PEMODELAN TIME SERIES DAN PERAMALAN MENGGUNAKAN METODE AUTOREGRESSIVE MOVING AVERAGE (ARIMA) DAN RANDOM WALK

Faiga Kharimah, 1117031022 (2015) PEMODELAN TIME SERIES DAN PERAMALAN MENGGUNAKAN METODE AUTOREGRESSIVE MOVING AVERAGE (ARIMA) DAN RANDOM WALK. FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM, UNIVERSITAS LAMPUNG.

[img]
Preview
File PDF
ABSTRAK.pdf

Download (8Kb) | Preview
[img]
Preview
File PDF
COVER DALAM.pdf

Download (20Kb) | Preview
[img]
Preview
File PDF
LEMBAR PERSETUJUAN.pdf

Download (242Kb) | Preview
[img]
Preview
File PDF
LEMBAR PENGESAHAN.pdf

Download (225Kb) | Preview
[img]
Preview
File PDF
LEMBAR PERNYATAAN.pdf

Download (251Kb) | Preview
[img]
Preview
File PDF
RIWAYAT HIDUP.pdf

Download (7Kb) | Preview
[img]
Preview
File PDF
PERSEMBAHAN.pdf

Download (27Kb) | Preview
[img]
Preview
File PDF
MOTO.pdf

Download (18Kb) | Preview
[img]
Preview
File PDF
SANWACANA.pdf

Download (10Kb) | Preview
[img]
Preview
File PDF
DAFTAR ISI.pdf

Download (16Kb) | Preview
[img]
Preview
File PDF
DAFTAR TABEL.pdf

Download (5Kb) | Preview
[img]
Preview
File PDF
DAFTAR GAMBAR.pdf

Download (17Kb) | Preview
[img]
Preview
File PDF
BAB I.pdf

Download (23Kb) | Preview
[img]
Preview
File PDF
BAB II.pdf

Download (1221Kb) | Preview
[img]
Preview
File PDF
BAB III.pdf

Download (472Kb) | Preview
[img] File PDF
BAB IV.pdf
Restricted to Hanya pengguna terdaftar

Download (656Kb)
[img]
Preview
File PDF
BAB V.pdf

Download (241Kb) | Preview
[img]
Preview
File PDF
DAFTAR PUSTAKA.pdf

Download (5Kb) | Preview

Abstrak (Berisi Bastraknya saja, Judul dan Nama Tidak Boleh di Masukan)

ABSTRACT Autoregressive integrated moving average (ARIMA) is a combination of Autoregressive (AR) model and Moving Average (MA) model. The ARIMA model has orde (0,1,0) is called RandomWalk model. The ARIMA model using past and present value to produce short-term forecasting. The purpose of this research is to determine the best ARIMA model for forecasting the Consumer Price Index (CPI) and health comodities price index Bandar Lampung city in the period January to June 2014. The ARIMA model has assumption that the series data are stationary. The CPI and health comodities price index of Bandar Lampung is not stationary, then we apllied differencing to make the data stationary. To find the best model ARIMA, first we check the stationary data by using time series plot, Autocorrelation Function (ACF), and unitroot test. Then the time series model was found by using ACF and Partial Autocorrelations Function (PACF). The best model was found by using criteria Mean Square Error (MSE), Akaike’s Information Criterion (AIC) and Bayesian Information Criterion (BIC). The best model is ARIMA (1,1,0) for CPI and ARIMA (0,1,0) for health comodities price index. Key Word : time series, forecasting, CPI, ARIMA

Jenis Karya Akhir: Skripsi
Subyek: > QA Mathematics
Program Studi: FAKULTAS MIPA > Prodi Matematika
Pengguna Deposit: 9670349 . Digilib
Date Deposited: 24 Jun 2015 07:33
Terakhir diubah: 24 Jun 2015 07:33
URI: http://digilib.unila.ac.id/id/eprint/10421

Actions (login required)

Lihat Karya Akhir Lihat Karya Akhir