seperti data deret waktu atau

teks (Elman, 1990). Berbeda dengan ANN, RNN memiliki koneksi berulang yang

memungkinkan informasi untuk bertahan dari satu langkah waktu ke langkah waktu

berikutnya. Contoh Struktur RNN disajikan pada Gambar 2.5. Mekanisme ini

diimplementasikan melalui penggunaan hidden state (ht), yang pada setiap langkah

waktu t tidak hanya menerima masukan saat ini (xt) tetapi juga menerima hidden

state dari langkah waktu sebelumnya (ht−1) (Goodfellow et al., 2016).

Secara matematis, hubungan ini diekspresikan sebagai berikut:

ht = σh(Whhht−1 +Wxhxt + bh) (2.5.8)

yt = σy(Whyht + by) (2.5.9)

di mana:

• ht adalah hidden state pada langkah waktu t.

• xt adalah input pada langkah waktu t.
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• ht−1 adalah hidden state dari langkah waktu sebelumnya.

• yt adalah output pada langkah waktu t.

• Whh,Wxh,Why adalah matriks bobot untuk koneksi hidden-to-hidden,

input-to-hidden, dan hidden-to-output.

• bh dan by adalah vektor bias.

• σh dan σy adalah fungsi aktivasi (misalnya, tanh atau ReLU untuk σh).

Gambar 2.5 Struktur RNN

Kemampuan untuk mengingat informasi masa lalu menjadikan RNN efektif dalam

memahami konteks sekuensial. Namun, arsitektur RNN dasar memiliki kelemahan

signifikan yang dikenal sebagai masalah vanishing gradient, di mana gradien yang

digunakan untuk memperbarui bobot jaringan menjadi sangat kecil selama proses

backpropagation pada sekuens panjang. Hal ini membuat RNN kesulitan untuk

mempelajari dependensi jangka panjang dalam data (Bengio et al., 1994).

2.6 Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) merupakan model yang dikembangkan oleh

Hochreiter and Schmidhuber (1997) dan diteruskan oleh Gers et al. (2000).

LSTM dikembangkan karena RNN mengalami masalah vanishing gradient. LSTM

memperkenalkan memory cell dan dua gate cell untuk mengatur aliran informasi
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(Hochreiter and Schmidhuber, 1997). Penelitian Gers et al. (2000) menambahkan

satu jenis gate cell sehingga totalnya untuk LSTM terdapat tiga gate cell.

Tiga jenis gate cell tersebut dinamakan forget gate, input gate, dan output gate.

Forget gate menentukan bagian mana dari keadaan sel sebelumnya yang akan

dipertahankan atau dibuang. Input gate memperbarui keadaan sel dengan informasi

baru yang relevan dari masukan. Output gate menghasilkan hidden state, yang

digunakan untuk prediksi atau diteruskan ke langkah waktu berikutnya (Hochreiter

and Schmidhuber, 1997).

Secara matematik, operasi di LSTM dalam satuan waktu t dapat dijelaskan sebagai

berikut:

ft = σ(Wf · [ht−1, xt] + bf ) (2.6.10)

it = σ(Wi · [ht−1, xt] + bi) (2.6.11)

C̃t = tanh(WC · [ht−1, xt] + bC) (2.6.12)

Ct = ft · Ct−1 + it · C̃t (2.6.13)

ot = σ(Wo · [ht−1, xt] + bo) (2.6.14)

ht = ot · tanh(Ct) (2.6.15)

Persamaan 2.6.10, 2.6.11, 2.6.12, 2.6.12, 2.6.13, 2.6.14, 2.6.15 berturut turut

adalah forget gate, input gate, candidate cell state, cell state update, output gate,

dan hidden gate. Alur operasi persamaan LSTM ditampilkan dalam Gambar 2.6.

Untuk menjalankan satu unit LSTM pada langkah waktu t, input xt, hidden gate

sebelumnya ht−1, dan cell state sebelumnya Ct−1 adalah sesuai dengan menghitung

dengan urutan yang disebutkan sebelumnya (Hochreiter and Schmidhuber, 1997).
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Gambar 2.6 Alur LSTM dalam satuan t

2.7 Convolutional Neural Network (CNN)

Convolutional Neural Network (CNN) adalah model dari machine learning yang

dirancang untuk memproses data yang memiliki struktur seperti grid, contohnya

adalah data citra (2D grid) (LeCun et al., 1998). Arsitektur CNN terinspirasi oleh

korteks visual biologis, di mana neuron merespons rangsangan hanya di area terbatas

yang dikenal sebagai Receptive Field.

Keunggulan utama CNN dibandingkan dengan ANN biasa terletak pada parameter

sharing dan translation invariance. Dalam ANN, setiap neuron di satu lapisan

terhubung ke setiap neuron di lapisan berikutnya, masing-masing dengan bobotnya

sendiri. Sedangkan CNN, terdapat filter atau kernel yang sama—dengan satu set

parameter yang sama untuk digunakan di seluruh input. Sehingga model lebih

efisien dan mengurangi risiko overfitting. Karena filter yang sama diterapkan di

seluruh input, CNN dapat mendeteksi pola yang sama di mana pun pola itu muncul

dalam data. Misalnya, dalam data deret waktu, pola kenaikan suhu yang sama dapat

diidentifikasi baik di awal maupun di akhir.
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Operasi fundamental dalam CNN adalah konvolusi. Untuk data sekuensial (1D),

operasi konvolusi pada suatu titik t dari sekuens input x dengan sebuah filter (kernel)

w dapat ditulis sebagai:

y(t) = (x ∗ w)(t) =
K∑
k=1

wk · xt−k+1 (2.7.16)

di mana:

• y(t) adalah elemen output pada posisi t.

• x adalah sekuens input.

• w adalah filter (kernel) dengan panjang K.

• k adalah indeks dari filter.

Filter ini digeser sepanjang sekuens input untuk menghasilkan feature map, Sehingga

dapat mengidentifikasi pola-pola tertentu dalam data.

Arsitektur CNN terdiri dari beberapa jenis lapisan utama (LeCun et al., 1998):

• Lapisan Konvolusi (Convolutional Layer)

Lapisan ini menerapkan sejumlah filter ke input. Setiap filter secara

independen mempelajari untuk mendeteksi fitur tertentu. Output dari operasi

konvolusi kemudian biasanya dilewatkan melalui fungsi aktivasi non-linear,

seperti ReLU (Rectified Linear Unit), untuk memperkenalkan non-linearitas.

Dua parameter penting di lapisan ini adalah: Stride dan Padding. Stride

menentukan berapa banyak langkah filter bergeser pada setiap konvolusi.

Stride yang lebih besar akan menghasilkan feature map yang lebih kecil.

Padding menambahkan nilai (biasanya nol) di sekitar batas input untuk

memungkinkan filter beroperasi di tepi data dan mengontrol dimensi luaran.

• Lapisan Pooling (Pooling Layer)

Lapisan ini bertujuan untuk mengurangi dimensi spasial (ukuran) dari

representasi, sehingga mengurangi jumlah parameter dan komputasi dalam
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jaringan. Hal ini juga membantu membuat representasi fitur menjadi lebih

kuat terhadap variasi kecil pada posisi fitur. Jenis pooling yang paling umum

adalah Max Pooling dan Average Pooling. Max Pooling mengambil nilai

maksimum dari setiap daerah di feature map dan Average Pooling menghitung

nilai rata-rata dari setiap daerah di feature map.

• Lapisan Terhubung Penuh (Fully-Connected Layer)

Setelah beberapa lapisan konvolusi dan pooling, fitur-fitur tingkat tinggi

yang telah dipelajari kemudian diratakan (flattened) menjadi vektor satu

dimensi. Vektor ini kemudian menjadi masukan untuk satu atau lebih lapisan

fully-connected, yang pada dasarnya adalah model ANN. Lapisan-lapisan ini

digunakan untuk menggabungkan fitur-fitur yang diekstraksi untuk melakukan

seperti klasifikasi atau regresi.

Gambar 2.7 Struktur CNN

2.8 Random Forest (RF)

Random Forest (RF) adalah metode pembelajaran ensemble yang dapat digunakan

untuk tugas klasifikasi dan regresi (Breiman, 2001). Algoritma ini bekerja dengan

membangun sejumlah besar decision trees pada saat pelatihan. Prediksi akhir dari

model RF adalah rata-rata dari prediksi yang dihasilkan oleh setiap pohon individu.

Ilustrasi arsitektur RF tersaji pada Gambar 2.8

Secara matematis, untuk tugas regresi, prediksi dari model Random Forest dengan
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B pohon keputusan adalah rata-rata dari prediksi setiap pohon individu:

f̂(x) =
1

B

B∑
b=1

Tb(x) (2.8.17)

di mana:

• f̂(x) adalah prediksi akhir untuk input x.

• B adalah jumlah total pohon dalam hutan.

• Tb(x) adalah prediksi yang dihasilkan oleh pohon ke-b.

Untuk tugas klasifikasi, prediksi akhir ditentukan oleh suara mayoritas (majority

vote) dari semua pohon.

Kekuatan RF terletak pada dua aspek utama dari “keacakan” yang diperkenalkan

selama proses pelatihan:

• Bagging (Bootstrap Aggregating)

Setiap pohon dalam hutan dibangun dari sampel acak yang diambil dari set

data pelatihan dengan penggantian (bootstrap sample). Setiap pohon yang

dilatih pada subset data sedikit berbeda, sehingga membantu mengurangi

varians dan mencegah over-fitting.

• Pemilihan Fitur Acak

Pada setiap node dari decision trees, model akan mempertimbangkan semua

fitur untuk menemukan pemisahan (split) terbaik. Hal ini membantu untuk

mengurangi korelasi pohon-pohon dalam hutan, sehingga meningkatkan

akurasi dan ketahanan model.

Karena sifatnya sebagai model ensemble yang kuat dan relatif mudah untuk disetel,

RF telah banyak digunakan dalam berbagai aplikasi hidrologi, termasuk pemodelan

suhu air danau (Heddam et al., 2020; Dyba et al., 2022).



22

Gambar 2.8 Struktur RF
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2.9 Physics-Informed Machine Learning

Physics-Informed Machine Learning (PIML) adalah framework yang

mengintegrasikan teori fisika ke dalam arsitektur model machine learning

(Hao et al., 2023a). Teori fisika seringkali diekspresikan dalam bentuk Persamaan

Diferensial Parsial (PDP). Hal ini bertujuan untuk menghasilkan model yang tidak

hanya akurat secara prediktif tetapi juga konsisten dengan hukum-hukum fisika

yang mendasarinya. Salah satu implementasi PIML yang paling populer adalah

Physics-Informed Neural Network (PINN).

2.9.1 Physics-Informed Neural Network (PINN)

PINN adalah jaringan saraf yang dilatih untuk menyelesaikan PDP dengan

memasukkan residu dari persamaan tersebut ke dalam loss function (Raissi et al.,

2019). Misalkan sebuah sistem fisika dapat dideskripsikan oleh PDP umum berikut:

f(x, t;u,∇u,∇2u, . . . ;λ) = 0, (x, t) ∈ Ω× [0, T ] (2.9.18)

di mana u(x, t) adalah solusi yang dicari, f adalah operator diferensial, (x, t) adalah

koordinat ruang dan waktu dalam domain Ω× [0, T ], dan λ adalah parameter fisika.

Dalam kerangka PINN, solusi u(x, t) diaproksimasi oleh sebuah jaringan saraf

uNN(x, t; θ), dengan θ adalah parameter (bobot dan bias) dari jaringan tersebut.

Loss function total (L) dari PINN kemudian dirumuskan sebagai jumlah terbobot

dari beberapa komponen (Hao et al., 2023a):

L(θ) = wdataLdata + wpdeLpde (2.9.19)

dimana:

• Ldata adalah data loss, yang mengukur ketidaksesuaian antara prediksi

jaringan uNN dan data observasi yang tersedia.
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• Lpde adalah physics loss, yang mengukur sejauh mana aproksimasi uNN

melanggar PDP

• Lbc adalah boundary condition loss, yang memastikan solusi memenuhi

kondisi batas yang ditentukan.

• wdata, wpde, dan wbc adalah bobot yang menyeimbangkan kontribusi dari setiap

komponen loss.

Dengan meminimalkan L(θ), jaringan saraf belajar untuk menemukan solusi yang

secara simultan sesuai dengan data observasi dan mematuhi hukum fisika.

2.9.2 Mekanisme Perhitungan Turunan dengan Automatic Differentiation

PINN bekerja dengan menggunakan Automatic Differentiation (AD) untuk

menghitung turunan-turunan yang ada dalam residu PDP (Lpde). Seperti yang telah

dijelaskan pada subbab sebelumnya, AD adalah teknologi yang memungkinkan

perhitungan turunan dari fungsi yang kompleks terhadap input (x, t) secara eksak.

Dengan AD, istilah-istilah turunan dalam PDP, seperti ∂T
∂t

dan ∂T
∂z

pada Persamaan

2.3.1, tidak perlu lagi diaproksimasi menggunakan metode numerik seperti beda

hingga. Sebaliknya, kerangka kerja deep learning secara otomatis menghitung nilai

eksak dari turunan-turunan ini pada setiap titik collocation selama proses pelatihan.

Untuk turunan orde yang lebih tinggi seperti ∂2T
∂z2

, dapat dihitung hanya dengan

menerapkan AD secara berulang. Hal ini memungkinkan residu dari PDP untuk

dimasukkan langsung ke dalam loss function. Sehingga dapat mendorong jaringan

untuk tidak hanya cocok dengan data observasi tetapi juga mematuhi hukum fisika

yang berlaku. Contoh alur AD dalam PINN disajikan dalam Gambar 2.9

2.9.3 Keunggulan PINN Dibandingkan Metode Numerik Tradisional

Model PINN memiliki beberapa keunggulan dibandingkan metode numerik

tradisional seperti Metode Beda Hingga (Finite Difference Method, FDM) atau
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Metode Elemen Hingga (Finite Element Method, FEM) (Hao et al., 2023a; Raissi

et al., 2019).

Gambar 2.9 Contoh Automatic Differentiation (AD)

PINN mempelajari fungsi yang mendekati fungsi sebenarnya yang kontinu dari

solusi. Setelah dilatih, model dapat dievaluasi pada setiap titik kontinu (t, z) di

dalam domain tanpa perlu interpolasi. PINN bersifat mesh-free karena penggunaan

AD tidak bergantung pada grid. PINN hanya memerlukan titik-titik collocation yang

dapat diambil secara acak. Dalam kerangka PINN, parameter yang tidak diketahui

seperti difusivitas τ dalam Persamaan 2.3.1 dapat didefinisikan sebagai variabel

yang dapat dilatih. Backpropagation secara otomatis akan menghitung gradien dari

loss terhadap parameter ini, dan optimizer akan mempelajarinya secara bersamaan

dengan bobot jaringan. (Hao et al., 2023a; Raissi et al., 2019).
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2.10 Aplikasi Deep Learning dalam Memprediksi Suhu Danau

Penggunaan model Deep Learning (DL) untuk memprediksi suhu danau telah

berkembang pesat, dengan fokus utama pada kemampuannya untuk menangkap pola

temporal yang kompleks dari data deret waktu. Berbagai arsitektur telah dieksplorasi,

mulai dari model sekuensial seperti LSTM, model ekstraksi fitur seperti CNN, hingga

pendekatan hibrida yang menggabungkan keduanya dengan pengetahuan fisika.

Model sekuensial, khususnya Long Short-Term Memory (LSTM), telah terbukti

unggul dalam mempelajari dependensi jangka panjang pada data deret waktu suhu

danau. Penelitian oleh Qiu et al. (2021) menunjukkan bahwa LSTM lebih akurat

dibandingkan Random Forest (RF) dan Back Propagation Neural Network (BPNN).

Aplikasinya bervariasi, mulai dari merekonstruksi data suhu historis selama 42

tahun di Danau-Danau Besar Amerika (Kayastha et al., 2023) hingga berfungsi

sebagai model pengganti (surrogate model) yang ribuan kali lebih cepat dari model

hidrodinamik konvensional (Wang et al., 2022). Arsitektur yang lainnya seperti

Entity-Aware LSTM (EA-LSTM) bahkan mampu melakukan generalisasi prediksi ke

danau-danau yang tidak termonitor dengan memasukkan fitur statis danau (Willard

et al., 2022).

Convolutional Neural Network (CNN), meskipun awalnya untuk data citra, efektif

dalam mengekstraksi fitur lokal dari data deret waktu melalui operasi konvolusi 1D.

Zhu et al. (2024) berhasil menggunakan CNN untuk memprediksi profil suhu vertikal

siklus harian, menangkap pola jangka pendek yang sering terlewatkan. Kekuatan

CNN dalam ekstraksi fitur juga menjadikannya komponen ideal dalam arsitektur

hibrida, seperti model CNN-LSTM yang dikembangkan oleh ?, yang terbukti lebih

unggul daripada model tunggal.

Random Forest (RF) sering digunakan sebagai benchmark yang kuat karena

kemampuannya menangani hubungan non-linear dengan penyetelan minimal (Qiu

et al., 2021; Feigl et al., 2021). Studi perbandingan oleh Heddam et al. (2020)

menemukan varian RF, yaitu Extremely Randomized Trees (ERT), sebagai model

ML murni berkinerja terbaik. RF juga terbukti paling akurat untuk memperkirakan
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suhu permukaan danau dari citra satelit (Dyba et al., 2022).

Untuk mengatasi keterbatasan model black-box yang terkadang tidak konsisten

secara fisik, pendekatan Physics-Informed Machine Learning (PIML) atau

Process-Guided Deep Learning (PGDL) menjadi tren utama. Pendekatan ini

mengintegrasikan hukum fisika ke dalam model DL melalui dua strategi utama:

physics-informed loss dan pre-training. Strategi pertama memberikan penalti pada

model jika prediksinya melanggar hukum fisika, seperti konservasi energi (Read

et al., 2019; Jia et al., 2020) atau stratifikasi densitas (Daw et al., 2021). Strategi

kedua adalah melakukan pra-pelatihan model DL dengan data sintetis dari model

berbasis proses (misalnya, GLM) untuk memberikan pemahaman dasar fisika

sebelum disesuaikan dengan data observasi (Read et al., 2019; Jia et al., 2020).

Model PIML/PGDL secara konsisten terbukti lebih akurat dan memiliki generalisasi

yang lebih baik, terutama saat data terbatas (Read et al., 2019).

Dari tinjauan di atas, terlihat bahwa LSTM menjadi andalan untuk dependensi

temporal, CNN untuk ekstraksi fitur, dan RF sebagai benchmark yang kuat. PIML

muncul sebagai kerangka kerja yang menjanjikan untuk memastikan konsistensi

fisika dan meningkatkan akurasi. Namun, sebagian besar penelitian masih berfokus

pada prediksi suhu permukaan. Penelitian yang memodelkan profil suhu vertikal

secara eksplisit, terutama dengan arsitektur hibrida seperti PINN-LSTM, merupakan

area yang masih aktif dan menjanjikan, yang menjadi celah penelitian yang ingin

diisi oleh studi ini. Tabel 2.1 merangkum studi-studi terkait yang relevan.

2.11 Metrik Penelitian

Untuk mengevaluasi kemampuan ML, terdapat berbagai metrik yang

dirancang sebagai ukuran kuantitatif kinerja dari ML. Umumnya , ukuran kinerja ini

spesifik untuk tujuan penelitian yang sedang dilakukan (Goodfellow et al., 2016).

Metrik-metrik yang digunakan dalam penelitian ini adalah sebagai berikut.

• Root Mean Squared Error (RMSE): Metrik ini mengukur besarnya rata-rata

kesalahan prediksi dalam satuan yang sama dengan variabel target (°C). Metrik
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ini digunakan oleh He and Yang (2025); Qiu et al. (2021); Heddam et al. (2020).

RMSE memberikan bobot lebih pada kesalahan besar. Sehingga menonjolkan

nilai prediksi yang berbeda jauh dari nilai aktual.

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (2.11.20)

• Mean Absolute Error (MAE): Mengukur rata-rata kesalahan absolut antara

nilai prediksi dan nilai sebenarnya. Metrik ini juga digunakan oleh He

and Yang (2025); Qiu et al. (2021); Heddam et al. (2020). MAE kurang

sensitif terhadap pencilan dibandingkan RMSE, karena perbedaan antara nilai

prediksi dengan nilai aktual tidak dikuadratkan, sehingga error yang diberikan

memiliki bobot yang sama.

MAE =
1

n

n∑
i=1

|yi − ŷi| (2.11.21)

• Nash-Sutcliffe Efficiency (NSE): Metrik ini membandingkan varians residual

prediksi dengan varians data observasi, digunakan oleh He and Yang (2025);

Qiu et al. (2021); Heddam et al. (2020). NSE yang mendekati angka

1 menunjukkan prediksi lebih baik, NSE yang bernilai 0 menunjukkan

bahwa model sama akuratnya dengan rata-rata data, dan NSE kurang dari 0

menunjukkan bahwa rata-rata data adalah prediktor yang lebih baik.

NSE = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
(2.11.22)

• Inkonsistensi Fisika (%): Metrik khusus yang dirancang untuk penelitian ini,

mengukur persentase prediksi yang melanggar hukum fisika dasar stratifikasi

termal. Metrik ini digunakan pada Daw et al. (2021); Jia et al. (2020); Read

et al. (2019)

Inkonsistensi Fisika =
Jumlah prediksi tidak konsisten
Total perbandingan antar lapisan

× 100% (2.11.23)



BAB III

METODE PENELITIAN

3.1 Waktu dan Tempat Penelitian

Penelitian ini dilakukan pada semester ganjil tahun ajaran 2025/2026 di Jurusan

Matematika Fakultas Matematika dan Ilmu Pengetahun Alam Universitas Lampung

yang beralamatkan di Jalan Prof.Dr.Ir.Soemantri Brojonegoro, Gedong Meneng,

Kecamatan Rajabasa, Kota Bandar Lampung secara offline dan di gedung Inderaja,

KST Soekarno di Jl.Raya Bogor, Kecamatan Cibinong, Kabupaten Bogor, Jawa

Barat secara hybrid. Fasilitas yang digunakan adalah BRIN HPC Mahameru CPU

dan BRIN HPC Mahameru GPU yang dapat diakses secara online.

3.2 Metode Penelitian

Penelitian ini terdiri atas empat tahap. Adapun langkah-langkah yang dilakukan di

dalam penelitian ini dapat dilihat pada Gambar 3.1:

Gambar 3.1 Metode Penelitian

Tahap studi literatur digunakan untuk mengetahui state-of-the-art dari penelitian

yang terkait dan memperkuat landasan teori dari penelitian yang digunakan. Tahap
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selanjutnya akan dikumpulkan data yang diperoleh untuk diproses terlebih dahulu

sebelum digunakan dalam penelitian ini. Dalam tahap ini, pemrosesan data yang

digunakan meliputi menyesuaikan tanggal, menggabungkan data, normalisasi, dan

lain lain.

Pada tahap eksperimen, data yang sudah di pra-proses kemudian akan digunakan

untuk melakukan eksperimen. tahap ini akan dilakukan dengan berbagai kombinasi

eksperimen yang berbeda. Hasil dari tahap eksperimen akan dievaluasi dan

dibandingkan dengan menggunakan metode evaluasi yang telah ditetapkan.

Kombinasi yang memperoleh hasil yang terbaik akan dipilih untuk optimasi lebih

lanjut.

Pada tahap terakhir, seluruh hasil eksperimen akan dianalisis secara mendalam.

Tahapan ini juga akan membandingkan hasil eksperimen yang menggunakan prediksi

model dengan hasil data yang sebenarnya dari metode observasi dan konvensional.

Komputasi dalam penelitian ini dilakukan menggunakan fasilitas MAHAMERU

BRIN HPC GPU DGX, Badan Riset dan Inovasi Nasional (BRIN). Seluruh

eksperimen implementasi deep neural network dilakukan pada mesin berbasis GPU

dengan prosesor Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz, RAM 128GB, dan

GPU Nvidia Tesla V100 32GB. Komputasi ini berbasis sistem operasi Red Hat

Enterprise Linux 8.8 (Ootpa) dan dapat diakses melalui SSH seperti Gambar 3.2.

Implementasi model pada penelitian ini adalah menggunakan bahasa pemrograman

Python dan R dengan berbagai library seperti Numpy (Harris et al., 2020) Tensorflow

(Abadi et al., 2015), Sklearn (Pedregosa et al., 2011), Feather (McKinney, 2016),

dan Pandas (The pandas development team, 2025).

3.3 Studi Daerah Penelitian

Danau Batur merupakan danau kawah vulkanik terbesar di Bali dengan luas 16 km2,

kedalaman hingga 100 m, dan ketinggian 1.050 m. Peta danau batur tersaji dalam

Gambar 3.3. Danau ini mendukung budidaya perikanan nila dan irigasi perairan

(Wijaya et al., 2013).
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Gambar 3.2 Laman SSH Mahameru BRIN HPC CPU
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Namun, dalam 10 tahun terakhir status Danau Batur sudah berubah menjadi

hypereutrophic akibat penumpukan nutrisi dari aktivitas pertanian dan antropogenik

(Sunaryani et al., 2024; Nirasari et al., 2018). Kejadian ini menyebabkan

pertumbuhan alga yang berlebih dan mengurangi kadar oksigen terlarut (Wetzel,

2001). Di sisi lain, upwelling merupakan pergerakan air dari dasar danau ke

permukaan yang menyebabkan penurunan suhu dan pergerakan massa air kaya

nutrisi ke permukaan, yang juga mengurangi kadar oksigen terlarut (DO) (Wetzel,

2001). Perubahan iklim, melalui peningkatan suhu udara dan perubahan kecepatan

angin, juga menjadi kontributor besar terhadap perubahan suhu air danau (Wiradana

et al., 2022).

Fenomena upwelling pada danau memiliki penyebab yang beragam, berdasarkan

jenis danau itu sendiri. Danau Towuti, sebagai danau tropis lainnya di Indonesia.

Danau ini merupakan danau air tawar terbesar kedua di Indonesia, dengan luas

permukaan sekitar 560 km2 dan kedalaman maksimum 203 m. Seperti Danau Batur,

Danau Towuti juga merupakan danau terstratifikasi yang mengalami fenomena

upwelling pada tahun 2008, yang disebabkan oleh perubahan suhu udara dan

kecepatan angin (Pu et al., 2025). Sehingga karena kempiripan ini, dapat disimpulkan

bahwa Danau Batur memiliki penyebab yang hampir sama seperti Danau Towuti.

Secara ekogeografis, Danau Batur merupakan kawah Gunung Batur yang

pernah meletus dan memiliki kandungan logam berat. Logam berat dapat berasal

dari pelapukan batuan yang mengandung kandungan seperti belerang. Sehingga

ketika danau terjadi proses upwelling, zat-zat tersebut kemudian naik ke permukaan

danau sehingga menghabiskan kadar oksiden dalam danau, menurunkan suhu air

danau, dan meracuni danau tersebut dengan belerang. Logam berat merupakan

salah satu polutan lingkungan yang bertanggung jawab atas toksisitas, ketahanan,

dan sifat bioakumulasinya. Selain itu, akumulasi residu pestisida yang digunakan

petani di sekitar Danau Batur untuk pemeliharaan sayuran juga dapat terbawa ke

danau melalui aliran permukaan dan air hujan. Oleh karena itu, Menentukan kapan

terjadinya proses upwelling merupakan suatu hal yang penting.

Prediksi upwelling pada Danau Batur dapat dijadikan sebagai bahan pertimbangan
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Gambar 3.3 Peta danau Batur (Apple, 2025)

untuk para petani ikan lokal, pemerintah, dan otoritas terkait. Dengan model ini,

petani ikan lokal dapat mengantisipasi kejadian upwelling sehingga dapat melakukan

langkah-langkah pencegahan terhadap fenomena tersebut.

3.3.1 Dinamika Stratifikasi dan Pencampuran Danau Batur

Penelitian yang dilakukan Santoso et al. (2025a) yang menjelaskan tentang dinamika

stratifikasi dan pencampuran Danau Batur menggunakan data suhu kolom air dan

meteorologi frekuensi tinggi. Suhu permukaan danau berkisar antara 23.08-28.62°C,

sementara suhu dasar (55 m) relatif stabil pada 23.11-23.64°C. Pengamatan ini

mengkonfirmasi bahwa Danau Batur memiliki siklus polimiktik (polymictic) dengan

empat periode musiman yang berbeda:

1. Stratifikasi awal (Oktober-Desember): Perkembangan stratifikasi termal.

2. Pencampuran periodik (Desember-Maret): Pencampuran yang dipicu oleh
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kejadian angin kuat.

3. Stratifikasi kuat (Maret-Mei): Stabilitas termal maksimum.

4. Pencampuran sering (Mei-Oktober): Pencampuran nokturnal yang dipicu oleh

pendinginan permukaan.

Pencampuran vertikal di Danau Batur dipicu oleh tiga faktor utama: kehilangan

panas dari permukaan, kejadian angin kuat, dan pendinginan nokturnal (Santoso

et al., 2025a). Pencampuran ini memiliki konsekuensi penting bagi ekosistem danau.

Air dasar yang anoksik dan kaya sulfida dapat terangkat ke permukaan selama

kejadian pencampuran. Studi tersebut memperkirakan bahwa sekitar 20% oksigen

terlarut dalam kolom air dikonsumsi oleh oksidasi sulfida selama pencampuran,

yang merupakan estimasi konservatif. Kondisi ini meningkatkan risiko kematian

ikan massal, terutama bagi ikan yang dibudidayakan dalam Keramba Jaring Apung

(KJA).

3.4 Data yang digunakan

Dalam penelitian ini, data yang digunakan merupakan data yang berformat CSV.

CSV merupakan singkatan dari Comma Seperated Values adalah format yang sering

digunakan untuk pertukaran data antar aplikasi yang berbeda. Format file ini telah

menjadi standar de facto di seluruh industri (Shafranovich, 2005). Format ini

biasanya dikeluarkan oleh alat-alat penelitian. Berikut merupakan struktur data

CSV yang digambarkan pada Gambar 3.4.

Data prediktor yang digunakan didapatkan dari Badan Riset dan Inovasi Naasional

(BRIN). Dataset ini dapat diambil dari Repositori Ilmiah Nasional (RIN) di

BRIN (Santoso et al., 2025c). Dataset ini berupa data meteorologi yang diambil

menggunakan HOBO U30 USB Weather Station. Dataset ini terdiri atas empat

variabel, yaitu suhu udara (airT, °C, kelembapan realtif (RH, %), radiasi matahari

(solar, Wm−2), dan kecepatan angin (WindSpeed, ms−1). Alat yang mengukur

variabel ini dipasang di tepi Danau Batur. Semua data tersebut dihasilkan setiap satu
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jam (Santoso et al., 2025c).

Gambar 3.4 Struktur data dari berkas CSV

Variabel suhu udara, kelembapan relatif, dan radiasi matahari memiliki siklus

harian yang umumnya terjadi pada pertengahan hari, sedangkan kecepatan angin

tidak memiliki siklus secara harian. Hal ini terlihat pada Gambar 3.5. Suhu udara

dan radiasii matahi mengalami peningkatan, dan kelembahan relatif mengalami

penurunan pada pertengahan hari. Kecepatan angin telihat tidak memiliki siklus

karena terdominasi oleh faktor lain seperti jet bertekanan rendah, sistem suhu tekanan

rendah, dan aliran muson di daerah tropis pergunungan seperti Danau Batur (Nicolini
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and Skabar, 2011).

Penelitian ini juga menggunakan variabel suhu air di berbagai titik kedalaman

dari RIN sebagai ground truth target prediksi dan data prediktor sebagai observasi

sebelumnya (Santoso et al., 2025b). Variabel ini diambil dengan serangkaian sensor

suhu HOBO TidbiT V2 yang dipasang dari Oktober 2022 hingga Oktober 2023,

sesuai dengan penelitian dari Santoso et al. (2025a). Perekaman ini dilakukan selama

1 jam sekali dengan akurasi ±0,21 °C dan resolusi 0,02 °C. Penelitian ini akan

menggunakan tingkat kedalaman 0, 2, 4, 6, 8, 10, 15, 20, 30, dan 55 meter dari

permukaan air.

Dataset ini direpresentasikan dalam sebuah tabel yang dimana setiap nilai dalam

satu baris merepresentasikan sebuah nilai dalam satuan waktu. Baris pertama

merepresentasikan judul atau variabel dari suatu kolom, sedangkan baris kedua

dan selanjutnya merepresentasikan pengambilan variabel dalam satuan waktu.

Gambar 3.5 Siklus harian meteorologi

Variabel suhu permukaan dapat disajikan dalam bentuk heatmap pada Gambar 3.6

dengan rentang warna kuning-biru. Warna kuning menunjukan tingkat kepanasan
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yang lebih tinggi dibanding warna biru. Berdasarkan Gambar 3.6, terdapat rentang

tanggal yang dimana suhu air di danau batur itu relatif homogen dari tingkat

ketinggian teratas sampai terendah. Rentang tersebut terjadi pada bulan Januari

2023, Maret 2023, Juli 2023, dan September 2023. Hal ini sesuai dengan penelitian

Pu et al. (2025) yang menunjukan bahwa danau di daerah tropis memiliki siklus

stratifikasi yang tidak teratur dan sering dipengaruhi oleh faktor meteorologi seperti

suhu udara dan kecepatan angin.

Setiap lapisan ketinggian air di Danau batur memiliki siklus suhu yang berbeda. Hal

ini terlihat pada Gambar 3.7. Dalam satu hari, selisih suhu di permukaan dan suhu

di titik terdalam dapat mencapai 3.0°C pada pertengahan hari atau sampai dibawah

1.0°C pada malam hari. Secara umum, selisih terkecil dicapai dalam bulan juli dan

selesih terbesar dicapai pada bulan maret.

Gambar 3.6 Data asli suhu Danau Batur diinterpolasi
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Gambar 3.7 Siklus harian suhu danau batur dibagi berdasarkan bulan

3.4.1 Preprocessing Data

Terdapat tujuh tahap preprocessing yang perlu dilakukan agar data yang telah

dikumpulkan dapat diproses oleh model. Gambar 3.8 menunjukan seluruh alur

tahap preprocessing data yang dilakukan dalam bahasa pemrograman R. Ketujuh

tahap tersebut adalah sebagai berikut.

1. Tahap 1: Baca format input.

Pada tahap pertama, data-data seperti data meteorologi dan data suhu asli akan

dibaca oleh komputer. Semua data ini dipresentasikan dalam sebuah tabel. Alat

yang digunakan untuk membaca data ini adalah R.

2. Tahap 2: Penyesuaian tanggal.

Setelah semua data dibaca, akan dicari rentang tanggal yang sama untuk semua

data yang diperoleh. Hal ini agar semua dataset memiliki rentang tanggal yang

sama. Data yang diluar rentang tanggal yang sama akan dibuang.

3. Tahap 3: Penggabungan data.
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Data asli meteorologi dan profil suhu air yang keduanya dalam format CSV

kemudian digabungkan menjadi satu tabel data berdasarkan penyesuaian tanggal

di tahap sebelumnya. Data yang sudah digabungkan tersebut kemudian di urutkan

secara kronologis. Detail masing-masing variabel dalam CSV dapat dilihat pada

Tabel 3.1.

Variabel level Satuan Singkatan
suhu udara 1 °C airT

kelembapan relatif 1 % RH
radiasi matahari 1 Wm−2 solar
kecepatan angin 1 ms−1 WindSpeed

suhu air 10 °C wtr

Tabel 3.1 Detail variabel yang digunakan sebagai prediktor dalam penelitian ini

Pemilihan variabel meteorologi ini didasarkan pada dinamika stratifikasi dan

pencampuran Danau Batur yang dijelaskan oleh Santoso et al. (2025a). Penelitian

tersebut menunjukkan bahwa stabilitas stratifikasi dan pencampuran di Danau

Batur sangat dipengaruhi oleh neraca panas permukaan dan gaya mekanis

angin. Suhu udara dan radiasi matahari merupakan sumber panas utama yang

menyebabkan stratifikasi termal pada siang hari melalui pemanasan permukaan

(surface heating). Sebaliknya, kehilangan panas (heat loss) yang memicu

pendinginan konvektif di malam hari sangat dipengaruhi oleh fluks panas laten

dan sensibel, yang merupakan fungsi dari suhu udara, kelembapan relatif, dan

kecepatan angin. Selain itu, kecepatan angin juga memberikan energi mekanis

(wind stress) yang dapat memiringkan termoklin dan memicu pencampuran

vertikal (vertical mixing), terutama pada periode angin kencang. Oleh karena

itu, keempat variabel ini—suhu udara, kelembapan relatif, radiasi matahari, dan

kecepatan angin—merupakan prediktor fisik yang esensial untuk memodelkan

dinamika suhu danau.

4. Tahap 4: Identifikasi fenomena mixing pada danau.

Peristiwa mixing didefinisikan sebagai periode berkelanjutan dengan periode

minimal 12 jam dengan perbedaan suhu antara permukaan (0m) dan dasar danau
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Gambar 3.8 Seluruh Tahap Preprocessing Data
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(55m) kurang dari 1.0°C. Batas ini ditentukan atas pertimbangan dari beberapa

artikel yang sudah dilakukan oleh penelitian lain (Engelhardt and Kirillin, 2014;

Jung et al., 2023; Feldbauer et al., 2022; Schwefel et al., 2024). Illustrasi untuk

suhu yang termasuk dalam fenomena mixing tersaji pada Gambar 3.9

Gambar 3.9 Batas ¡1.0°C yang disebut sebagai fenomena mixing

5. Tahap 5: Pemilihan variabel.

Langkah selanjutnya adalah memilih variabel yang akan digunakan dalam

penelitian ini. Sesuai dengan dijelaskan pada bagian sebelumnya, data prediktor

yang digunakan adalah suhu udara, kelembapan realtif, radiasi matahari,

kecepatan angin dan suhu air di Danau Batur dari periode sebelumnya.

Terdapat variabel tambahan yang digunakan yaitu day of year (DOY) dan hour of

day (HOD). Menurut Heddam et al. (2020) dan Daw et al. (2021), variabel DOY

memiliki pengaruh yang signifikan terhadap memprediksi suhu danau. Namun

penelitian tersebut menggunakan dataset dengan observasi harian. Kekurangan

lainnya adalah DOY merupakan fitur linear, sehingga akan terjadi diskontinuitas

antara akhir tahun dengan awal tahun (Adams and Vamplew, 1998). Oleh karena

itu, variabel DOY akan dibuat menjadi dua variabel dengan bantuan fungsi sinus

dan cosinus yaitu DOY-cos dan DOY-sin. Penelitian Heddam et al. (2020) juga

menunjukan bahwa semakin tinggi resolusi feature tanggal, maka akan semakin



43

berpengaruh. Sehingga penelitian ini ditambahkan HOD yang dibagi menjadi

dua yaitu HOD-cos dan HOD-sin.

Sebagai contoh, untuk waktu observasi tertentu, misal tanggal dan jam

“2023-08-15 14:00:00”, transformasi fitur siklis dilakukan sebagai berikut.

Tanggal 15 Agustus 2023 merupakan hari ke-227 dalam satu tahun, dan jam 14:00

merupakan jam ke-14 dalam satu hari. Transformasi ke fitur siklis menggunakan

fungsi sinus dan cosinus:

hour sin = sin

(
2π × 14

24

)
= sin(3.665) = −0.500 (3.4.1)

hour cos = cos

(
2π × 14

24

)
= cos(3.665) = −0.866 (3.4.2)

day sin = sin

(
2π × 227

365

)
= sin(3.907) = −0.707 (3.4.3)

day cos = cos

(
2π × 227

365

)
= cos(3.907) = −0.707 (3.4.4)

Dengan transformasi ini, nilai-nilai yang dekat secara temporal juga dekat dalam

ruang fitur. Contohnya pada jam 23:00 dan jam 00:00 memiliki nilai fitur siklus

yang berdekatan, berbeda dengan representasi linear yang akan memberikan jarak

numerik yang besar.

6. Tahap 6: Pembagian Data (Smart Split).

Langkah selanjutnya adalah membagi data menjadi set pelatihan (70%), validasi

(15%), dan pengujian (15%). Berbeda dengan pembagian acak, penelitian

ini menggunakan algoritma khusus. Algoritma ini secara iteratif mencari

titik pemisahan data yang optimal untuk memastikan bahwa setiap set data

(latih, validasi, dan uji) mempertahankan urutan kronologis dan mendapatkan

representasi dari peristiwa mixing yang penting (Gusak et al., 2025). Hal ini

penting untuk melatih model yang kuat dan dapat diuji pada fenomena tertentu.

7. Tahap 7: Normalisasi feature matrix.

feature matrix yang diperoleh akan dilakukan perubahan skala pada seluruh

dengan menggunakan metode Z-score normalization. Hal ini perlu dilakukan
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karena setiap variabel memiliki satuan yang berbeda-beda sebagaimana terlihat

pada Tabel 3.1 dengan jumlah pencilan yang besar (Amnuaylojaroen et al., 2024).

Setelah tahap ini dilakukan, seluruh variabel akan memiliki nilai dengan rata-rata

0 dan stander deviasi 1 dan disimpan dalam bentuk numpy array. feature matrix

yang belum dinormalisasi tetap disimpan untuk digunakan sebagai perhitungan

pada bagian PB dan diubah menjadi numpy array.

3.5 Desain Eksperimen dan Tahap Latih Model

Tahap eksperimen dalam penelitian ini dirancang untuk mengevaluasi dan

membandingkan kinerja dari berbagai model machine learning dalam memprediksi

suhu Danau Batur. Eksperimen ini mencakup model-model standar serta model

hibrida. Seluruh model dioptimalkan menggunakan library Optuna (Akiba et al.,

2019) untuk mencari hyperparameter terbaik. Hyperparameter awal yang digunakan

berdasarkan dari berbagai artikel yang menggunakan model seperti CNN, LSTM,

RF, dan PINN. Hyperparameter tersebut kemudian diberikan variasi sebesar dua

tingkatan di atas dan di bawah nilai literatur. Alur tahap latih model disajikan pada

Gambar 3.10.

Pendekatan variasi dua tingkatan ini dipilih untuk menyeimbangkan antara eksplorasi

dan eksploitasi dalam ruang pencarian hiperparameter. Variasi yang terlalu kecil (satu

tingkat) dapat menyebabkan pencarian terjebak pada solusi lokal yang serupa dengan

literatur, sementara variasi yang terlalu besar dapat memperlambat konvergensi

dan menghasilkan konfigurasi yang tidak stabil. Dengan dua tingkat variasi, ruang

pencarian cukup luas untuk menemukan konfigurasi yang optimal untuk karakteristik

spesifik Danau Batur, namun tetap terarah berdasarkan pengetahuan sebelumnya

dari literatur (Bergstra and Bengio, 2012).

Sebagai bagian penting dari desain eksperimen, penelitian ini secara sistematis

mengevaluasi kinerja model di bawah berbagai konfigurasi. Untuk setiap arsitektur

model, panjang sekuens input divariasikan dengan 24, 48, dan 72 jam. Output

divariasikan dengan 6, 12, 18, dan 24 jam. Hal ini menghasilkan total 12 kombinasi
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(3 × 4) untuk setiap arsitektur dasar, yang memungkinkan analisis komprehensif

tentang sensitivitas model terhadap jumlah data historis dan durasi peramalan.

3.5.1 Model yang Diuji

Untuk memastikan perbandingan yang adil dan komprehensif, penelitian ini

mengimplementasikan dan menguji lima strategi pemodelan yang berbeda.

Pemilihan model didasarkan pada tinjauan literatur ekstensif terhadap studi prediksi

suhu air sebelumnya:

1. Random Forest (RF): Dipilih sebagai benchmark untuk model machine

learning konvensional. RF terbukti tangguh terhadap overfitting dan mampu

menangani hubungan non-linear yang kompleks, menjadikannya standar

komparasi yang kuat dalam pemodelan hidrologi (Heddam et al., 2020; Dyba

et al., 2022).

2. Long Short-Term Memory (LSTM): Dipilih sebagai representasi

state-of-the-art untuk Deep Learning pada data deret waktu. Kemampuannya

mengingat informasi jangka panjang menjadikannya ideal untuk menangkap

tren musiman dan inersia termal danau (Qiu et al., 2021; Kayastha et al.,

2023).

3. Convolutional Neural Network (CNN): Dipilih untuk mengevaluasi

efektivitas ekstraksi fitur lokal. Studi terbaru menunjukkan CNN unggul

dalam menangkap pola jangka pendek seperti siklus diel (harian) yang sering

terlewatkan oleh model lain (Zhu et al., 2024).

4. Physics-Informed Neural Network (PINN): Dimasukkan untuk

mengatasi masalah inkonsistensi fisika pada model data-driven. Dengan

mengintegrasikan persamaan difusi panas, PINN menjamin prediksi yang

mematuhi hukum termodinamika (Read et al., 2019; Jia et al., 2020).

5. PINN-LSTM: Diajukan dalam penelitian ini sebagai pendekatan hibrida untuk



46

menyeimbangkan trade-off antara akurasi (kekuatan LSTM) dan konsistensi

fisika (kekuatan PINN), mengisi celah yang belum sepenuhnya dieksplorasi

oleh studi sebelumnya.

Setiap model dioptimalkan menggunakan Optuna untuk menemukan set

hyperparameter terbaik untuk setiap kombinasi konfigurasi sekuens (Tin dan Tout).

Empat model dasar yang digunakan sebagai perbandingan adalah sebagai berikut:

Tabel 3.2 Ringkasan Hyperparameter dari Literatur untuk Menjustifikasi Ruang Pencarian
Optuna

Model Hyperparameter Nilai Sumber

PINN
(MLP)

Arsitektur 4 hidden layers

He et al. (2025)Tau Layers 3
Neuron per Layer 50
Fungsi Aktivasi Softplus
Optimizer Adam (lr=0.001)

LSTM

Hidden Units 21 Jia et al. (2021)
30-50 Qiu et al. (2021)

Optimizer Adam (lr=0.005) Jia et al. (2021)

CNN

Filters 64

Zhu et al. (2024)
Kernel Size 2
Pooling Size 2
Arsitektur Conv1D -¿ MaxPooling1D -¿ Dense
Optimizer Adam (50 epochs, batch size 32)

Random Forest Estimators (Trees) 100-300 Qiu et al. (2021)Metode Seleksi Fitur Gini impurity index

• Random Forest (RF)

Model ensemble non-linear yang inputnya adalah data sekuens yang diratakan

menjadi satu vektor fitur. Arsitektur RF disajikan pada Gambar 3.11.

• Long Short-Term Memory (LSTM)

Jaringan saraf rekuren yang dirancang untuk data sekuensial. Inputnya adalah

sekuens dengan panjang Tin dan 15 fitur. Arsitektur yang digunakan terdiri dari

satu lapisan LSTM yang diikuti oleh lapisan fully-connected (Dense) untuk

menghasilkan output prediksi berukuran Tout × 10, seperti yang diilustrasikan

pada Gambar 3.12.
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Gambar 3.10 Seluruh Tahap latih model

Input Features

Random Forest Ensemble

avg

Average

Prediction

Gambar 3.11 Abstraksi Arsitektur Konseptual Model Random Forest.
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Input
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50

LSTM Layer

2401

Dense
Layer

Gambar 3.12 Arsitektur Model Long Short-Term Memory (LSTM).

• Convolutional Neural Network (CNN):

Model yang menggunakan lapisan konvolusi 1D untuk mengekstraksi fitur

temporal dari sekuens input. Arsitektur yang diimplementasikan terdiri dari

dua lapisan konvolusi yang diselingi dengan lapisan max-pooling, diikuti oleh

lapisan global average pooling dan lapisan Dense untuk menghasilkan output

berukuran Tout × 10, yang ditunjukkan pada Gambar 3.13.

15 24

Input
Sequence

64

Conv1D
MaxPooling1D

64

Conv1D

64

GlobalAvgPool1D

2401

Dense
Layer

Gambar 3.13 Arsitektur Model Convolutional Neural Network (CNN).

• Physics Informed Neural Network (PINN):

Model yang manggunakan ANN sebagai dasar untuk memprediksi variabel.

hasil prediksi tersebut akan dimasukkan dalam persamaan diferensial parsial

untuk mengetahui ketepatan model dalam mengeluarkan hasil (He and Yang,

2025). Arsitektur PINN ditunjukan pada Gambar 3.14.
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Gambar 3.14 Arsitektur Model Physics Informed Neural Network (PINN) (He and Yang, 2025).

3.5.2 Model Hibrida PINN-LSTM

Model hibrida PINN-LSTM menjadi fokus utama dalam penelitian ini. Arsitektur

ini menggabungkan dua model yang berbeda, yaitu LSTM dan PINN. Model ini

terinspirasi oleh pendekatan dari Lawal et al. (2025), yang diilustrasikan pada

Gambar 3.15, terdiri dari dua cabang utama yang bekerja secara sinergis:

• Cabang LSTM.

LSTM digunakan untuk peramalan deret waktu. Cabang ini menggunakan

keunggulan LSTM dalam menangkap dependensi temporal untuk

menghasilkan prediksi suhu di masa depan berdasarkan data historis.

Kinerjanya diukur secara langsung melalui data loss terhadap data observasi.

• Cabang PINN.

Berfungsi sebagai regularizer berbasis fisika. Cabang ini memiliki dua tujuan.

Pertama, cabang ini juga dilatih untuk memprediksi suhu yang diukur dengan

data loss-nya sendiri untuk mempelajari representasi data yang relevan. Kedua,

cabang ini secara eksplisit mematuhi hukum fisika pada Persamaan 2.3.1

melalui physics loss yang dihitung pada titik-titik kolokasi (collocation).

Kemudian, terdapat Gated Fusion Mechanism. Lapisan gating (g) menentukan bobot
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kontribusi dari cabang LSTM dan PINN untuk setiap prediksi. Dengan demikian,

output akhir model (ymerged) merupakan gabungan dari prediksi berbasis data dan

prediksi yang dipandu oleh fisika.

Loss function total dari model hibrida ini adalah jumlah dari ketiga komponen loss

tersebut: data loss dari LSTM, serta data loss dan physics loss dari cabang PINN.

Dengan melatih kedua cabang secara bersamaan, gradien dari physics loss dapat

menginformasikan dan memperbaiki parameter di seluruh model, mendorong cabang

LSTM utama untuk menghasilkan prediksi yang tidak hanya akurat tetapi juga lebih

konsisten secara fisik.

Gambar 3.15 Arsitektur Model PINN-LSTM dengan Gated Fusion Mechanism.

3.5.3 Implementasi Sumber Radiasi Matahari

Dalam implementasi model PINN dan PINN-LSTM, sumber radiasi matahari (dϕ
dz

)

pada Persamaan 2.3.1 dihitung berdasarkan hukum Beer-Lambert. Turunan fluks

radiasi terhadap kedalaman adalah:

dϕ

dz
= −(1− β)Isolηe

−ηz (3.5.5)
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Parameter β dan η ditetapkan sebagai konstanta tetap. Nilai tetapan yang digunakan

dalam penelitian ini adalah β = 0.4 dan η ≈ 0.15 m−1, yang konsisten dengan

karakteristik kejernihan air Danau Batur. Hal ini dilakukan untuk memberikan

kontribusi kepada physics loss dengan memastikan bahwa prediksi model mengikuti

pola. Polanya berupa pemanasan maksimum yang terjadi di lapisan permukaan dan

berkurang secara eksponensial dengan kedalaman. Dengan demikian, model tidak

hanya mempelajari pola dari data, tetapi juga dibatasi oleh prinsip fisika transfer

panas di dalam kolom air.

Untuk semua model, pencarian hiperparameter dilakukan menggunakan Optuna

untuk menemukan kombinasi optimal yang meminimalkan validation loss. Ruang

pencarian hiperparameter akan dibahas lebih lanjut pada bagian selanjutnya.

3.5.4 Optimasi Hiperparameter

Untuk setiap model, pencarian hiperparameter dilakukan secara otomatis

menggunakan Optuna. Proses ini melibatkan pendefinisian ruang pencarian

untuk setiap hiperparameter yang relevan (misalnya, learning rate, jumlah unit

dalam lapisan, ukuran kernel, dll.) dan menjalankan 100 trial (percobaan) untuk

menemukan kombinasi yang meminimalkan validation loss. Setiap trial akan

dilakukan sebanyak 30 epoch dan ketika sudah menamukan hiperparameter yang

terbaik, model akan melakukan pelatihan sebanyak 50 epoch.

Kombinasi model yang dibuat berdasarkan jumlah input kebelakang, dan jumlah

output kedepan. Model akan memprediksi sejauh 1 jam, 6 jam, 12 jam, dan 24 jam

kedepan, dengan menggunakan input 24 jam, 48 jam, dan 72 jam kebelakang.

Sehingga satu arsitektur model memiliki 4 x 3 = 12 kombinasi. Total jumlah

kombinasi model yang digunakan sebanyak 60 kombinasi. Tabel 3.3 menunjukan

hiperparameter yang akan dicari oleh Optuna.
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Tabel 3.3 Ringkasan Hyperparameter yang digunakan sebagai Ruang Pencarian Optuna

Model Hyperparameter Nilai Sumber

PINN
(MLP)

Hidden Layers 2, 4, 6

He et al. (2025)

Tau Layers 1, 2, 3, 4, 5
Hidden Neuron per Layer (PINN) 10, 20, 30, 40, 50, 60, 70, 80
Tau Neuron per Layer (PINN) 10, 20, 30, 40
Fungsi Aktivasi Softplus
Batch 16, 32, 64
Optimizer Adam (lr=[0.01-0.00001])

LSTM

Hidden Units 16, 32, 48, 64, 80, 96, 112, 128
Fungsi Aktivasi Softplus Jia et al. (2021)
Batch 16, 32, 64
Optimizer Adam (lr=[0.01-0.00001])

PINN-LSTM

Hidden Layers (PINN) 2, 4, 6
He et al. (2025)Tau Layers (PINN) 1, 2, 3, 4, 5

Hidden Neuron per Layer (PINN) 10, 20, 30, 40, 50, 60, 70, 80
Tau Neuron per Layer (PINN) 10, 20, 30, 40
Hidden Units (LSTM) 16, 32, 48, 64, 80, 96, 112, 128 Jia et al. (2021)
Fungsi Aktivasi Softplus
Physics Loss Weight 0.1-1.0
Batch 16, 32, 64
Optimizer Adam (lr=[0.01-0.00001])

CNN

Filters 32, 64, 128

Zhu et al. (2024)
Kernel Size 2, 3, 5, 7
Pooling Size 2, 3, 5, 7
Arsitektur Conv1D - MaxPooling1D - Dense
Batch 16, 32, 64
Optimizer Adam (lr=[0.01-0.00001])

Random Forest

Estimators (Trees) 50, 100, 150, 200, 250, 300

Qiu et al. (2021)
Depth 10, 20, 30, 40, 50
Minimum Sample for Leaf 1-10
Max Features Split 0.2-1.0
Metode Seleksi Fitur Gini impurity index

3.5.5 Pelatihan dan Evaluasi

Setelah hiperparameter terbaik ditemukan melalui optimasi, setiap model dilatih

kembali menggunakan gabungan data latih dan validasi. Kinerja akhir dari setiap

model kemudian dievaluasi pada test set yang belum pernah dilihat sebelumnya.

Proses ini memastikan perbandingan yang adil untuk semua model yang diuji.

Artefak yang dihasilkan dari setiap proses latih model, termasuk bobot model final,

hyperparameter terbaik, dan metrik kinerja pada test set, disimpan ke dalam berkas

terpisah untuk dianalisis pada tahap selanjutnya.

Selain metrik kualitas prediksi, efisiensi komputasi dari setiap model juga diukur

secara eksplisit selama tahap ini. Dua metrik waktu dicatat menggunakan fungsi
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time.time() pada Python untuk mengukur wall-clock time:

• Waktu Pelatihan (Training Time): Waktu total (dalam detik) yang

dibutuhkan untuk melatih model final pada gabungan data latih dan validasi,

mencakup semua epoch hingga kriteria pemberhentian terpenuhi.

• Waktu Prediksi (Prediction Time): Waktu total (dalam detik) yang

dibutuhkan model yang telah dilatih untuk menghasilkan prediksi bagi

keseluruhan test set. Metrik ini mengukur kecepatan inferensi model.

3.6 Metrik Evaluasi

Kinerja setiap model dievaluasi menggunakan serangkaian metrik standar dan metrik

khusus fisika untuk memberikan penilaian yang komprehensif. Misalkan yi adalah

nilai suhu air observasi sebenarnya dan ŷi adalah nilai yang diprediksi oleh model

untuk sampel ke-i, dan n adalah jumlah total sampel. Seluruh tahap evaluasi disajikan

pada Gambar 3.16. Metrik yang digunakan dala penelitian ini adalah RMSE, MSE,

NSE, dan Inkonsistensi Fisika.
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Gambar 3.16 Seluruh Tahap Evaluasi Data



BAB V

KESIMPULAN DAN SARAN

5.1 Kesimpulan

Penelitian ini mengembangkan model prediksi suhu air Danau Batur menggunakan

lima pendekatan machine learning: RF, LSTM, CNN, PINN, dan PINN-LSTM.

Berdasarkan hasil eksperimen, dapat disimpulkan sebagai berikut:

1. Model PINN-LSTM terbukti optimal dengan RMSE 0.203°C, NSE

0.819, dan ketidakkonsistenan fisika hanya 3.42%. Model ini berhasil

menggabungkan kekuatan LSTM dalam menangkap pola temporal dengan

batasan fisika dari PINN.

2. Terdapat trade-off signifikan antara akurasi dan konsistensi fisika. Model

data-driven (LSTM, CNN) mencapai RMSE rendah namun inkonsistensi

tinggi (12-14%), sedangkan PINN konsisten secara fisika namun akurasi

buruk (NSE negatif). Meskipun RF memiliki inkonsistensi rendah, model ini

gagal menangkap dinamika pencampuran yang kritis. Hanya PINN-LSTM

yang mampu menyeimbangkan akurasi dan fisika serta mendeteksi transisi

ekstrim.

3. Konfigurasi optimal: 72 jam data historis (np = 72) dan prediksi 12 jam ke

depan (nf = 12). Penurunan akurasi konvergen pada jam ke-12, dan horizon

ini memberikan waktu cukup untuk tindakan preventif.

4. Periode stratifikasi memiliki RMSE lebih tinggi karena gradien suhu besar

antar kedalaman. Hanya PINN-LSTM yang mampu mereproduksi transisi

stratifikasi-pencampuran dengan akurat dan konsisten.
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5. Model PINN murni tidak cocok untuk Danau Batur karena persamaan difusi

panas 1-D tidak cukup menjelaskan dinamika termal yang dipengaruhi angin,

radiasi, dan aktivitas vulkanik.

5.2 Saran

Untuk pengembangan selanjutnya, disarankan:

1. SOP Mitigasi Bencana KJA: Mengembangkan prosedur standar operasional

untuk petani Keramba Jaring Apung (KJA) ketika peringatan dini diterima (12

jam sebelum kejadian): (a) Pengurangan atau penghentian pemberian pakan

untuk menurunkan kebutuhan oksigen, (b) Aktivasi aerator cadangan, (c) Jika

memungkinkan, relokasi sementara ke zona aman yang lebih dangkal atau

dekat pantai, dan (d) Pemanenan dini ikan yang sudah siap jual.

2. Teknik ensemble: Menggabungkan PINN-LSTM (unggul untuk transisi

pencampuran) dengan LSTM (unggul untuk stratifikasi stabil) menggunakan

weighted averaging adaptif.

3. Validasi peristiwa ekstrim: Kerja sama dengan Dinas Perikanan Kabupaten

Bangli untuk memperoleh data peristiwa kematian ikan massal historis guna

validasi sistem peringatan dini.

4. Indeks peringatan dini: Transformasi output prediksi menjadi kategori

risiko (rendah-sangat tinggi) berdasarkan ambang batas perbedaan suhu

permukaan-dasar.

5. Optimasi arsitektur: Eksplorasi mekanisme attention, residual connections,

dan formulasi persamaan fisika yang mencakup efek angin dan radiasi

matahari.

6. Transfer learning: Adaptasi model ke danau tropis lain seperti Danau Toba,

Maninjau, atau Singkarak yang juga menghadapi masalah serupa.
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