IMPLEMENTASI KLASIFIKASI PENYAKIT GINJAL KRONIK MENGGUNAKAN DECISION TREE ALGORITMA CLASSIFICATION AND REGRESSION TREES (CART)

FADHILAH , GUSTRIANDINI (2023) IMPLEMENTASI KLASIFIKASI PENYAKIT GINJAL KRONIK MENGGUNAKAN DECISION TREE ALGORITMA CLASSIFICATION AND REGRESSION TREES (CART). FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM , UNIVERSITAS LAMPUNG.

[img]
Preview
File PDF
ABSTRAK.pdf

Download (1696Kb) | Preview
[img] File PDF
SKRIPSI FULL.pdf
Restricted to Hanya staf

Download (2086Kb) | Minta salinan
[img]
Preview
File PDF
SKRIPSI TANPA BAB PEMBAHASAN.pdf

Download (2086Kb) | Preview

Abstrak (Berisi Bastraknya saja, Judul dan Nama Tidak Boleh di Masukan)

Klasifikasi merupakan salah satu teknik dari data mining dan merupakan hasil dari pembentukan model yang digunakan untuk melakukan prediksi suatu label kelas serta mengelompokkan data. Decision tree adalah salah satu metode klasifikasi yang melakukan pembagian dari sekumpulan data menjadi beberapa himpunan data dengan visualisasi berbentuk pohon. Penelitian ini dilakukan untuk mengklasifikasikan pasien yang terindikasi penyakit ginjal kronik dengan membangun model dari 11 variabel yang mempengaruhi penyakit ginjal kronik menggunakan salah satu algoritma dari decision tree, yaitu algoritma Classification and Regression Trees atau CART. Evaluasi model dibangun dari tiga proporsi pembagian data testing dan data training, yaitu 20:80, 30:70, dan 40:60. Berdasarkan hasil perhitungan diperoleh bahwa tingkat akurasi tertinggi dihasilkan pada proporsi 30:70 yaitu sebesar 98.33%. Kata Kunci: Data Mining, Decision Tree, Classification and Regression Trees(CART) ABSTRACT Classification is one of the data mining techniques by building a model whose results can be used to predict a class label and classify data. The decision tree is one of the classification methods that divides a set of data into several data sets with tree-shaped visualization. This research was conducted to classify patients who indicated chronic kidney disease by building a model of 11 variables that affect chronic kidney disease using one of the decision tree algorithms, namely the Classification and Regression Trees or CART algorithm. Model evaluation is built from three proportions of testing data and training data, which are 20:80, 30:70, and 40:60. Based on the results of the calculation, it is obtained that the highest accuracy rate is generated at the proportion of 30:70, which is 98.33%. Key words: Data Mining, Decision Tree, Classification and Regression Trees (CART)

Jenis Karya Akhir: Skripsi
Subyek: 500 ilmu pengetahuan alam dan matematika
500 ilmu pengetahuan alam dan matematika > 510 Matematika
Program Studi: FAKULTAS MIPA > Prodi Matematika
Pengguna Deposit: 2301975193 . Digilib
Date Deposited: 17 Apr 2023 07:11
Terakhir diubah: 17 Apr 2023 07:11
URI: http://digilib.unila.ac.id/id/eprint/70988

Actions (login required)

Lihat Karya Akhir Lihat Karya Akhir