Nuryanti Simarmata, 1117031041 (2015) PENYELESAIAN PERSAMAAN DIFERENSIAL BIASA TAK LINEAR ORDE DUA DENGAN METODE TRANSFORMASI DIFERENSIAL. Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Lampung.
|
File PDF
ABSTRAK.pdf Download (5Kb) | Preview |
|
|
File PDF
COVER DALAM.pdf Download (619Kb) | Preview |
|
|
File PDF
COVER LUAR.pdf Download (35Kb) | Preview |
|
|
File PDF
DAFTAR ISI.pdf Download (11Kb) | Preview |
|
|
File PDF
LEMBAR PENGESAHAN.pdf Download (1176Kb) | Preview |
|
|
File PDF
LEMBAR PERNYATAAN.pdf Download (611Kb) | Preview |
|
|
File PDF
LEMBAR PERSETUJUAN.pdf Download (1312Kb) | Preview |
|
|
File PDF
MOTO.pdf Download (18Kb) | Preview |
|
|
File PDF
PERSEMBAHAN.pdf Download (41Kb) | Preview |
|
|
File PDF
RIWAYAT HIDUP.pdf Download (7Kb) | Preview |
|
|
File PDF
SANWACANA.pdf Download (77Kb) | Preview |
|
|
File PDF
BAB I.pdf Download (156Kb) | Preview |
|
|
File PDF
BAB II.pdf Download (412Kb) | Preview |
|
|
File PDF
BAB III.pdf Download (187Kb) | Preview |
|
File PDF
BAB IV.pdf Restricted to Hanya pengguna terdaftar Download (294Kb) |
||
|
File PDF
BAB V.pdf Download (152Kb) | Preview |
|
|
File PDF
DAFTAR PUSTAKA.pdf Download (6Kb) | Preview |
Abstrak (Berisi Bastraknya saja, Judul dan Nama Tidak Boleh di Masukan)
ABSTRAK Berdasarkan bentuk kelinearan, persamaan diferensial biasa dibagi menjadi persamaan diferensial biasa linear dan persamaan diferensial biasa tak linear. Lebih jauh, persamaan diferensial biasa digolongkan berdasarkan orde tertinggi dari turunan terhadap variabel terikat. Pada umumnya, persamaan diferensial biasa tak linear diselesaikan dengan linearisasi terlebih dahulu kemudian dilanjutkan dengan penyelesaian persamaan diferensial linear. Pada tahun 1986 Zhou memperkenalkan suatu metode, yaitu metode transformasi diferensial. Metode ini digunakan sebagai alternatif menyelesaikan persamaan diferensial tak linear tanpa linearisasi. Penyelesaian persamaan diferensial tak linear dengan metode transformasi diferensial dilakukan dengan mentransformasikan persamaan diferensial tak linear tersebut sesuai dengan sifat-sifat transformasi diferensial. Kata kunci: persamaan diferensial biasa, persamaan diferensial tak linear, metode transformasi diferensial.
Jenis Karya Akhir: | Skripsi |
---|---|
Subyek: | |
Program Studi: | FAKULTAS MIPA > Prodi Matematika |
Pengguna Deposit: | 9095663 . Digilib |
Date Deposited: | 10 Feb 2015 06:26 |
Terakhir diubah: | 10 Feb 2015 06:26 |
URI: | http://digilib.unila.ac.id/id/eprint/7031 |
Actions (login required)
Lihat Karya Akhir |