@misc{eprints86116, month = {Maret}, title = {PERBANDINGAN PERFORMA JAMES-STEIN ESTIMATOR, RIDGE REGRESSION ESTIMATOR, DAN MODIFIED KIBRIA-LUKMAN ESTIMATOR DALAM MENGATASI MULTIKOLINEARITAS PADA REGRESI POISSON: SIMULASI STUDI }, author = {ZAMI M. FIKRI ALYASA ZAM }, address = {UNIVESITAS LAMPUNG }, publisher = {FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM }, year = {2025}, url = {http://digilib.unila.ac.id/86116/}, abstract = {Poisson regression is a statistical method used to analyze data with a response in the form of a count variable. This regression uses the Maximum Likelihood Estimation (MLE) method to estimate model parameters. The purpose of this study is to compare the performance of the Poisson James-Stein Estimator (PJSE), Poisson Ridge Regression Estimator (PRRE), and Poisson Modified Kibria- Lukman Estimator (PMKLE) methods in dealing with multicollinearity using simulated data with n = 20, 40, 60 and 80 in poisson model (p=6) with } }