creators_name: Binsar Hermawan, 1517031175 creators_id: - type: other datestamp: 2022-03-11 07:59:45 lastmod: 2022-03-11 07:59:45 metadata_visibility: show title: PEMODELAN DATA TIME SERIES ASIMETRIK DENGAN EXPONENTIAL GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY (EGARCH) ispublished: pub subjects: QA full_text_status: restricted abstract: In the case of financial data, it usually tends to fluctuate rapidly from time to time so that the variance of the error will always change every time (heterogeneous) but also has an asymmetrical effect. The purpose of this study is to apply the best EGARCH model on closing price return data of PT Jasa Marga Tbk. which has asymmetric in its volatility. The results of this study found that the best model is EGARCH (1.3) with the following equation: ln date: 2019-01-29 date_type: published publisher: FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM place_of_pub: UNIVERSITAS LAMPUNG citation: Binsar Hermawan, 1517031175 (2019) PEMODELAN DATA TIME SERIES ASIMETRIK DENGAN EXPONENTIAL GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY (EGARCH). FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM, UNIVERSITAS LAMPUNG. document_url: http://digilib.unila.ac.id/54389/1/1.%20ABSTRAK.pdf document_url: http://digilib.unila.ac.id/54389/2/2.%20SKRIPSI%20FULL.pdf document_url: http://digilib.unila.ac.id/54389/3/3.%20SKRIPSI%20FULL%20TANPA%20BAB%20PEMBAHASAN.pdf