TY - GEN CY - UNIVERSITAS LAMPUNG ID - eprints70376 UR - http://digilib.unila.ac.id/70376/ A1 - DIMIANTIKA, 1917031019 Y1 - 2023/03/06/ N2 - ABSTRACT An integer with p>1 is said to be prime if and only if its positive divisors are 1 and p. Prime numbers can be obtained through factorial and primorial approaches. If a prime number is p>n!+1, then p>n!+n is also prime. In addition, if the prime number p satisfies n!+1n. Furthermore, if the prime p satisfies n!-s^22 and s is the largest prime number so that s1 dikatakan prima jika dan hanya jika pembagi positifnya adalah 1 dan p. Bilangan prima dapat diperoleh melalui pendekatan faktorial dan primorial. Jika bilangan prima p>n!+1, maka p>n!+n juga prima. Selain itu, jika bilangan prima p memenuhi n!+1n. Selanjutnya, jika prima p memenuhi n!-s^22 dan s adalah bilangan prima terbesar sehingga s