Faiga Kharimah, 1117031022 (2015) PEMODELAN TIME SERIES DAN PERAMALAN MENGGUNAKAN METODE AUTOREGRESSIVE MOVING AVERAGE (ARIMA) DAN RANDOM WALK. FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM, UNIVERSITAS LAMPUNG.
|
File PDF
ABSTRAK.pdf Download (8Kb) | Preview |
|
|
File PDF
COVER DALAM.pdf Download (20Kb) | Preview |
|
|
File PDF
LEMBAR PERSETUJUAN.pdf Download (242Kb) | Preview |
|
|
File PDF
LEMBAR PENGESAHAN.pdf Download (225Kb) | Preview |
|
|
File PDF
LEMBAR PERNYATAAN.pdf Download (251Kb) | Preview |
|
|
File PDF
RIWAYAT HIDUP.pdf Download (7Kb) | Preview |
|
|
File PDF
PERSEMBAHAN.pdf Download (27Kb) | Preview |
|
|
File PDF
MOTO.pdf Download (18Kb) | Preview |
|
|
File PDF
SANWACANA.pdf Download (10Kb) | Preview |
|
|
File PDF
DAFTAR ISI.pdf Download (16Kb) | Preview |
|
|
File PDF
DAFTAR TABEL.pdf Download (5Kb) | Preview |
|
|
File PDF
DAFTAR GAMBAR.pdf Download (17Kb) | Preview |
|
|
File PDF
BAB I.pdf Download (23Kb) | Preview |
|
|
File PDF
BAB II.pdf Download (1221Kb) | Preview |
|
|
File PDF
BAB III.pdf Download (472Kb) | Preview |
|
File PDF
BAB IV.pdf Restricted to Hanya pengguna terdaftar Download (656Kb) |
||
|
File PDF
BAB V.pdf Download (241Kb) | Preview |
|
|
File PDF
DAFTAR PUSTAKA.pdf Download (5Kb) | Preview |
Abstrak (Berisi Bastraknya saja, Judul dan Nama Tidak Boleh di Masukan)
ABSTRACT Autoregressive integrated moving average (ARIMA) is a combination of Autoregressive (AR) model and Moving Average (MA) model. The ARIMA model has orde (0,1,0) is called RandomWalk model. The ARIMA model using past and present value to produce short-term forecasting. The purpose of this research is to determine the best ARIMA model for forecasting the Consumer Price Index (CPI) and health comodities price index Bandar Lampung city in the period January to June 2014. The ARIMA model has assumption that the series data are stationary. The CPI and health comodities price index of Bandar Lampung is not stationary, then we apllied differencing to make the data stationary. To find the best model ARIMA, first we check the stationary data by using time series plot, Autocorrelation Function (ACF), and unitroot test. Then the time series model was found by using ACF and Partial Autocorrelations Function (PACF). The best model was found by using criteria Mean Square Error (MSE), Akaike’s Information Criterion (AIC) and Bayesian Information Criterion (BIC). The best model is ARIMA (1,1,0) for CPI and ARIMA (0,1,0) for health comodities price index. Key Word : time series, forecasting, CPI, ARIMA
Jenis Karya Akhir: | Skripsi |
---|---|
Subyek: | > QA Mathematics |
Program Studi: | FAKULTAS MIPA > Prodi Matematika |
Pengguna Deposit: | 9670349 . Digilib |
Date Deposited: | 24 Jun 2015 07:33 |
Terakhir diubah: | 24 Jun 2015 07:33 |
URI: | http://digilib.unila.ac.id/id/eprint/10421 |
Actions (login required)
Lihat Karya Akhir |