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ABSTRACT

PARTITION DIMENSION OF SOME GRAPHS WITH TWO BRIDGES

By

PUONE THAHIRA RACHMANI

Let G = (V,E) be a connected graph. A partition Π = {L1, L2, . . . , Lk} of the
vertex set V (G), where G is a connected graph, is called a resolving partition if each
vertex of G has a unique representation with respect to Π. The distance from a vertex
u to a partition L, denoted by d(u, L), is defined as d(u, L) = min{d(u, li) | li ∈
L}. The vector (d(u, L1), d(u, L2), . . . , d(u, Lk)) is called the representation of the
vertex u with respect to the partition Π, denoted by r(u | Π). The minimum number
k of subsets in such a partition is called the partition dimension of the graph G,
denoted by pd(G). In this research, we study the partition dimension of graphs with
two bridges formed by connecting two graphs through two new edges. The focus
of this study is on double bridge graphs constructed from several pairs of graphs,
namely path graphs, cycle graphs, star graphs, complete graphs, and rose graphs.
For each pair of graphs, the exact value of the partition dimension is determined, as
well as a lower bound for the partition dimension of a graph formed from arbitrary
graphs.

Keywords: Graph, Partition Dimension, Double Bridge Graphs



ABSTRAK

DIMENSI PARTISI BEBERAPA GRAF DENGAN DUA JEMBATAN

Oleh

PUONE THAHIRA RACHMANI

Misalkan G = (V,E) suatu graf terhubung. Suatu partisi Π = {L1, L2, ..., Lk} dari
himpunan titik V (G) dengan G merupakan graf terhubung disebut partisi pembeda
jika setiap titik di G memiliki representasi yang unik terhadap Π. Jarak dari titik
u ke partisi L, dinotasikan dengan d(u, L), didefinisikan dengan min{d(u, li|li ∈
L}. Vektor d((u, L1), d(u, L2), ..., d(u, Lk)) merupakan representasi dari titik u ke
himpunan partisi Π, dinotasikan dengan r(u|Π). Minimum k partisi disebut sebagai
dimensi partisi dari graf G, dinotasikan dengan pd(G). Dalam penelitian ini dikaji
dimensi partisi graf dengan dua jembatan yang dibentuk dengan menghubungkan
dua graf melalui dua sisi baru. Fokus penelitian ini adalah graf dengan dua jembatan
yang dikonstruksi dari beberapa pasangan graf, yaitu graf lintasan, graf lingkaran,
graf bintang, graf lengkap, dan graf mawar. Untuk setiap pasangan graf tersebut
ditentukan nilai eksak dimensi partisinya, serta batas bawah dimensi partisi untuk
graf sebarang.

Kata-kata kunci: Graf, Dimensi Partisi, Graf Dua Jembatan
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BAB I

PENDAHULUAN

1.1 Latar Belakang Masalah

Teori graf merupakan salah satu cabang matematika yang mempelajari hubungan
antarobjek melalui representasi titik dan sisi (Bondy dan Murty, 1982). Konsep ini
memiliki peranan penting dalam berbagai bidang ilmu pengetahuan dan teknologi,
karena mampu mengaplikasikan berbagai jenis struktur dan relasi, seperti jaringan
komputer, sistem komunikasi, struktur molekul, dan interaksi sosial antarindividu
(Gross dan Yellen, 2004). Salah satu penerapan teori graf adalah algoritma lintasan
terpendek yang digunakan untuk menentukan rute optimal pada suatu jaringan.
Misalnya, penelitian oleh Koritsoglou dkk. (2022) mengembangkan algoritma
lintasan terpendek berbasis penalti untuk sistem navigasi pejalan kaki. Algoritma
ini memodifikasi metode k-shortest paths untuk memperoleh jalur alternatif yang
tidak hanya paling efisien, tetapi juga lebih aman dan mudah diakses oleh pengguna.
Dalam teori graf, salah satu konsep penting yang banyak dikaji adalah dimensi
metrik, yaitu kardinalitas minimum himpunan pembeda dan kardinalitas dari basis
metrik (Chartrand dkk., 2000a). Konsep ini kemudian dikembangkan menjadi
dimensi partisi, yang diperkenalkan oleh Chartrand dkk. (1998) sebagai variasi
dari dimensi metrik dengan menggunakan partisi titik.

Misalkan G adalah suatu graf terhubung dengan himpunan titik V (G). Himpunan
partisi dari V (G) dinotasikan dengan Π = {L1, L2, . . . , Lk}. Himpunan partisi Π
disebut partisi pembeda jika setiap titik di graf G memiliki representasi yang unik
terhadap himpunan partisi. Jarak dari satu titik u ke himpunan partisi L dinotasikan
dengan d(u, L), dan didefinisikan dengan min{d(u, li) | li ∈ L}. Minimum k partisi
disebut dimensi partisi dari graf G, dinotasikan dengan pd(G) (Chartrand dkk.,
2000b).
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Penelitian mengenai variasi konsep dimensi metrik termasuk dimensi partisi,
berkembang pesat dalam beberapa tahun terakhir. Meskipun demikian, kajian
dimensi partisi pada berbagai kelas graf dan penerapannya masih terbatas. Berbeda
dengan dimensi metrik yang telah banyak dikaji dan diaplikasikan dalam berbagai
bidang, dimensi partisi masih membutuhkan perkembangan lebih lanjut, baik
secara teoretis maupun praktis. Salah satu contoh penerapan konsep dimensi
metrik terdapat pada penelitian Wahyudi (2018) yang memanfaatkan dimensi
metrik untuk meminimalkan jumlah sensor kebakaran pada sebuah gedung dengan
merepresentasikan titik sebagai ruangan dan sisi sebagai dinding atau lantai antar
ruangan pada graf. Oleh karena itu, penelitian terhadap kelas graf baru seperti graf
sederhana dengan dua jembatan diharapkan dapat memperluas pemahaman dan
memperkaya hasil kajian dalam bidang dimensi partisi.

Penelitian mengenai dimensi partisi graf telah berkembang cukup luas. Amrullah
dkk. (2021) meneliti dimensi partisi graf, khususnya pada graf jembatan yang
dinyatakan dengan pd(B(G1, G2, uv)). Graf jembatan yaitu graf yang dibentuk
dengan menghubungkan dua buah graf melalui satu sisi baru. Penelitian ini
memperoleh hasil dimensi partisi graf jembatan dari graf lintasan - graf lintasan
yaitu:

pd(B(Pm, Pn, uv)) =

2, untuk u, v titik daun,

3, untuk lainnya.

Dimensi partisi untuk graf lingkaran - graf lingkaran pd(B(Cm, Cn, uv)) = 3, graf
sembarang - graf lengkap pd(B(G,Kn, uv) ≥ n untuk n ≥ 4, graf lengkap - graf
lengkap pd(B(Km, Kn, uv) = n untuk 3 ≤ m ≤ n, dan dimensi partisi untuk graf
bintang - graf bintang yaitu:

pd(B(S1,m, S1,n, zw)) =


n− 1, untuk z dan w merupakan dua titik daun,

atau z titik daun dan w titik pusat dengan

n > m,

n, untuk lainnya.

Asmiati dkk. (2025) berhasil mendapatkan dimensi partisi graf Daisy pd(D(Kn))
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yaitu:

pd(D(Kn)) =

3, untuk n = 3,

n−
⌊n
3

⌋
, untuk n > 3.

Dimensi partisi pada graf barbel Daisy pd(B(D(Kn))) yaitu:

pd(B(D(Kn))) =

4, untuk n = 3, 4,

n−
⌊n
3

⌋
, untuk n > 4.

Daming dan Yuliani (2024) berhasil mendapatkan dimensi partisi graf amalgamasi
sisi antara graf roda dan graf bintang yaitu pd(amals(Wn, Sm; v1v2, u0u1)) = 3

untuk 4 ≤ n ≤ 7 dan m = 3, pd(amals(Wn, Sm; v1v2, u0u1)) = 4 untuk n =

3 dan 3 ≤ m ≤ 4, pd(amals(Wn, Sm; v1v2, u0u1)) =
⌊n
2

⌋
untuk n ≥ 8 dan

3 ≤ m ≤
⌊n
2

⌋
. Haspika dkk. (2023) berhasil mendapatkan dimensi partisi graf

grid pd(Gm,n) = 3 untuk (m,n) ≥ 2 dan n genap. Hasanah dkk. (2024) berhasil
mendapatkan dimensi partisi graf hasil operasi korona tingkat-k pd(G⊙ kPm) yaitu:

pd(G⊙ kPm) = pd(G) + k


2, untuk m ≤ 4,

2 +

⌊
m− 4

3

⌋
, untuk m > 4.

Dimensi partisi graf hasil operasi korona pd(G⊙ kCm) yaitu:

pd(G⊙ kCm) = pd(G) + k

3, untuk m ≤ 6,⌊m
3

⌋
, untuk m > 6.

Dimensi partisi graf hasil operasi korona pd(G⊙ kKm) = pd(G) + km.

Sejauh penelusuran literatur yang penulis lakukan, belum terdapat penelitian yang
mengkaji mengenai dimensi partisi graf dengan dua jembatan, yaitu graf yang
dibentuk dengan menghubungkan dua buah graf melalui dua sisi penghubung
berbeda, sehingga penelitian ini dilakukan untuk memperkenalkan dan mengkaji
dimensi partisi dari graf jembatan ganda yang dibentuk dari lima graf sederhana.

Secara khusus penelitian ini menggunakan kombinasi dari graf lintasan (path
graph), graf lingkaran (cycle graph), graf lengkap (complete graph), graf bintang
(star graph), dan graf bunga mawar (rose graph). Penelitian ini dilakukan untuk
menentukan dimensi partisi graf dengan dua jembatan.
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1.2 Tujuan Penelitian

Penelitian ini bertujuan untuk menentukan dimensi partisi graf dengan dua jembatan
pada graf sederhana.

1.3 Manfaat Penelitian

Adapun manfaat dari penelitian ini yaitu:

1. Mendapat dimensi partisi graf dengan dua jembatan.

2. Menambah referensi dan wawasan baru kepada pembaca.



BAB II

TINJAUAN PUSTAKA

2.1 Konsep Dasar Graf dan Beberapa Kelas Graf

Graf G merupakan himpunan terurut V (G) dan E(G) dengan V (G) merupakan
himpunan titik tak kosong dan dan E(G) merupakan himpunan sisi yang merupakan
pasangan dari dua titik V (G). Misalkan u dan v adalah titik pada graf G, kemudian
u dan v dihubungkan oleh sisi e, maka u dan v dikatakan bertetangga (adjacent),
sedangkan titik u dan v dikatakan menempel (incident) dengan sisi e, dan sisi e
dikatakan menempel pada titik u dan v. Himpunan tetangga (neighbourhood) dari
titik v, dinotasikan dengan N(v) adalah himpunan titik-titik yang bertetangga dengan
v (Deo, 1989). Orde dari graf G adalah banyaknya titik pada graf G, dinotasikan
dengan |V (G)|. Ukuran dari graf G adalah banyaknya sisi pada graf G, dinotasikan
dengan |E(G)| (Santi dkk., 2019).

Gambar 2.1 Graf G dengan 6 Titik dan 8 Sisi

Sebuah graf G dengan himpunan titik V = {u1, u2, u3, u4, u5, u6} dan himpunan
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sisi E = {e1, e2, e3, e4, e5, e6, e7, e8} ditunjukkan pada Gambar 2.1. Karena graf
ini memiliki 6 titik dan 8 sisi, maka ordenya adalah 6 dan ukurannya adalah 8.
Pada graf G, titik u1 dan u2 dikatakan bertetangga, sedangkan titik u1 dan u2

dikatakan menempel pada sisi e1 dan sisi e1 dikatakan menempel pada titik u1 dan
u2. Himpunan tetangga dari titik u1 adalah N(u1) = {u2, u5}.

Titik dengan derajat satu disebut daun (Qiao dkk., 2022). Derajat suatu titik v pada
graf adalah banyaknya sisi yang menempel dengan titik tersebut, dinotasikan dengan
d(v). Titik yang tidak memiliki sisi (titik berderajat 0) disebut titik terisolasi (isolated
vertex). Pada Gambar 2.1, d(u1) = 3, d(u2) = 3, d(u3) = 2, d(u4) = 4, d(u5) =

3, d(u6) = 1. Loop adalah sisi yang menghubungkan suatu titik dengan dirinya
sendiri, sedangkan sisi paralel adalah dua atau lebih sisi yang memiliki titik awal
dan titik akhir yang sama. Pada Gambar 2.1, loop yaitu sisi e7 dan sisi paralel
ditunjukkan oleh e5 dan e6 (Santi dkk., 2019).

Graf sederhana adalah graf yang tidak mengandung loop maupun sisi paralel (Gross
dan Yellen, 2004). Graf pada Gambar 2.1 bukan graf sederhana karena terdapat loop
pada sisi e7 dan sisi paralel yaitu e5 dan e6. Graf G dikatakan terhubung apabila
untuk setiap pasangan titik yang berbeda pada G, terdapat setidaknya satu lintasan
yang menghubungkan keduanya (Barahama dkk., 2021). Berikut adalah contoh graf
terhubung dan graf tidak terhubung.

Gambar 2.2 (a) Contoh Graf G Terhubung, (b) Contoh Graf G Tidak Terhubung

Pada contoh (a) V (G) = {u1, u2, u3, u4, u5}, E(G) = {u1u2, u2u3, u2u5, u3u4,

u4u5, u5u1} dan terdapat lintasan untuk setiap pasang titik berbeda maka graf G
adalah graf terhubung. Pada contoh (b) V (G) = {u1, u2, u3, u4, u5, u6, u7}, E(G) =

{u1u2, u1u3, u1u4, u2u3, u2u4, u3u4, u5u6, u5u7, u6u7} dan tidak terdapat lintasan
dari titik u1 ke u7 maka graf G bukan graf terhubung.
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Beberapa kelas graf sederhana adalah graf lintasan (path graph), graf lingkaran
(cycle graph), graf lengkap (complete graph), graf bintang (star graph), dan graf
bunga mawar (rose graph). Graf lintasan (path graph) adalah urutan berhingga tak
kosong Pn = v0e1v1e2v2...envn dan sisi ei menghubungkan titik vi−1 dan vi untuk
1 ≤ i ≤ n. Pn disebut sebagai lintasan dari v0 ke vn atau (v0, vn)-lintasan. Titik v0

dan vn disebut titik awal dan titik akhir dari Pn, sedangkan v1, v2, ..., vn−1 adalah
titik internal atau titik perantara yang dilewati di tengah lintasan. Bilangan bulat n
disebut panjang lintasan (length) dari Pn. Panjang lintasan adalah banyaknya sisi
yang dilalui dalam lintasan. Graf lintasan Pn terdiri atas n titik dan n−1 sisi (Bondy
dan Murty, 1982). Berikut adalah contoh graf lintasan P6.

Gambar 2.3 Graf Lintasan P6

Graf lingkaran (cycle graph) adalah lintasan tertutup yang memiliki titik
awal dan titik akhir yang sama yaitu v1 = vn, dan titik-titik internalnya
berbeda dimana setiap titiknya berderajat dua. Graf lingkaran dengan n titik
dinotasikan dengan Cn, untuk n ≥ 3. Jika titik V (Cn) = {v1, v2, ..., vn} maka sisi
E(Cn) = {(v1, v2), (v2, v3), ..., (vn−1, vn), (vn, v1)}. Graf lingkaran Cn memiliki n
titik dan n sisi (Daniel dan Taneo, 2019). Berikut adalah contoh graf lingkaran C5.

Gambar 2.4 Graf Lingkaran C5

Graf lengkap (complete graph) adalah graf dengan setiap pasang titik yang berbeda
terhubung oleh satu sisi, artinya semua titik di graf lengkap saling bertetangga. Graf
lengkap dengan n titik dinotasikan dengan Kn. Banyaknya sisi pada Kn adalah
n(n−1)

2
(Daniel dan Taneo, 2019). Berikut adalah contoh graf lengkap K5.
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Gambar 2.5 Graf Lengkap K5

Graf bintang (star graph) adalah graf yang terdiri dari satu titik pusat yang terhubung
dengan n − 1 daun, dinotasikan dengan Sn, untuk n ≥ 3. Graf bintang memiliki
n titik dan n − 1 sisi (Bangkit dan Rahadjeng, 2022). Berikut adalah contoh graf
bintang S6.

Gambar 2.6 Graf Bintang S6

Graf mawar (rose graph) juga dikenal sebagai graf tengah (middle graph)
dari suatu siklus. Graf tengah M(G) dari graf terhubung G adalah graf yang
himpunan titiknya V (G) ∪ E(G) di mana dua titik saling bertetangga jika dan
hanya jika keduanya bertetangga di G atau salah satunya adalah titik di G dan
yang lainnya adalah sisi yang terhubung dengan titik tersebut di G. Misalkan
v1, v2, . . . , vn adalah titik-titik dari siklus Cn dengan n ≥ 3 dan n sisi dari Cn

adalah v1v2, v2v3, . . . , vn−1vn, vnv1. Dengan demikian, graf mawar M(Cn) dapat
dibentuk dari siklus Cn dengan titik-titik v1, v2, . . . , vn dan menambahkan titik-titik
terisolasi w1, w2, . . . , wn, kemudian menghubungkan setiap dua titik vi dan vi+1

dengan wi, untuk i = 1, 2, . . . , n, dengan ketentuan vn+1 = v1. Jadi, graf mawar
M(Cn) memiliki n titik dengan derajat 2 dan n titik dengan derajat 4. Berikut
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adalah contoh graf mawar M(C5) (Sugeng dkk., 2022). Berikut adalah contoh graf
bunga mawar M(C5).

Gambar 2.7 Graf Mawar M(C5)

Salah satu cara untuk membentuk graf baru dari dua graf terhubung adalah dengan
menghubungkannya melalui satu sisi baru yang telah dilakukan penelitian oleh
Amrullah dkk. (2021). Graf hasil konstruksi ini disebut graf jembatan. Graf
jembatan dinotasikan dengan B(H1, H2, uv). Misalkan H1 dan H2 merupakan dua
graf terhubung dengan u ∈ V (H1) dan v ∈ V (H2). Sebuah graf diperoleh dari graf
H1 dan H2 dengan menambahkan satu sisi baru e1 yang dihubungkan dari titik u ke
titik v (Amrullah dkk., 2021). Berikut diberikan contoh graf dengan satu jembatan.

Gambar 2.8 Contoh Graf Lingkaran C5 dengan Satu Jembatan (B(C5, C5, u1, v1))

Konsep graf jembatan dapat diperluas menjadi graf dengan dua jembatan, yaitu
graf yang dibentuk dengan menambahkan dua sisi penghubung antara dua graf
terhubung. Dalam penelitian ini, fokus diberikan pada graf dengan dua jembatan
yang dinotasikan dengan B(G,H, e1, e2). Misalkan G dan H adalah dua graf
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terhubung. Ambil titik e1 = u1u2 ∈ E(G) dan e2 = v1v2 ∈ E(H). Sebuah graf
baru B(G,H, e1, e2) terbentuk dari graf G dan graf H dengan menghubungkan titik
u1 ke titik v1 yang menghasilkan sisi baru e1∗ = u1v1 dan menghubungkan titik u2

ke titik v2 yang menghasilkan sisi baru e2∗ = u2v2. Berikut diberikan contoh graf
dengan dua jembatan.

Gambar 2.9 Contoh Graf Lingkaran C5 dengan Dua Jembatan (B(C5, C5, e1, e2))

2.2 Dimensi Metrik Graf

Dimensi metrik adalah kardinalitas minimum himpunan pembeda (resolving set)
pada graf G. Misalkan titik u dan titik v adalah titik-titik pada graf terhubung G

maka jarak d(u, v) adalah panjang lintasan terpendek antara titik u dan titik v di
G. Himpunan terurut W = {w1, w2, ..., wk} dari titik-titik di graf terhubung G dan
titik v ∈ (G), representasi dari titik v ke himpunan W adalah k-vektor, dinotasikan
dengan r(v|W ) = (d(v, w1), d(v, w2), ..., d(v, wk)). Jika r(v|W ) untuk setiap titik
v ∈ V (G) berbeda, maka W disebut himpunan pembeda dari V (G). Himpunan
pembeda dengan kardinalitas minimum (basis metrik) dan kardinalitas dari basis
metrik dinamakan dimensi metrik dari graf G, dinotasikan dim(G) (Chartrand dkk.,
2000a).
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Gambar 2.10 Graf G

Pada Gambar 2.10 pilih W = {u1}, maka representasi setiap titik di graf G adalah
r(u1|W ) = (0); r(u2|W ) = (1); r(u3|W ) = (2); r(u4|W ) = (1); r(u5|W ) = (1).
Terlihat bahwa terdapat representasi titik yang sama untuk W = {u1}, sehingga
himpunan tersebut bukan himpunan pembeda dan bukan basis metrik. Dengan
demikian, banyaknya anggota W = {u1} tidak dapat dikatakan sebagai dimensi
metrik. Oleh karena itu, perlu dipilih himpunan W yang lain.

Pilih W = {u1, u2}, maka representasi setiap titik di graf G adalah r(u1|W ) =

(0, 1); r(u2|W ) = (1, 0); r(u3|W ) = (2, 1); r(u4|W ) = (1, 2); r(u5|W ) = (1, 1).
Terlihat bahwa representasi semua titik berbeda untuk W = {u1, u2}, sehingga
W = {u1, u2} merupakan himpunan pembeda dari basis metrik. Dengan demikian,
banyaknya anggota basis ini merupakan paling minimum, sehingga banyaknya
anggota W = {u1, u2} dapat dikatakan sebagai dimensi metrik. Oleh karena itu W

adalah himpunan pembeda, maka dim(G) = 2.

Contoh pengaplikasian dimensi metrik pada suatu graf yang telah diteliti oleh
Wahyudi (2018) disajikan berikut ini sebagai gambaran yang lebih jelas mengenai
penerapan konsep dimensi metrik. Misal terdapat gedung yang memiliki lima
ruangan yaitu R1, R2, R3, R4, R5. Jika kebakaran di salah satu ruang, maka sensor
dapat mendeteksi jarak ruang sensor ke ruang kebakaran.
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Gambar 2.11 Gedung dengan 5 Ruang.

Misal sensor diletakkan di R1. Jika kebakaran terjadi di R3, maka sensor akan
mendeteksi terjadi kebakaran pada sebuah ruang yang berjarak 2 dari R1, karena
hanya R3 yang memiliki jarak 2 dari R1. Jika kebakaran terjadi di R1, maka sensor
akan mendeteksi terjadi kebakaran pada sebuah ruang yang berjarak 0 dari R1,
karena hanya R1 yang memiliki jarak 0 dari R1. Kemudian, jika kebakaran terjadi
di R2, maka sensor akan mendeteksi terjadi kebakaran pada sebuah ruang yang
berjarak 1 dari R1, namun yang berjarak 1 dari R2 tidak hanya R2 ada R4 dan R5,
maka informasi ini tidak dapat memberikan kepastian ruangan terjadinya kebakaran.

Misal sensor diletakkan pada dua kamar, yaitu di R1 dan R2. Jika kebakaran terjadi di
R3, maka sensor akan mendeteksi terjadi kebakaran pada sebuah ruang yang berjarak
2 dari R1 dan berjarak 1 dari R2, karena hanya R3 yang memiliki jarak 2 dari R1

dan jarak 1 dari R2. Jika kebakaran terjadi di R4, maka sensor akan mendeteksi
terjadi kebakaran pada sebuah ruang yang berjarak 1 dari R1 dan berjarak 2 dari R2,
karena hanya R4 yang memiliki jarak 1 dari R1 dan jarak 2 dari R2. Kemudian, jika
kebakaran terjadi di R5, maka sensor akan mendeteksi terjadi kebakaran pada sebuah
ruang yang berjarak 1 dari R1 dan R2, karena hanya R5 yang memiliki jarak 1 dari
R1 dan R2. Karena semua ruangan memiliki kode yang berbeda maka minimum
banyaknya sensor yang dibutuhkan dalam mendeteksi tempat kebakaran adalah dua.

2.3 Dimensi Partisi Graf

Dimensi partisi pada sebuah graf merupakan variasi dari dimensi metrik. Pada
dimensi metrik partisi menggunakan beberapa himpunan titik acuan (landmark)
secara unik untuk menentukan semua titik lainnya melalui jarak, sedangkan
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dimensi partisi menggunakan partisi dari himpunan itu sendiri. Suatu partisi
Π = {L1, L2, ..., Lk} dari himpunan titik V (G) dengan G merupakan graf
terhubung disebut partisi pembeda jika setiap titik di G memiliki representasi
yang unik terhadap Π. Jarak dari titik u ke partisi L, dinotasikan dengan d(u, L),
didefinisikan dengan min{d(u, li|li ∈ L}. Vektor d((u, L1), d(u, L2), ..., d(u, Lk))

merupakan representasi dari titik u ke himpunan partisi Π, dinotasikan dengan
r(u|Π). Minimum k partisi disebut sebagai dimensi partisi dari graf G, dinotasikan
dengan pd(G) (Chartrand dkk., 2000b).

Berikut teorema dasar yang disampaikan oleh Chartrand dkk. (1998) terkait dimensi
partisi pada graf lingkaran Cn.

Teorema 2.3.1 (Chartrand dkk., 1998) Dimensi partisi graf siklus pd(Cn) = 3, untuk
n ≥ 3.

Proposisi 2.3.2 (Chartrand dkk., 2000b) Misalkan G adalah graf terhubung dengan
orde n ≥ 2. Maka pd(G) = 2 jika dan hanya jika G = Pn.

Bukti.
Misalkan Pn = {u1, u2, . . . , un}, dan Π = {L1, L2} merupakan partisi dari V (Pn)

dengan L1 = {u1} dan L2 = {u2, u3, . . . , un}. Karena

r(u1|Π) = (0, 1) dan r(ui|Π) = (i− 1, 0), untuk 2 ≤ i ≤ n,

maka Π adalah partisi pembeda dari Pn, sehingga pd(Pn) = 2.

Selanjutnya akan dibuktikan bahwa graf lintasan Pn untuk n ≥ 2, berlaku pd(Pn) =

2. Misalkan Π = {L1, L2} adalah partisi pembeda dari suatu graf G dengan ordo
n. Karena graf G terhubung, maka ada dua titik bertetangga u ∈ L1 dan v ∈ L2.
Karena representasi

r(u|Π) = (0, d(u, L2)), u ∈ L1,

dan
r(v|Π) = (d(v, L1), 0), v ∈ L2,

berbeda, maka u adalah titik unik di L1 yang bertetangga dengan titik di L2, dan v

adalah titik unik di L2 yang bertetangga dengan titik di L1.
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Karena L1 dan L2 adalah lintasan dalam graf G dan graf G terhubung, jika L1−{u}
memuat titik x, maka x harus bertetangga dengan paling sedikit satu titik di L1.
Selanjutnya, titik u bertetangga dengan paling banyak satu titik di L1, sebab jika u

bertetangga dengan dua titik u1, u2 ∈ L1, maka

r(u1|Π) = r(u2|Π) = (0, 2),

yang bertentangan dengan Π sebagai partisi pembeda dari V (G).

Jadi, w adalah titik unik di L1 yang bertetangga dengan u. Demikian juga w

bertetangga dengan paling banyak satu titik di L1 yang berbeda dari u. Dengan
ini dapat dilihat bahwa L1 adalah lintasan dalam graf G. Dengan cara yang sama,
L2 juga adalah lintasan dalam graf G, maka graf G adalah lintasan.

Lemma 2.3.3 (Chartrand dkk., 2000b) Misalkan Π adalah partisi pembeda di V (G)

dan u, v ∈ V (G). Jika d(u,w) = d(v, w) untuk setiap w ∈ V (G)− {u, v}, maka u

dan v harus berada dalam partisi yang berbeda di Π.

Bukti.
Misalkan Π = {L1, L2, . . . , Lk} dengan u dan v berada dalam partisi yang sama,
yaitu Li, dari Π. Maka

d(u, Li) = d(v, Li) = 0.

Karena d(u,w) = d(v, w) untuk semua w ∈ V (G)− {u, v}, diperoleh

d(u, Lj) = d(v, Lj) untuk semua j, 1 ≤ j ̸= i ≤ k.

Oleh karena itu,
r(u|Π) = r(v|Π)

dan Π bukan merupakan partisi pembeda.

Sebagai ilustrasi dari penerapan konsep dimensi partisi, berikut diberikan contoh
untuk menentukan dimensi partisi graf lingkaran C6.
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Gambar 2.12 Graf Lingkaran C6

Diberikan himpunan partisi Π = {L1, L2, L3}, dengan:

L1 = {u1},
L2 = {u2, u3, u4, u5},
L3 = {u6}.

Maka representasi setiap titik diperoleh

r(u1|Π) = (0, 1, 1), r(u4|Π) = (3, 0, 2),

r(u2|Π) = (1, 0, 2), r(u5|Π) = (2, 0, 1),

r(u3|Π) = (2, 0, 3), r(u6|Π) = (1, 1, 0).

Karena representasi dari setiap titik berbeda maka Π adalah partisi pembeda dari graf
C6, dan pd(C6) ≤ 3. Untuk menunjukkan pd(C6) ≥ 3. Berdasarkan proposisi 2.3.2
oleh Chartrand dkk. (2000b), bahwa graf dengan dimensi partisi dua hanya berlaku
untuk graf lintasan Pn. Karena graf C6 bukan graf lintasan sehingga pd(C6) ≥ 3.
Selanjutnya, diperoleh bahwa pd(C6) ≤ 3 dan pd(C6) ≥ 3. Dengan demikian, dapat
disimpulkan bahwa pd(C6) = 3.



BAB III

METODE PENELITIAN

3.1 Waktu dan Tempat Penelitian

Penelitian ini dilaksanakan pada semester ganjil tahun ajaran 2025/2026, di Jurusan
Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas
Lampung.

3.2 Metode Penelitian

Langkah-langkah yang dilakukan untuk menentukan dimensi partisi graf dengan
dua jembatan (B(G1, G2, e1, e2)) adalah sebagai berikut:

1. Menentukan dimensi partisi graf dengan dua jembatannya dari dua graf
sembarang, graf lintasan - graf lintasan, graf lingkaran - graf lingkaran,
graf lengkap - graf lengkap, graf bintang - graf bintang, graf lintasan - graf
lingkaran, graf lintasan - graf lengkap, graf lintasan - graf bintang, graf
lingkaran - graf lengkap, graf lingkaran - graf bintang, graf lengkap - graf
bintang, graf bunga mawar - graf bunga mawar.

a.) Menentukan notasi dari dua graf yang dihubungkan dengan dua
jembatan.

b.) Menentukan batas atas dengan memberikan himpunan partisi
Π = {L1, L2, ..., Lk} pada graf dengan dua jembatan (B(G1, G2, e1, e2)).
Partisi ini dibentuk sedemikian sehingga setiap titik pada graf tersebut
memiliki representasi yang unik terhadap Π, sehingga semua titik dapat
dibedakan. Strategi dalam menentukan partisi bergantung pada struktur
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graf yang dikonstruksikan. Misalnya pada graf lintasan, titiknya dapat
dikelompokkan berdasarkan letak titik dari ujung lintasan. Pada graf
lingkaran, dapat dipilih beberapa titik pembeda saja. Pada graf lengkap
dan graf bintang, diberikan partisi pembeda pada titik-titik tertentu
karena pada graf tersebut terdapat titik yang memiliki jarak yang sama
ke titik lainnya, sehingga batas atas diperoleh berdasarkan banyaknya
kelas partisi yang dibutuhkan untuk membedakan setiap titik.

c.) Menentukan batas bawah melalui pendekatan kontradiksi. Hal ini
dilakukan dengan mengasumsikan bahwa dimensi partisi graf dengan
dua jembatan (B(G1, G2, e1, e2)) lebih kecil dari nilai yang telah
diperoleh pada batas atas. Selanjutnya, akan ditunjukkan bahwa asumsi
tersebut bertentangan, yaitu terdapat setidaknya dua titik yang tidak
dapat dibedakan atau memiliki representasi yang sama. Kontradiksi ini
membuktikan bahwa nilai yang lebih kecil tidak dapat terjadi, sehingga
diperoleh batas bawahnya.

d.) Jika diperoleh
(B(G1, G2, e1, e2)) ≤ x

dan
(B(G1, G2, e1, e2)) ≥ x

maka dapat disimpulkan bahwa dimensi partisi graf dengan dua jembatan

(B(G1, G2, e1, e2)) = x.

e.) Hasil yang diperoleh kemudian dirumuskan dalam bentuk teorema.

f.) Membuktikan hasil yang diperoleh secara rinci dengan mengikuti
langkah-langkah di atas.



BAB V

KESIMPULAN DAN SARAN

5.1 Kesimpulan

Pada penelitian ini telah diperoleh batas bawah dimensi partisi graf untuk
graf dengan dua jembatan dari dua graf sebarang, pd(B(G1, G2, e1, e2)) ≥
max{pd(G1), pd(G2)} − 1 dan nilai eksak dimensi partisi dari graf dengan dua
jembatan untuk pasangan kelas graf tertentu, adalah sebagai berikut

1. Dimensi partisi dari graf dengan dua jembatan pada graf lintasan - graf lintasan
pd(B(Pm, Pn, e1, e2)) = 3 untuk m ≥ n ≥ 2.

2. Dimensi partisi dari graf dengan dua jembatan pada graf lingkaran - graf
lingkaran pd(B(Cm, Cn, e1, e2)) = 3 untuk m ≥ n ≥ 3.

3. Dimensi partisi dari graf dengan dua jembatan pada graf bintang - graf bintang

pd(B(Sm, Sn, e1, e2)) =

3, untuk 3 ≤ m ≤ 5,

m− 2, untuk m ≥ 6.

4. Dimensi partisi dari graf dengan dua jembatan pada graf lengkap - graf lengkap

pd(B(Km, Kn, e1, e2)) =


3, untuk m ≤ 4, n ≤ 3,

4, untuk m = n = 4,

m− 1, untuk m ≥ 5.

5. Dimensi partisi dari graf dengan dua jembatan pada graf lintasan - graf
lingkaran pd(B(Pm, Cn, e1, e2)) = 3 untuk m ≥ 2, n ≥ 3.
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6. Dimensi partisi dari graf dengan dua jembatan pada graf lintasan - graf bintang

pd(B(Pm, Sn, e1, e2)) =

3, untuk 3 ≤ n ≤ 5,

n− 2, untuk n ≥ 6.

7. Dimensi partisi dari graf dengan dua jembatan pada graf lintasan - graf lengkap

pd(B(Pm, Kn, e1, e2)) =

3, untuk n ≤ 4,

n− 1, untuk n ≥ 5.

8. Dimensi partisi dari graf dengan dua jembatan pada graf lingkaran - graf
bintang

pd(B(Cm, Sn, e1, e2)) =

3, untuk n ≤ 5,

n− 2, untuk n ≥ 6.

9. Dimensi partisi dari graf dengan dua jembatan pada graf lingkaran - graf
lengkap

pd(B(Cm, Kn, e1, e2)) =

3, untuk n ≤ 3,

n− 1, untuk n ≥ 4.

10. Dimensi partisi dari graf dengan dua jembatan pada graf lengkap - graf bintang

pd(B(Km, Sn, e1, e2)) =

3, untuk m ≤ 4, n ≤ 5,

max{m− 1, n− 2}, untuk m ≥ 5, n ≥ 6.

11. Dimensi partisi dari graf dengan dua jembatan pada graf mawar - graf mawar
pd(B(M(Cm),M(Cn), e1, e2)) = 4 untuk m ≥ n ≥ 3.

5.2 Saran

Penelitian ini dapat dikembangkan untuk menentukan dimensi partisi graf dengan
dua jembatan pada operasi graf lainnya.
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