title: KLASIFIKASI ELECTRONIC HEALTH RECORD (EHR) MENGGUNAKAN LONG SHORT TERM MEMORY (LSTM) DAN GATED RECURRENT UNIT (GRU) creator: Zida Bunga Sobara , 1917031091 subject: 500 ilmu pengetahuan alam dan matematika description: The use of an Electronic Health Record (EHR) can generate a lot of information about a person's health digitally and can be used as the main consideration factor used by doctors to determine the next course of action for patients, whether they need to be hospitalized (in-patient care) or out-patient care. The importance of the EHR data requires the hospital to be responsive in determining further actions for patients. This study aims to classify EHR data using the LSTM and GRU methods. Both of these methods are the development of the Recurrent Neural Network (RNN) method. Based on the results of its accuracy, the LSTM method has a better accuracy value than the GRU method in classifying EHR data with an accuracy value of 75.57% and 75.34% respectively. Keywords : Electronic Health Record, treatment classification, patient's laboratory test results, LSTM, and GRU. Electronic Health Record (EHR) merupakan data medis yang dapat menghasilkan banyak informasi tentang kesehatan seseorang secara digital dan dapat dijadikan sebagai faktor pertimbangan utama yang digunakan oleh dokter dalam menentukan tindakan lanjutan bagi pasien, yaitu apakah pasien perlu dirawat di rumah sakit (rawat inap) atau rawat jalan. Pentingnya data EHR tersebut mengharuskan pihak rumah sakit untuk cepat tanggap dalam menentukan tindakan lanjutan bagi pasien. Penelitian ini bertujuan untuk melakukan klasifikasi data EHR dengan menggunakan metode LSTM dan GRU. Kedua metode tersebut merupakan perkembangan dari metode Recurrent Neural Network (RNN). Berdasarkan hasil akurasinya, metode LSTM memiliki nilai akurasi yang lebih baik dibandingkan metode GRU dalam mengklasifikasikan data EHR dengan nilai akurasi masing-masing sebesar 75.57% dan 75.34%. Kata kunci : Electronic Health Record, klasifikasi pelayanan, hasil tes laboratorium pasien, LSTM, dan GRU. publisher: FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM date: 2023-06-20 type: Skripsi type: NonPeerReviewed format: text identifier: http://digilib.unila.ac.id/73711/1/1.%20ABSTRAK.pdf format: text identifier: http://digilib.unila.ac.id/73711/2/2.%20SKRIPSI%20FULL.pdf format: text identifier: http://digilib.unila.ac.id/73711/3/3.%20SKRIPSI%20TANPA%20BAB%20PEMBAHASAN.pdf identifier: Zida Bunga Sobara , 1917031091 (2023) KLASIFIKASI ELECTRONIC HEALTH RECORD (EHR) MENGGUNAKAN LONG SHORT TERM MEMORY (LSTM) DAN GATED RECURRENT UNIT (GRU). FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM, UNIVERSITAS LAMPUNG. relation: http://digilib.unila.ac.id/73711/