?url_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adc&rft.title=KLASIFIKASI+PENDERITA+STUNTING+%0D%0ADENGAN+METODE+SUPPORT+VECTOR+MACHINE%0D%0A(STUDI+KASUS%3A+LIMA+PUSKESMAS+DI+KOTA+BANDAR+LAMPUNG)&rft.creator=Josua+Fernandes+Nababan%2C+1657051019&rft.subject=000+Ilmu+komputer%2C+informasi+dan+pekerjaan+umum&rft.subject=005+Pemrograman+komputer%2C+program+dan+data&rft.description=Stunting+adalah+kondisi+apabila+tinggi+badan+anak+tidak+sesuai+dengan+umur+%0D%0Ayang+dimiliki.+Kondisi+ini+terjadi+sebagai+tanda+adanya+masalah+gizi+yang++kronis+%0D%0Apada++sistem++pertumbuhan++anak.++Stunting++merupakan++masalah++yang++cukup++serius+%0D%0Aterhadap+kelangsungan+sumber+daya+manusia+pada+suatu+negara.+Oleh+karena+itu+%0D%0Apemerintah++berfokus++untuk++menurunkan++angka++penderita++st+unting++di++Indonesia.+%0D%0ADiagnosis++pemantuan++t+erkait++stunting++masih++dilakukan++secara++langsung++dengan+%0D%0Amengukur++indikator++nutrisi%2C++tetapi++proses++tersebut++memerlukan++biaya++yang++tidak+%0D%0Asedikit.+Berdasarkan+permasalahan+tersebut+penelitian+ini+menggunakan+data+nonnutritional++sebagai++bahan++pendukung++penelit+ian++untuk++memudahkan++proses+%0D%0Aklasifikasi+terhadap+penderita+stunting.%0D%0APenelitian++ini++bertujuan++memberikan++model++prediksi++untuk++klasifikasi+%0D%0Apenderita++stunting%2C++mengukur++perbandingan++dari++hasil++analisis++korelasi++fitur+%0D%0Aterhadap+variabel+yang+digunakan%2C+dan+mengukur+serta+mengevaluasi+hasil+kinerja+%0D%0Adari++metode++support++vector++machine++dalam++melakukan++proses++klasifikasi.+%0D%0APenelitian+ini+juga+menggunakan+data+lima+puskesmas+di+Kota+Bandar+Lampung+%0D%0Adengan++pembagian++data++10-fold++cross++validation++dan++menggunakan++tiga++ker+nel%2C+%0D%0Ayaitu+linear%2C+gaussian%2C+dan+polynomial.+%0D%0AHasil++dari++penelitian++ini++adalah++berhasil++dibuatnya++model++prediksi++untuk+%0D%0Aklasifikasi++penderita++stunting++yang++bertujuan++untuk++memudahkan++dalam+%0D%0Amengetahui++hasil++dari++prediksi.++Didapatkan++juga%2C++hasil++analisis++korelasi++fitur+%0D%0Aseluruhnya+bernilai+positif%2C+dengan+korelasi+tertinggi+sebesar+0%2C92.+Kemudian+hasil+%0D%0Aklasifikasi+menggunakan+metode+support+vector+machine+didapatkan+hasil+akurasi+%0D%0Atertinggi+%2C++yaitu+sebesar+80%2C8%25+pada+kernel+linear.%0D%0AKata++kunci%3A++K-Fold++Cross++Validation%2C++Kernel%2C++Klasifikasi%2C++Stunting%2C++Support+%0D%0AVector+Machine+%0D%0A%0D%0AStunting+is+a+condition++when++the+child's+height+does++not++fit+with+his%2Fher++age.+This+%0D%0Acondition++occurs++as++a++sign++of++chronic++nutritional++problems++in++the++child's++growth+%0D%0Asystem.+Stunting+is++a+serious+problem+for+the+sustainability+of++human+resources+in+%0D%0Aa+country.+Therefore+the+government+focuses+on+decreasing+the+number+of+stunting+%0D%0Asufferers++in++Indonesia.++The++monitoring++of++stunting++diagnosis++is++still++carried++out+%0D%0Adirectly++by++measuring++nutritional++indicators%2C+but+the+process+costs++are++expensive.+%0D%0ABased++on++these++problems%2C++this++research++uses++non-nutritional++data++as++supporting+%0D%0Amaterial+for+research+to+facilitate+the+classification++process+for+stunting+sufferers.+%0D%0AThis++study++aims++to++provide++a++prediction++model++for++the++classification++of++stunting+%0D%0Asufferers%2C+measuring+the+results+of+feature+correlation+analysis+against+the+variables+%0D%0Aused%2C++and++measuring++as++well++as++evaluating++the++performance++of++support++vector+%0D%0Amachine+methods+in+conducting+the+classification+process.+This+study+used+some+%0D%0Adata++from++five++health++centers++in++Bandar++Lampung++city++with++10-fold++cross+%0D%0Avalidation+and+using+three+kernels%2C+namely+linear%2C+gaussian%2C+and+a+polynomial.+The+%0D%0Aresult++of++this++study++is++the++successful++creation++of++a++prediction++model++for++the+%0D%0Aclassification+of+stunting+sufferer+that+aims+to+ease+the+result+of+predictions.+Also+%0D%0Aobtained%2C++the++result++of++feature++correlation++analysis++is++entirely++positive%2C++with++the+%0D%0Ahighest+correlation+is+0%2C92.+Then+the+classification+result+using+the+support+vector+%0D%0Amachine+method+obtained+the+highest+accuracy+result%2C+80%2C8%25+in+the+linear+kernel.%0D%0AKeywords%3A++K-Fold++Cross++Validation%2C++Kernel%2C++Classification%2C++Stunting%2C++Support+%0D%0AVector+Machine&rft.publisher=Fakultas+Matematika+Dan+Ilmu+Pengetahuan+Alam&rft.date=2021&rft.type=Skripsi&rft.type=NonPeerReviewed&rft.format=text&rft.identifier=http%3A%2F%2Fdigilib.unila.ac.id%2F61229%2F1%2FABSTRAK_JOSUA%2520FERNANDES%2520NABABAN%2520-%2520josua%2520fernandes.pdf&rft.format=text&rft.identifier=http%3A%2F%2Fdigilib.unila.ac.id%2F61229%2F2%2FFULL%2520SKRIPSI_JOSUA%2520FERNANDES%2520NABABAN%2520-%2520josua%2520fernandes.pdf&rft.format=text&rft.identifier=http%3A%2F%2Fdigilib.unila.ac.id%2F61229%2F3%2FFULL%2520SKRIPSI%2520TANPA%2520BAB%2520PEMBAHASAN_JOSUA%2520FERNANDES%2520NABABAN%2520-%2520josua%2520fernandes.pdf&rft.identifier=++Josua+Fernandes+Nababan%2C+1657051019++(2021)+KLASIFIKASI+PENDERITA+STUNTING+DENGAN+METODE+SUPPORT+VECTOR+MACHINE+(STUDI+KASUS%3A+LIMA+PUSKESMAS+DI+KOTA+BANDAR+LAMPUNG).++Fakultas+Matematika+Dan+Ilmu+Pengetahuan+Alam%2C+UNIVERSITAS+LAMPUNG.+++++&rft.relation=http%3A%2F%2Fdigilib.unila.ac.id%2F61229%2F