BETA PUTRI ANZELA, 1717031036 (2021) PEMODELAN AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA) MENGGUNAKAN METODE PROSEDUR ITERATIF PADA DATA PENCILAN DERET WAKTU. Fakultas Matematika Ilmu Pengatahuan Alam, UNIVERSITAS LAMPUNG.
|
File PDF
1. ABSTRAK-ABSTRACT - Beta Putri Anzela.pdf Download (4002Kb) | Preview |
|
File PDF
2. SKRIPSI FULL - Beta Putri Anzela.pdf Restricted to Hanya staf Download (3999Kb) |
||
|
File PDF
3. SKRIPSI TANPA BAB PEMBAHASAN - Beta Putri Anzela.pdf Download (4001Kb) | Preview |
Abstrak (Berisi Bastraknya saja, Judul dan Nama Tidak Boleh di Masukan)
Dalam penelitian ini akan ditentukan model ARIMA (Autoregessive Integrated Moving Average ) terbaik dengan tujuan menghasilkan tingkat keakuratan yang tinggi dalam memprediksi nilai IHSG yang akan datang. Model ARIMA dikatakan layak dalam melakukan peramalan adalah jika model tersebut telah memenuhi asumsi untuk residualnya. Metode prosedur iteratif digunakan untuk mengatasi masalah ketika tidak terpenuhinya salah satu asumsi model ARIMA yaitu asumsi normalitas. Berdasarkan deteksi pencilan pada residual data IHSG yang dilakukan terdapat dua jenis pencilan yang signifikan masuk ke dalam model ARIMA dengan MAPE 1,1% sehingga akurasi peramalan sebesar 98.9%. Adapun model ARIMA dengan penambahan pencilan yang terbentuk sebagai berikut: Zt = 0.5125Zt−1 + 0.4875Zt−2 + at − 0.6529at−1 − 567.2498 It (99) − 1518.2698 It (105) . Kata Kunci: ARIMA ( Autoregessive Integrated Moving Average ), Prosedur Iteratif, Deteksi Pencilan In this study, the best ARIMA ( Autoregessive Integrated Moving Average ) modelling will be used to produce a high level of accuracy in predicting IDX price in the future. ARIMA modelling can result the accurate data, if the model has been met by assumption of the residuals. The iterative procedure method is using to help solve the problem when the assumption of ARIMA model is unfulfilled. Based on detection outlier of IHSG data, there are two type significant outliers, where the items can be inserted into ARIMA model so the result of MAPE is 1,1% and the accuracy of foecasting is 98.9%. The model of ARIMA with outlier is as following: Zt = 0.5125Zt−1 + 0.4875Zt−2 + at − 0.6529at−1 − 567.2498 It (99) − 1518.2698 It (105) . Keywords: ARIMA ( Autoregessive Integrated Moving Average ), Iterative Procedure, Outlier Detection
Jenis Karya Akhir: | Skripsi |
---|---|
Subyek: | 500 ilmu pengetahuan alam dan matematika 500 ilmu pengetahuan alam dan matematika > 510 Matematika |
Program Studi: | FAKULTAS MIPA > Prodi Matematika |
Pengguna Deposit: | UPT . Dito Nipati |
Date Deposited: | 23 May 2022 05:16 |
Terakhir diubah: | 23 May 2022 05:16 |
URI: | http://digilib.unila.ac.id/id/eprint/61626 |
Actions (login required)
Lihat Karya Akhir |